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Abstract

Background: Cellular mechanisms leading to aging and therefore increasing susceptibility to age-related diseases are a
central topic of research since aging is the ultimate, yet not understood mechanism of the fate of a cell. Studies with model
organisms have been conducted to ellucidate these mechanisms, and chronological aging of yeast has been extensively
used as a model for oxidative stress and aging of postmitotic tissues in higher eukaryotes.

Methodology/Principal Findings: The chronological aging network of yeast was reconstructed by integrating protein-
protein interaction data with gene ontology terms. The reconstructed network was then statistically ‘‘tuned’’ based on the
betweenness centrality values of the nodes to compensate for the computer automated method. Both the originally
reconstructed and tuned networks were subjected to topological and modular analyses. Finally, an ultimate ‘‘heart’’ network
was obtained via pooling the step specific key proteins, which resulted from the decomposition of the linear paths
depicting several signaling routes in the tuned network.

Conclusions/Significance: The reconstructed networks are of scale-free and hierarchical nature, following a power law
model with c = 1.49. The results of modular and topological analyses verified that the tuning method was successful. The
significantly enriched gene ontology terms of the modular analysis confirmed also that the multifactorial nature of
chronological aging was captured by the tuned network. The interplay between various signaling pathways such as TOR,
Akt/PKB and cAMP/Protein kinase A was summarized in the ‘‘heart’’ network originated from linear path analysis. The
deletion of four genes, TCB3, SNA3, PST2 and YGR130C, was found to increase the chronological life span of yeast. The
reconstructed networks can also give insight about the effect of other cellular machineries on chronological aging by
targeting different signaling pathways in the linear path analysis, along with unraveling of novel proteins playing part in
these pathways.

Citation: Borklu Yucel E, Ulgen KO (2011) A Network-Based Approach on Elucidating the Multi-Faceted Nature of Chronological Aging in S. cerevisiae. PLoS
ONE 6(12): e29284. doi:10.1371/journal.pone.0029284

Editor: Vladimir N. Uversky, University of South Florida College of Medicine, United States of America

Received July 26, 2011; Accepted November 23, 2011; Published December 21, 2011

Copyright: � 2011 Borklu Yucel, Ulgen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financially supported by Bogazici Research Fund through project 5681 and also by TUBITAK through project 110M428. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: esra.yucel1@boun.edu.tr

Introduction

Aging is usually defined as the progressive loss of function

accompanied by decreasing fertility and increasing mortality with

advancing time, due to the accumulation of molecular, cellular

and organ damage. Although it is clear and evident that aging

‘‘occurs’’, the reasons, pathways and regulators responsible for the

mentioned accumulation of deleterious effects are still vaguely

described, rendering the mechanisms that contribute to aging and

age-associated diseases a central topic of interest. Recent works on

model organisms such as yeast, worms and flies have yielded

promising discoveries regarding these mechanisms [1,2] which

may be projected to higher eukaryotes. The yeast Saccharomyces

cerevisiae, an extensively used model organism, harbors two models

of aging: Replicative and Chronological Aging. Replicative aging

term is used for the aging of mitotically active yeast cells, involving

the capacity of daughter cell production of a mother cell, before

senescence [3]. However, yeast chronological life span is the length

of time a population remains viable in the non-dividing, quiescent

state [4], which is thought to be a suitable model for aging of

post-mitotic tissues [5]. Chronologically aged yeast cultures die

exhibiting typical markers of apoptosis, accumulate oxygen

radicals, and show caspase activation [6], i.e. processes crucial

for the cell fate of other higher eukaryotes. Several alterations in

signaling pathways such as TOR, Akt/PKB and cAMP/Protein

kinase A, which are also conserved between yeast and higher

eukaryotes such as Homo sapiens, have been demonstrated to affect

the damage accumulation previously mentioned [7–10]. In yeast,

these pathways may be represented by orthologous proteins like

Tor1p, Sch9p and Ras2p respectively. These points altogether,

render chronological aging machinery of yeast as a promising

candidate for gaining insight about aging and age-related diseases

in humans.

Recently, research has been conducted to comprehend

connectivity between longevity and age-related diseases along

with the determination of genes regulating life span, using systems

biology approaches [11–18]. Almost all of the stated studies benefit

from published protein-protein interaction (PPI) data to construct

a biological network, which is then topologically analyzed. Studies

investigating aging and age-related diseases in humans employ
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different topological techniques, such as shortest path length [7,14]

and connectivity [7,11,12,14,16,18] analyses on the reconstructed

PPI networks. Also, the integration of intracellular PPI data with

extracellular ones is another approach in network reconstruction

employed by human aging studies [13]. The networks of

individual signaling pathways affecting aging, such as TOR

pathway [8] and glucose repression pathway [15], are important

examples of network based approaches in elucidating aging

process. In S. cerevisiae, the two aging processes encountered have

also been subjected to network-based analysis. The application of

shortest path length analysis on a longevity network constructed

with PPI data of proteins related to replicative aging process [19],

and topological analysis of a hybrid aging network, reconstructed

by integrating both replicative and chronological aging processes,

[20] gave information about novel genes and processes which

impact both types of aging in yeast. Moreover, examples of the

‘‘bottom-up’’ systems biology which involve the construction of an

in silico model with genes, proteins and processes as parameters

have also been encountered while investigating aging in yeast [17]

and in higher eukaryotes [21].

In the current study, Chronological Aging Network of S.

cerevisiae is reconstructed using Selective Permissibility Algorithm

(SPA) which integrates Gene Ontology (GO) annotation terms

with protein-protein interaction (PPI) data, in an automated

manner [22]. False positives naturally occurring in PPI data and

insignificant PPI’s are eliminated from the reconstructed network

by statistical methods based on betweenness centrality values, and

the tuned network is then clustered and subjected to linear path

analysis. Via linear path analysis, routes starting with proteins

previously demonstrated to regulate life span such as Tor1p

(homologous to mammalian mTOR), Sch9p (homologous to

mammalian Akt/PKB) and Ras2p (homologous to mammalian

Ras proto-oncogenes) together with 3 other proteins (Gpa2p,

Pga3p and Ptk2p) and ending at Sir2p and Gts1p are investigated.

Simultaneous analysis of the linear path spectra of these input-

output pairs enable one to unravel intermediate players of the

signaling events that lead to chronological aging. Step-specific key

protein determination is the chosen method in the current study

for the mentioned in depth analysis, yielding a denser final

network of 92 nodes for the 6 input and 2 output proteins. This

dense ‘‘heart’’ network depicts the routes highly participating to

the information flow in the network by identifying fundamental

proteins for the proceeding of the signal transduction for studied

input-output pairs. Indeed, four proteins of this heart network,

Tcb3p, Sna3p, Pst2p and YGR130Cp, which have not been

reported to affect chronological aging and also have unknown GO

process terms, are demonstrated to be involved in life span

alteration.

Reconstruction and dissection of the reconstructed network as

well as its topological analysis, helps us unravel and enlighten

the inner dynamics of chronological aging mechanism of

Saccharomyces cerevisiae. Only the members of the nutrient sensing

pathways (Tor1p, Gpa2p, Ras2p, and Sch9p) with some other

input proteins such as Pga3p, which is proved to regulate the life

span, and Ptk2p, which is involved in cellular ion homeostasis,

are investigated in the current study. Further analyses of linear

paths starting with other proteins taking part in different

signaling pathways will provide data to illuminate the possible

machineries by which the mentioned signaling pathways affect

the chronological life span as well as to decipher the important

proteins responsible for these effects. The proposed framework

can effectively be used as a tool to give insight about other

biological networks, regardless of the species of which they

belong.

Results

Network Reconstruction and Reduction
In the present study, the ‘‘chronological aging network’’ (CAN)

in Saccharomyces cerevisiae is reconstructed via integration of protein–

protein interactions with Gene Ontology terms. To achieve this

goal, all proteins which share the ‘‘chronological aging’’ term

under biological process were selected as the core constituents of

the network to be reconstructed (Table S1). The network was then

expanded as described in the Methods section (Figure S1). The 18

core proteins led to an undirected graph composed of 2359 nodes

and 12314 edges as the final network (Table S2). The network

diameter and the mean path length are found to be 9 and 3.37

respectively. These distance measures are orders of magnitude

significantly smaller than the number of proteins, meaning that

despite the large size of the network, any two nodes in the network

can be connected by relatively short paths along existing links,

emphasizing the small world architecture of the reconstructed

network. Moreover, as in many biological networks, the

distribution of the nodes in the current reconstructed network

has a scale-free nature following nearly a power law model, P(k)

<k2c, having c = 1.49 with R2 = 0.88 (Figure 1a). Other

topological parameters such as average degree, critical path

length, diameter and average clustering coefficient are also in close

vicinity with the values reported for other protein-protein

interaction networks in literature (Table 1). Further analysis of

average clustering coefficient values versus degree reveals that the

current system is actually a hierarchical network, resembling the

Barabasi-Albert model discussed in elsewhere [23,24]. The

distribution of average clustering coefficients with respect to

degree follows a power law model with C(k) <k2w, having w

<0.75 with R2 = 0.69 (Figure 1a). These topological parameters,

c and w, imply that the network reconstructed is made of

numerous small, highly integrated modules, preserving both the

high degree of clustering and the scale-free property. In fact, when

the same topological analysis is carried out with the network

comprised of the whole PPI data in BioGrid (BioGrid network), it

is observed that both c and goodness of fit value, R2, decreases.

Moreover, the BioGrid network does not follow a hierarchical

nature, since w is found to be 0.615 with a considerably small R2

value of 0.46 (Figure S2).

It is well known that the aging process is a multifactorial

phenomenon; i.e. various parameters affect the lifespan of yeast as

well as of higher eukaryotes via different branches in cell

[12,25,18]. Hence it is not a surprising result that the size of the

reconstructed network is fairly large, integrating various mecha-

nisms attached to the process of chronological aging of yeast. The

current reconstruction of the network was carried out in an

automated fashion to eliminate possible biases which may arise

from manual curation. But unfortunately, that also renders the

network prone to the incorporation of incomplete and/or

erroneous data (e.g. false positives) which originate unavoidably

when high throughput experiments are carried out. To counter-

balance this side-effect of the method, a hypothesis testing based

on the betweenness centrality (BC) values of individual nodes was

carried out as described in the Methods section. Briefly, it was

assumed that if the BC value of a node does not change

significantly for both the reconstructed and randomized networks

(the average value of 100 networks in the randomized case), the

node was considered to be included in the network randomly and

therefore discarded, since its contribution to the putative

information flow in the random networks is the same as its

contribution to the real information flow in the original network.

Three different significance levels were employed for this

Chronological Aging Network of Yeast
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Figure 1. Connectivity and average clustering coefficient distributions for a) CAN and b) tCAN.
doi:10.1371/journal.pone.0029284.g001

Table 1. Topological properties of protein-protein interaction networks.

Model node # edge # ,k. CPL d ,CC. Reference

CAN (S. cerevisiae) 2359 12314 10.4 3.4 9 0.157 this study

tCAN (S. cerevisiae) 1736 8458 9.7 3.4 9 0.167 this study

Signaling (S. cerevisiae) 1363 3649 5.4 6.8 9 - [22]

Ca2+ signaling (S. cerevisiae) 1826 10078 11.04 3.56 11 0.150 [115]

DIP (M. musculus) 329 286 - 3.6 9 0.155 [116]

DIP (H. sapiens) 1065 1369 - 6.8 21 0.206 [116]

Wnt signaling (H. sapiens) 3489 10092 - 4.4 15 - [117]

EGFR signaling (H. sapiens) 329 1795 10.91 4.7 11 - [95]

Hedgehog Signaling (D. melanogaster) 568 975 - 4.8 14 - [118]

Wnt/b-catenin Signaling (D. melanogaster) 656 1253 - 4.8 13 - [118]

‘‘,k.’’ denotes the average connectivity, ‘‘CPL’’ stands for critical path length, ‘‘d’’ is diameter and ‘‘,CC.’’ is the average clustering coefficient value.
doi:10.1371/journal.pone.0029284.t001
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hypothesis testing: 0.1, 0.01 and 0.001. Ultimately the significance

level value (a) of 0.001 was selected to be used as the threshold

since the resulting network with this significance value yielded the

highest goodness of fit score, R2 = 0.86, compared to the other

two significance level values for the power law model (Figure S3).

Following this hypothesis testing, approximately 26% of the

original nodes were considered as statistically insignificant and

they were filtered out from the originally reconstructed network

along with their interactions (31% of the original interactions).

Ultimately, the ‘‘tuned’’ network obtained (tCAN) had 1734 nodes

and 8458 interactions (Table S3). Moreover, when tCAN was

topologically analyzed, it was observed that many of the statistical

parameters remained nearly unchanged, compared to those of

CAN (Figure 1b, Table 1).

Hubs and Clusters of CAN and tCAN
Hub Proteins. The first 20 of the highly connected nodes,

referred to as the ‘‘hubs’’ of the network, are the same proteins in

both CAN and tCAN, although their ranking differed slightly for

the two networks (Figure 2). 13 of these hubs are also among the

first 20 hubs of BioGrid network; however their specificity in CAN

differs considerably compared to that in BioGrid network. The

individual deletion of the 10 common hubs results in up to 6 and 5

fold increase in the number of connected components in CAN and

in tCAN respectively, compared to BioGrid network, except the

deletion of TPK1 (1.33 fold change in BioGrid Network compared

to CAN and tCAN), RPT5 (connected component number is the

same for all three networks) and RPN11 (2.5 fold change in CAN

while created connected component number does not change in

tCAN, compared to BioGrid Network) (Table S4). This result

demonstrates that in CAN, these hub proteins are more important

in terms of network stability and robustness: CAN is more prone to

‘‘attacks’’ targeting these hubs than the BioGrid network.

When these 20 hubs are analyzed thoroughly, it is observed that

they are indeed strongly related to the chronological aging and

quiescence processes in yeast. A very recent genome-wide study

demonstrated that the deletion mutants of the genes encoding 6 of

these 20 hub proteins had either shorter (WHI3, TPK1, RVS167) or

longer (PHO85, BRE5, SSA1) chronological life spans compared to

that of wild type strain [26]. Although the effect of the essential

gene encoding the hub protein with the highest degree, RPN11, on

chronological aging of S. cerevisiae has not yet been investigated,

Tonoki and colleagues demonstrated that the loss of function of

RPN11 resulted in a shorter life span for D. melanogaster [27]. Harris

et al. proved that reduced levels of Hsp82p activity in S. cerevisiae

resulted in a longer chronological life span, by increasing the stress

resistance of the cells [28].

The remaining 12 hub proteins have not been subject to

experimentation yet to determine their effects on the chronological

life span of yeast. However, when their roles in the cellular

machinery are concerned it is seen that they take part in crucial

cellular processes closely linked to aging such as maintenance of

genomic stability, actin dynamics, protein degradation and

regulation of pH. For instance, Cdc28p was required to generate

post senescence survivors at a normal rate in telomerase-negative

S. cerevisiae cells [29] together with a role in maintenance of

genomic stability [30]. The dysfunction of telomeres induces

senescence [31] and has also been hardwired with chronological

aging in yeast [32,33]. Rpt5p, another hub protein of the network,

was identified to be among the proteins which affect the telomere

length in S. cerevisiae [31]. The 3rd hub protein of CAN (and 4th of

tCAN), Dsn1p, is a member of the MIND kinetochore and is

responsible for the accurate segregation of chromosomes [34];

therefore altered Dsn1p activity results in the disruption of

genomic stability, which in turn may trigger chronological aging

[35]. The mRNA-binding protein Yra1p, another hub of the

networks under study, has a role in the DNA damage response of

the yeast cells via nucleotide excision repair (NER) system. This

repair system was proved to provide protection against both

cancer and aging [36,37]; hence Yra1p may affect the chrono-

Figure 2. The first 20 hub nodes in the two networks with their corresponding connectivity values.
doi:10.1371/journal.pone.0029284.g002
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logical aging mechanism in S. cerevisiae by altering the genomic

stability.

The three hub proteins Ptk2p, Yck1p and Yck2p are found to

be involved in the phosphorylation of Pma1p, a cell surface

protein which is the major regulator of cytoplasmic pH and

plasma membrane potential [38,39]. The limiting effect of

extracellular acidity on the chronological aging of S. cerevisiae is

well established [40], therefore these 3 hub proteins may affect the

response of the cell to acid toxicity via tampering Pma1p activity.

Sla1p, protein required for the assembly of the cortical actin

cytoskeleton, is another hub protein of the network. It was

suggested that the actin cytoskeleton interacts with the mitochon-

dria, and this interaction plays a significant role in programmed

cell death and aging [41]. SSB1 encodes Ssb1p, a member of the

Hsp70 family together with another hub protein, Ssa1p, and is

considered to take part in the proper folding of newly synthesized

proteins as well as in the glucose sensing pathway in S. cerevisiae

[42,43]. Both protein homeostasis [44] and glucose signaling [45]

are suggested to be the key factors in aging process. In fact the two

hub proteins mentioned previously, Yck1p and Yck2p are also

taking parts in Snf3/Rgt2-mediated glucose signaling of yeast [46].

Protein homeostasis includes proper degradation as well as proper

folding machinery of proteins, since accumulation of misfolded or

damaged proteins leads to protein toxicity and aging. The hub

protein Srp1p was demonstrated to be a part of this degradation

machinery in S. cerevisiae through ubiquitin-proteasome system

[47], and may therefore be influential on chronological aging

mechanism via maintenance of protein homeostasis in the cell.

Ksp1p, a ser/thr protein kinase required for growth in nutrient

limited conditions, is another hub protein of the network. It has

recently been demonstrated that Ksp1p is amongst the Tor1p-

regulated phosphoproteome; much specifically it is one of the

rapamycin-sensitive phosphoproteins of yeast coordinated by the

Sch9p branch of the TOR signaling [48,49]. Moreover Ksp1p

regulates the translocation of Bcy1p, the regulatory subunit of the

cAMP-dependent PKA [50]. Both TOR and cAMP/Protein

kinase A signaling pathways are reported to be responsible for life

extension during calorie restriction in yeast, hence it is not

surprising to detect Ksp1p as a hub protein in CAN and tCAN

[51]. The last one of the 20 hub proteins of CAN and tCAN is

Orc1p, the largest subunit of the origin recognition complex of

yeast. Orc1p is the paralog of Sir3p [52], the silencing protein

required for spreading of silenced chromatin. Although the

sequences of ORC1 and SIR3 have diverged significantly, Orc1p

is also involved in transcriptional silencing, rendering itself as a

suitable hub protein of CAN and tCAN since gene silencing leads

to cellular quiescence [53].

Modular Analysis. The reconstructed networks (CAN and

tCAN) are of hierarchical nature, whereas the BioGrid network is

not, which implies a reigning modular topology within CAN and

tCAN. The modules (the highly connected protein subgroups) are

expected to give insight about underlying cellular machineries

leading to chronological aging process in yeast (Tables S5 and S6).

Actually, when modularity analysis is performed to the whole PPI

data in BioGrid (Table S7), it is observed that only 5% of the

proteins encountered in the modules of CAN and tCAN are

shared by the protein spectrum of the BioGrid network.

Furthermore, the enrichment analyses of the modules of the

BioGrid network (having scores greater than 3) result in parent

GO terms predominantly, complicating the extraction of

differential information from the analysis (Table S8). However,

the enriched GO process terms of modules of CAN and tCAN

reflect the cellular reprogramming necessary for quiescence which

is the hallmark of chronological aging, validating the fact that the

reconstructed networks indeed encompass different aspects

connected to chronological aging of yeast through this modular

topology. The filtered enriched terms for the clusters of CAN and

tCAN are summarized in Table S9 and Table S10 respectively.

Many terms related to cell cycle (S phase, interphase etc.) but

especially to its mitotic (M) phase (DNA replication initiation,

cytoskeleton organization, chromosome segregation and organi-

zation, cytokinesis, etc.) stand out among the enriched categories

following the modular analysis on the complete set of proteins of

CAN and tCAN (see Tables S9 and S10 for p-values). It was

surprising to have GO terms related to mitotic cell cycle, since

chronologically aged yeast cells are in a quiescent state (G0

phase)[54], and do not divide. However, it has recently been

reported that along with the increase in genomic instability, a

breakdown in mitotic asymmetry is also encountered in chrono-

logically aged yeast cells [55]. This renders the mitotic division

mechanism of importance for not solely replicative aging process,

but for both types of aging in yeast, coherent with the findings of

this study. Apart from cell cycle terms, the enriched GO categories

for both networks may be gathered into three main cellular

processes which are required to maintain viability in the quiescent

state: i) reorganization of metabolism, ii) redox homeostasis and iii)

protein turnover.

Reorganization of metabolism. The trehalose and vitamin

B6 (pyridoxine) biosynthesis, which are the most significantly

enriched terms of the two clusters (15 & 16) in both networks (p-

values,10E-5), are examples of the metabolic rearrangement

encountered in quiescent cells. SNZ1, the product of which is

required for pyridoxine biosynthesis, is identified to be expressed

after entry into quiescence [56], and then a role of vitamin B6 as a

cofactor in stationary-phase specific processes or as an antioxidant

has been suggested [57]. Similarly, trehalose was proposed to

protect proteins against oxidative damage in quiescent cells [58]

and moreover, cells metabolize trehalose also for fuel upon exit

from the quiescent state [59]. The GO process terms belonging to

glycolysis and gluconeogenesis along with respiration and

fermentation stood out in the enrichment results (p-values,2E-

2). Apart from the tight regulation of these processes in quiescent

cells, alternative energy production routes are well activated in

chronologically aging cells. The terms ‘‘fatty acid metabolism’’ and

‘‘triacylglycerol mobilization’’ are among the enriched categories

in this study, indicating that the networks reconstructed contained

the other speculated energy source of quiescent cells:

triacylglycerol and/or fatty acid oxidation [60]. The possibility

of deriving energy from fatty acid catabolism implies an important

role for peroxisome and mitochondria in the maintenance of a

quiescent cell. In fact many terms related to the mitochondrial as

well as peroxisomal functions appear in the enrichment results of

tCAN (and similarly of CAN), in accordance with the literature

[61,62]. The terms ‘‘cell wall organization and biogenesis’’, ‘‘cell

wall chitin metabolic process’’ and ‘‘ergosterol biosynthetic

process’’ give insight about another aspect of the metabolic

reorganization encountered in quiescence, the remodeling of the

cell wall. Actually, quiescent cells develop thickened cell walls [63]

and that cell wall organization in yeast cells is highly dependent on

PKA signaling pathway which may negatively regulate longevity

in yeast [64]. Moreover, ergosterol, which is an essential lipid for

the membrane, is taking role in the response to oxidative stress and

is shown to be a part of the longevity network of yeast [65,17].

Redox homeostasis. The reorganization of energy

metabolism in quiescent cells is closely linked to the redox

homeostasis machinery. As mentioned above, the storage of

carbohydrates such as trehalose and glycogen together with

hydrolysis of lipid stores in quiescent cells probably leads to the

Chronological Aging Network of Yeast

PLoS ONE | www.plosone.org 5 December 2011 | Volume 6 | Issue 12 | e29284



accumulation of free fatty acids. Peroxisomes come onto stage at

this point, and oxidize these fatty acids to acetyl-CoA, which is

subsequently oxidized in mitochondria to generate ATP in

quiescent cells [60]. The terms involving the electron transport

chain along with ‘‘TCA cycle’’ and ‘‘Acetyl-CoA catabolism’’

terms in the enrichment results also support this hypothesis.

However, this reorganization in the cell generates considerable

quantities of mitochondrial ROS and oxidative stress, pointed out

by the enriched ‘‘superoxide metabolic process’’, ‘‘oxygen and

reactive oxygen species metabolic process’’, and ‘‘age-dependent

response to reactive oxygen species during chronological cell

aging’’ terms in GO enrichment analysis. In fact, ROS

homeostasis must be tightly regulated in quiescent cells, since it

is debated that ROS play a dual role in determining the fate of a

cell [66]: ROS are speculated to increase the chronological

lifespan of the whole culture, below a certain threshold, probably

by triggering autophagy [67,68] and/or apoptosis [69,6] but they

may very well decrease it, via exactly the same mechanisms, likely

when their level exceeds the threshold [70–72]. Coherent with the

mentioned points above, the apoptosis and autophagy related

terms are also present in the enrichment results of both networks.

Protein turnover. The most significant GO process term for

both networks is ‘‘ubiquitin-dependent protein catabolic process’’,

having the highest corrected p-value. Ubiquitin/proteasome

system is one of the protein turnover mechanisms in yeast and

was demonstrated to contribute to chronological aging in yeast

[19,73]. Whether the ubiquitin dependent protein degradation is a

mechanism necessary for oxidative stress resistance of yeast cells is

a highly debated issue. Recently, however, it was demonstrated

that ubiquitin, as well as proteasome, is necessary for oxidative

stress resistance [74]. This information relates the above

mentioned ROS homeostasis and protein turnover machineries

in quiescent cells: proper degradation of oxidized proteins

resulting from accumulated ROS may be necessary for

maintaining viability in quiescent state. Moreover, autophagy

and ubiquitin/proteasome system have been proved to be cross-

linked [75], hence this mechanism may also be effective in the

amino acid recycling of stationary phase yeast cells along with

autophagy, which has been proved to affect the chronological life

span of S. cerevisiae. ‘‘Protein amino acid deacetylation’’ is another

term that comes across the results of this study concerning protein

modification, implying its importance for quiescent cells. Indeed,

studies adopting spermidine and resveratrol, both of which are

known to extend the chronological life span of yeast by inducing

autophagy, have hinted that these agents activate the autophagic

cascade in the cell via deacetylation reactions [76,77]. The

majority of the remaining enriched GO terms are related to

intracellular (especially vesicle-mediated) transport involving

endosomes, membrane invagination, endocytosis, exocytosis, and

actin cytoskeleton organization. These processes are also closely

linked to the autophagy machinery which promotes the survival of

quiescent cells [78–80].

Considering the similarities in the topological properties as well

as in the enrichment results of CAN and tCAN, it was decided to

adopt tCAN in the forthcoming analyses.

Linear Path and Key Protein Analysis
Linear Path Analysis. By investigating the linear paths

between particular proteins in tCAN it is aimed to gain insight

about the information flow of the intracellular machineries leading

to chronological aging in yeast. Six input (Pga3p, Tor1p, Gpa2p,

Ptk2p, Ras2p and Sch9p) and two output (Sir2p and Gts1p)

proteins were selected for linear path analysis. The role of Tor1p

and Ras2p, the two membrane proteins, is well established in

chronological aging [4,81]. Pga3p is a putative cytochrome b5

reductase on the plasma membrane, and one of the core proteins

of the reconstructed network [82]. GPA2 encodes a subunit of the

heterotrimeric G protein that interacts with the receptor Gpr1p,

which has a signaling role in response to glucose and its deletion

mutant has been demonstrated to have a longer chronological life

span compared to wild type strain [83]. Ptk2p regulates the ion

transport across plasma membrane and enhances spermidine

uptake [84]. Moreover it is one of the first 20 hub proteins of the

network. The involvement of Sch9p in the regulation of life span

in yeast is well documented [85], but it is not localized to the

plasma membrane. The two end proteins, Sir2p and Gts1p, are

among the core proteins of the network, and both have a

transcription regulator activity. By decomposing tCAN into linear

paths, depicting the signaling routes between mentioned inputs

and outputs, the intermediate proteins taking part in the

embedded information flow can be unraveled.

Using NetSearch algorithm [86], different path lengths starting

from 3 to 8 were tested to reach a transcriptional regulator from

an input protein and it was seen that as the linear path length

increases, the number of paths to be analyzed increased in an

exponential fashion (unpublished data). Furthermore, when the

number of steps is greater than 7, the data analysis becomes

computationally tedious, since the final number of linear paths for

a given couple of proteins is in the order of 106 for this number of

steps. So, the path length is chosen to be 6 for this study, with an

acceptable core and network protein coverage value of 65% and

55% respectively. Alternatively, the same analysis was carried out

for Tor1p-Sir2p pair in BioGrid network and it was observed that

the number of linear paths increased almost 35 fold (729960 linear

paths) while the number of proteins involved in these linear paths

increased about 5 fold (3479 proteins) when compared to tCAN.

Actually, the total number of proteins taking part in the interaction

data of BioGrid release 3.1.73 is 5626, and 61% of these proteins

appeared in the results of the linear path analysis for this branch

only. Moreover, the protein set obtained by the analysis performed

only on Tor1p-Sir2p pair in BioGrid network has a strong

similarity to complete tCAN, having 1200 proteins in common.

Therefore, it is not surprising to have an increased core protein

coverage and percentage of common network proteins, 86% and

69% respectively, for a path length of 6 in BioGrid network for

Tor1p-Sir2p branch (unpublished data).

Linear path analysis supplies analytical measures to distinguish

the relative activity of the signaling routes under study, aside from

pointing out candidate proteins belonging to a signaling cascade.

As a general result, it can be deduced that the Sir2p branch of the

pathway is more active compared to Gts1p branch, since an

approximately 2-fold increase is observed in the number of linear

paths for all input proteins (Table 2). When the input proteins are

ranked according to the abundance of linear paths, Ptk2p and

Tor1p are the most active ones, followed by Gpa2p. Sch9p and

Ras2p, clustered as the third active input proteins, pursuit Gpa2p

and finally the least active input protein is Pga3p for both outputs

with less than 100 linear paths. The activity of the input proteins

may hint to the robustness and therefore to the complexity of the

cellular machineries in which these proteins take part. For

instance, the higher path numbers belonging to Ptk2p and Tor1p

indicate that the signal flowing through these nodes has many

alternative routes, implying that these proteins are probably

involved in regulating multitudinous complex processes which

have an impact on chronological aging. In case a perturbation

occurs in one route, there are several alternative routes that may

maintain an intact signal transduction if the start proteins are

Ptk2p and/or Tor1p [87]. According to this point of view, the
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signaling cascades involving Pga3p are expected to be very

sensitive to any perturbation and should affect the chronological

aging in yeast in a relatively direct manner. Indeed, Pga3p is the

only membrane protein which is also one of the core proteins of

tCAN, and the relatively high percentage of core protein coverage

of linear paths starting with Pga3p despite the extremely low total

protein coverage implies a relatively direct involvement of this

protein in aging [82]. Moreover, all of the linear paths of the

Pga3p branch directed to both Sir2p and Gts1p, contain at least

one protein which is encoded by a gene whose deletion is lethal to

the cell (SGD phenotype data, release 11328), emphasizing the

sensitivity of the transduction routes towards perturbations [88].

When the proteins involved in linear path spectra are

considered, it was noticed that approximately 84% of the proteins

involved in Sch9p branch are common with Tor1p branch for

Sir2p and this percentage mounts to 95% for the output protein

Gts1p. Also, Tor1p branch surpasses Sch9p branch (for all output

proteins) in both the unique protein number and linear path

number. Hence linear path analysis points to the Sch9p branch to

be a sub-cluster of Tor1p branch, and the fact that Sch9p is a

substrate of Tor1p supports this finding [89]. The other input

protein which has a similar activity (in terms of linear path

abundance) with Sch9p is Ras2p. Ras2p and Gpa2p are involved

in the transcriptional response to glucose and are members of G-

proteins [90,91]. However, Ras2p branch has a higher unique

protein number compared to that of Gpa2p despite a considerably

lower linear path number. This fact, when combined with a

common protein percentage being lower than 70% (for both Sir2p

and Gts1p) between the two branches, indicates that Ras2p

branch cannot be considered as a sub-cluster of Gpa2p branch

(Table 2). In fact, although both Gpa2p and Ras2p were

demonstrated to function similarly in the cell, e.g. to induce

cAMP signaling and to mediate the transcriptional response to

glucose in yeast [92], they act in redundant pathways, rather than

in sequential steps in the same pathway [93,94].

Reconstruction of the heart network. Apart from

quantitative analysis, the linear paths of each input-output

protein pair were qualitatively investigated to have deeper

information about the participations of individual proteins in the

information flow. A classical approach for determining the

important proteins for an input-output pair is the global

investigation of their participation percentage values [95,96].

Participation percentage value of a protein is the percent ratio of

the number of linear paths, in which the mentioned protein is

involved, over the total number of linear paths, disregarding the

step at which it is contributing to the information flow. Although

the important proteins (ranging from 3 to 12 for all pairs) are

determined via this method for an input-output pair successfully,

they are not always interacting with each other since they do not

necessarily emerge from successive steps of a path. But the

successive structure of a signaling network, which is crucial in the

information flow of biological networks, is enclosed in the

currently developed decomposition method (step-specific key

protein determination), yielding a more complete spectrum for

important proteins, compared to the global percentage analysis.

By this decomposition method, four successive groups of most

active proteins having a role in the information flow were

extracted, yielding a key protein subset of approximately 20–30

proteins for each input-output pair. The assembly of these subsets

resulted in a smaller but denser ‘‘heart’’ network having 92 nodes

and 477 interactions, depicting the most frequent information flow

routes for each input-output pair (more than 50% of the linear

paths were covered for each pair in the final ‘‘heart’’ network),

generated with Cerebral plugin of Cytoscape [97] (Figure 3). The

same decomposition method was also applied to the linear path

spectrum of Tor1p-Sir2p pair in BioGrid network, and 107 step-

specific key proteins emerged for this pair solely, 74 of them absent

in the current ‘‘heart’’ network. Moreover, these key proteins did

not include almost one fourth of the key proteins determined for

Tor1p-Sir2p pair in tCAN (Table S11). Although the number of

step-specific key proteins increases approximately five fold in

BioGrid network for Tor1p-Sir2p pair compared to tCAN,

analysis on BioGrid network fails to detect all of the proteins

determined in tCAN. For example, proteins such as Sac6p, Slt2p

and Pma1p, which are involved in chronological aging [79,98,99]

process of S. cerevisiae and fission yeast, are not captured in the

results of BioGrid Network, but of tCAN. This result implies that

the reconstructed network provides a smaller yet more distinctive

subset of proteins for chronological aging in S. cerevisiae.

The ‘‘heart’’ network (comprised of the key proteins) also

includes 19 of the 20 hub proteins given in Figure 2, except Yra1p.

This result is actually expected, since hub proteins, having higher

connectivity values compared to other proteins, are indeed proved

to be active in the information flow in a network [100]. Apart from

the 19 hub proteins, several key proteins of the heart network have

been reported either to be involved in regulation of chronological

life span or to be associated with quiescence in yeast. BCK1,

FMP48, SNF1, TOR1, CKA1 and RIM15 are among the signal

transduction genes whose expression values have been demon-

strated to be significantly higher in quiescent cells [101]. Similarly,

the deletion mutants of BCK1, CKA2, UFD2, DFM1, SSD1 and

OSH6 have recently been reported to be among the outgrowing

Table 2. The quantitative results of the linear path analysis.

To Sir2p To Gts1p

# of paths # of proteins # of UP’s* CPC** (%) OPC*** (%) # of paths # of proteins # of UP’s* CPC** (%) OPC*** (%)

Ptk2p 33117 750 15 55.6 43.3 16580 684 106 44.4 39.4

Tor1p 21109 689 116 44.4 39.7 10200 651 85 38.9 37.5

Gpa2p 9344 510 28 33.3 29.4 4443 485 33 27.8 27.9

Ras2p 5591 581 83 38.9 33.5 2500 446 57 38.9 25.7

Sch9p 6075 518 35 38.9 29.9 2400 346 3 27.8 19.9

Pga3p 73 64 7 22.2 3.7 40 46 5 11.1 2.7

*UP’s: Unique proteins, designate proteins solely present in the linear path spectra starting with the mentioned input protein.
**CPC: Core protein coverage, is the percent ratio of the core proteins present in the linear path spectra of the specific input-output pair over those of tCAN.
***OPC: Overall protein coverage, is the percent ratio of the proteins present in the linear path spectra of the specific input-output pair over those of tCAN.
doi:10.1371/journal.pone.0029284.t002
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strains in a competition experiment on life span regulation [80].

Overexpression of ADH1, which encodes the alcohol dehydroge-

nase, another key protein in the heart network, resulted in the

extension of chronological life span [102]. More importantly,

when GO process terms of these 92 key proteins are investigated

globally, it is noticed that they overlap with the GO enrichment

results attributed to modules of tCAN (Table S12), indicating that

the sub network they formed is successful in reflecting the

characteristics of tCAN. Moreover, the step-specific key proteins

comprising the ‘‘heart’’ network also include the ‘‘important’’

proteins obtained via global participation percentage method.

Determining New Proteins Regulating the Chronological
Life Span (CLS) of Yeast

The proteins in one of the clusters of the heart network (cluster

19 in Figure 3) are of particular interest for further analysis since

these four proteins, Tcb3p, Sna3p, Pst2p and YGR130Cp, do not

have a known biological process term. Therefore, these key

proteins are taken as good candidates to check the validity of the

assumption that the members of the heart network are actively

contributing to the chronological aging process in yeast, and

chronological life span determination experiments were carried

out as described in Materials and Methods section with deletion

mutants of genes encoding these proteins along with Dras2 strain.

The deletion of RAS2 is known to extend the chronological life

span [4]; hence this strain is used as a reference to compare the

extent of gene deletion effect on life span.

When the survival curves belonging to these strains are

observed, it is noticed that chronological life span was increased

for all mutants compared to wild type strain (Figure 4), although

the increase was not as pronounced as it is in the case of RAS2

deletion. This difference is in fact more clearly observed in terms

of mean (the day on which survival reaches 50%) and maximum

(the day on which the survival reaches 10%) life spans (Table 3).

Parallel to our findings, Pst2p and YGR130Cp have recently

been reported to be a part of a longevity network of yeast [103].

Pst2p is a flavodoxin-like protein which plays a role in the stress

response of yeast, and rapamycin treatment induces a serious

growth defect in the homozygous deletion mutant of PST2 [104].

As for YGR130C, whose expression is approximately doubled

following a rapamycin treatment in a study investigating nitrogen

assimilation in yeast [105], Pst2p is found to be involved in

endocytotic machinery of the cell and speculated to control protein

turnover [106,107]. The other membrane protein affecting CLS,

Sna3p, is a multivesicular body cargo protein [108] and is a part of

the endosomal network. Moreover, overexpression of SNA3 results

in a more stabilized Tat2p, the high-affinity tryptophan permease

which is normally degraded upon nutrient starvation or rapamycin

treatment [109]. Finally, Tcb3p which is one of the three yeast

tricalbins, is another membrane protein involved in membrane

trafficking [110] and deletion of TCB3 renders cells more resistant

to rapamycin treatment [48].

In summary, all these 4 proteins share a role in the intracellular

transport, mainly endocytotic pathway, and are responsive to

rapamycin treatment in yeast cells. Observing the similar survival

profiles of the deletion strains of the genes encoding these proteins,

one may speculate that the four key proteins Tcb3p, Sna3p, Pst2p

and YGR130Cp, affect chronological life span by altering the

Figure 3. The ‘‘heart’’ network depicting the key proteins of the 12 branches. The node colors reflect the degree of the proteins in tCAN.
The GO enrichment results of the numbered clusters are given in Table S4. The circular and triangular nodes depict intracellular and nuclear proteins
respectively, diamond nodes are the membrane proteins and square nodes are the proteins with the GO compartment term ‘‘unknown’’.
doi:10.1371/journal.pone.0029284.g003
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endosomal network, since endocytosis and vacuolar protein sorting

processes are already known to be involved in the regulation of

chronological life span in yeast [78,80].

Discussion

In this study, the chronological aging network of S. cerevisiae is

reconstructed in an automated manner, by integrating protein-

protein interaction data available in literature with gene ontology

terms. It is observed that the resulting network reflects qualities

similar with other biological networks such as a scale-free nature

and small world architecture, but the current network also

possesses a hierarchical nature, implying a regulatory organization

within itself. This result is particularly interesting because it stresses

out the presence of an information flow embedded in the network

from particular nodes to final ones, in a structured and organized

manner, as it is the case with signaling networks. In fact, many

signaling pathways have proven to alter the chronological life span

of yeast, and the current study integrates most of these pathways

into a large and hierarchical network.

Network refining is a necessary measure taken to counteract the

automated method adopted, to remove insignificant (to the current

context of chronological aging) as well as erroneous protein-

protein interaction data. In other words, the tuning enabled the

Figure 4. Survival curves of the deletion mutants and wild type strains. The percentages are the average values of 4 experiments (two
biological along with their two technical replicates) and error bars denote the standard deviation of the indicated sample.
doi:10.1371/journal.pone.0029284.g004

Table 3. Percent increase and p–values of maximum and
mean life spans of deletion mutants compared to wild type
strain.

max
life span

mean
life span

p-value
(max life
span)

p-value
(mean life
span)

Dtcb3 25 18 5.58E-04 3.55E-03

Dsna3 42 27 1.52E-05 2.84E-02

Dygr130c 50 18 2.68E-06 1.05E-03

Dpst2 25 36 1.79E-02 4.42E-03

Dras2 58 82 1.11E-04 1.24E-05

doi:10.1371/journal.pone.0029284.t003
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investigation of the chronological aging process of yeast with a

<30% smaller network, refined from erroneous data. The strong

overlapping of the results obtained from both topological and

modular analyses of the two networks, CAN and tCAN,

demonstrated that indeed tCAN is a more refined and to the

point version of the initial CAN. Thus betweenness centrality of

the nodes is an accurate measure to decide whether the particular

node is important when investigating signaling networks, where

the participation of nodes to the information flow is crucial.

Several gene ontology process terms involving cell cycle, protein

and ROS homeostasis together with reorganization of metabolism,

proven to be related to chronological aging in S. cerevisiae emerged

from enrichment analysis of the modules of CAN and tCAN,

fortifying the hypothesis that the reconstructed networks encom-

pass the multi-faceted mechanisms which impact chronological

aging in yeast. Protein ubiquitination/degradation and processes

pertinent to mitochondria and peroxisomes especially stand out

among the enrichment results, stressing out the strong interplay

between protein and ROS homeostasis in the cell when

chronological aging is concerned. Processes involved in autophagy

and apoptosis, especially endocytotic machinery, are also among

the key effectors of chronological aging according to the

enrichment analysis.

The in-depth investigation of tCAN is achieved via linear path

analysis between selected input-output protein pairs, followed by

the identification of ‘‘step-specific key proteins’’ of the linear

spectra. The quantitative evaluation of the linear path analysis

provided preliminary results about the activity and robustness of

the branch starting with a specific input protein in the

chronological aging network. These characteristics give hints

about the complexity of the machinery by which the mentioned

input protein affects the life span; increased complexity may imply

that the input protein in question alter aging via a broad range of

cellular processes. The identification of step-specific key proteins

constitutes the qualitative aspect of the linear path analysis, aiming

the detection of proteins whose impact on aging is not obviously

noticed otherwise.

In fact, a majority of the members of the ‘‘heart’’ network

(which is composed of step-specific key proteins) is actually proved

to be involved in life span alteration in studies conducted by

different groups, hinting that the computational approach adopted

is successful in capturing the global picture. Moreover, 4 genes

(TCB3, SNA3, PST2 and YGR130C) which have not been

previously reported to be related to the chronological life span

of S. cerevisiae, encode the key proteins that are not involved in any

known process in the cell. The experimental chronological life

span assays reveal that the deletion of the genes resulted in an

increase in the life span compared to wild type, albeit the rise is not

as significant as in the case of the deletion of RAS2. The fact that

the four proteins are all responsive to rapamycin treatment and

related to the endocytotic machinery of the cell implies that they

may affect the chronological life span by modifying the endosomal

network of yeast. Further experimental work, such as a whole

genome analysis may be conducted to comprehend more

thoroughly the underlying reorganization of the cellular machin-

ery of these deletion mutant strains leading to an increased life

span.

Due to its multifactorial nature, aging remains one of the most

complicated and therefore intriguing phenomena of the cell to

investigate. The involvement of various signaling pathways is

responsible for its multi-faceted nature, as proved here by modular

analysis. The disruption of the collaboration between these

pathways is essential for aging and also increases the susceptibility

of an organism towards age-related diseases. Therefore, the

reconstructed network may not only shed light to chronological

aging process itself, but also to the fundamental bottleneck points

responsible for the degeneration of the cooperation between these

signaling branches, which determine the fate of a cell.

Materials and Methods

Network Reconstruction by Selective Permissibility
Algorithm (SPA)

To reconstruct the signaling network of chronological aging in

yeast, the Selective Permissibility Algorithm (SPA) was adopted

[22]. The inputs of the algorithm were the core proteins of the

network and the Annotation Collection Table which is used to

expand the network from the mentioned core proteins. To

determine the core proteins, gene products which share the

‘‘chronological cell aging’’ GO biological process term were

extracted from the manually curated literature data of Saccharo-

myces Genome Database (SGD), released on 29.01.2011 (Table

S1). Next, the Annotation Collection table was created by pooling

the process, function and component GO annotations of the

determined core proteins only. As the third step, all physical

interactions of the core protein(s) were extracted from BioGRID

database [111] of protein and genetic interactions, release 3.1.73.

By integrating GO annotation terms with the interactome data of

yeast, the chronological aging network of S. cerevisiae is recon-

structed. Briefly, a candidate protein was included into the

network if all of the three GO annotations (component/function/

process) of the protein are present in the Annotation Collection

and if it physically interacts with the core proteins, as a first

neighbor. Proteins included via this procedure become the ‘‘new’’

input proteins and the algorithm expands the network in this cyclic

way until no new interacting proteins are added to the network

(Figure 5).

In order to prevent exclusion of proteins solely due to the lack of

available literature data, along with the GO annotations of the

core proteins, the ‘‘biological_process’’, ‘‘cellular_component’’ and

‘‘molecular_function’’ terms, namely the ‘‘unknown’’ terms, were

also included into the Annotation Collection Table. The

Annotation Collection created by this approach covers 178

annotations extracted out of a total of 4,208 annotations (about

4%) (Table S13).

Network Tuning
The reconstructed network was statistically ‘‘tuned’’ using the

betweenness centrality (BC, the number of shortest paths passing

through a node (or an edge) given a shortest path algorithm) of a

node, which is a measure of a node’s importance to the network. It

is assumed that the nodes of the reconstructed network should

differ significantly in their participation to the information flow,

compared to their role in random networks. 100 random networks

were generated by shuffling the edges of the original graph, i.e. by

preserving the degree of each node. In other words, in the null

distribution composed of 100 random networks, all nodes had the

same ‘‘degree’’ value as they had in CAN, whereas their

interaction partners were randomly selected, opposed to CAN.

The original BC value distribution of CAN tended to follow a

skewed distribution, hence this trait observed in the distribution

was used as a basis in the control chart utilized to check the

suitability of the computed null distribution (Figure S4). The

randomization procedure and computation of BC values of all

nodes (for both the original and randomized networks) are

implemented in MATLAB 7.0 (MathWorks, Inc.,Natick, MA)

using the MatlabBGL package (written by David Gleich). For

randomized networks, average values along with the estimated
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variances of BC values corresponding to each node are computed

and a hypothesis testing is carried out with the following

hypotheses:

Null Hypothesis. The protein in question is included in the

network randomly; its contribution to the putative information

flow in the random networks is the same as its contribution to the

real information flow of the original network (BC value in CAN is

equal to the average BC value of 100 random networks)

H0 : BCoriginal~BCave, rand

Alternative Hypothesis. The contribution of the protein in

question to the information flow in the original network differs

significantly from that in the random networks (BC value in CAN

is not equal to the average BC value of 100 random networks)

H1 : BCoriginal=BCave, rand

This hypothesis testing is then carried out for all nodes using a

dependent, two-tailed t-test for paired samples with a confidence

level of 99.9%.

Determination of Network Topology
Topological properties of both the tuned (reduced) and initial

networks, such as degrees, betweenness centralities, diameter,

average shortest path length and clustering coefficients were

calculated using the algorithm implemented in MATLAB 7.0

(MathWorks, Inc.,Natick, MA) with the MatlabBGL package.

Cluster Identification and Functional Enrichment
Highly densely connected proteins of the reconstructed

networks were identified with MCODE [112] plugin of Cytoscape.

In MCODE, loops were included while scoring the networks and

the degree cutoff (the minimum degree necessary in order for a

node to be scored) value was set to 2. The set cutoff value (the

threshold score that determines the inclusion of a node to a cluster,

depending on the seed node’s score) was 0.2 for cluster expansion;

the fluff parameter (the threshold score that determines the

inclusion of the neighbors of a node to a cluster, depending on the

node’s neighborhood density) was turned ‘‘off’’ while the haircut

option was ‘‘on’’ (all singly-connected nodes were removed from

clusters). Finally, the K-Core value (the minimum degree of a

maximally inter-connected sub-cluster within a cluster) was set to

2, and the maximum depth (the distance from the seed node while

searching for cluster members) was set to 100. The overrepre-

sented categories within the clusters with an MCODE score

greater than 1 or with a node number greater than 3, were further

investigated with BINGO plugin of Cytoscape [113]. The

enrichment was assessed with the hypergeometric test for the

cluster under study versus the whole annotation. The significance

level was chosen to be 0.05 and the false discovery rate was

controlled with Benjamini and Hochberg correction.

Identification of Linear Paths and Step-specific Key
Proteins

To gain insight on the signal flow in the chronological aging

network of S. cerevisiae, the linear paths of length 6, between a

starting (usually a membrane) protein and a target protein (a

transcriptional regulator) were evaluated using NetSearch algo-

Figure 5. Schematic representation of the network reconstruction algorithm, SPA. The black filled circles represent core proteins, empty
circles are possible candidates for first neighbors, and grey filled circles show eliminated candidates via annotation collection table. Process continues
on with determination of new candidate proteins as next neighbors based on published PPI data and validation of these candidates by annotation
collection table until no new protein is added to the network.
doi:10.1371/journal.pone.0029284.g005
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rithm [86]. Step-specific key proteins of the linear paths of an

input-output protein pair were then determined via decomposing

the linear paths into their steps (Figure 6). Briefly, for the first one

of the successive 5 steps constituting a linear path of length 6, the

percent participation values (ratio of the number of linear paths in

which the mentioned protein is present over the total number of

linear paths) of involved proteins were calculated. Then a

cumulative histogram representing the frequency distribution of

these percentage values was created. mi, the histogram function,

counts the number of proteins that fall into each of the disjoint

categories (known as ‘‘bins’’) of participation frequencies. The

cumulative histogram Mi, counts the cumulative number of

proteins in all of the frequency bins up to the specified bin,

represented by eqn. 1:

Mi~
Xi

j~1

mj ð1Þ

where i is from 1 to k (the square root of the number of proteins

participating to the histogram, the bin number). The fold change

in the percent difference of the cumulative frequency for each bin

is denoted by eqn. 2:

DMi~
Mi{Mi{1

Miz1{Mi

ð2Þ

from i = 1 to k-1, with M0 = 0 and Mk = 100. The ith frequency bin

in which the largest percent fold change occurred in frequency was

chosen as the threshold bin, if the number of proteins having

frequency values larger than that threshold did not exceed 10% of

the total number of proteins under study. Otherwise, the

frequency bin having the next greater fold change is determined

as the threshold. Ultimately, proteins which have frequency values

larger than that of the threshold frequency bin are determined as

the key proteins specific to the first step. For the successive step,

these key proteins were used as ‘‘baits’’: linear paths involving

these proteins as the second proteins were selected and the

procedure was repeated to this reduced subset of linear paths to

yield ‘‘hits’’, the key proteins of the third step. Via this

decomposition analysis, 4 sets of key proteins (specific to the 1st,

2nd, 3rd and 4th steps) were determined for each input-output pair

in the study. When these sets were pooled and united with the

input and output proteins, a relatively smaller subset of proteins

describing the whole linear spectra of the 12 branches was

obtained (Figure 3).

Figure 6. Schematic representation of key protein determination of the linear paths for an input-output pair. The putative input and
output proteins are A and K respectively. The procedure is depicted for a path length of 5. For details of the Frequency Histogram Analysis, see
Materials and Methods section.
doi:10.1371/journal.pone.0029284.g006
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Chronological Life Span Assay
All of the experiments were carried out in liquid synthetic

dextrose complete (SDC) medium [114] with 2% glucose. The

deletion strains used in the study (Table 4) were derived from

BY4742. Overnight cultures grown in SDC, were diluted to an

OD600 value of 0.1, and inoculated into 15 ml centrifuge tubes

with a 3 ml fresh SDC medium, maintaining a volume ratio of 1:5.

The cultures were then incubated at 30uC and 180 rpm. Serial

dilutions of the culture were spread onto four YPD plates (two

biological and two technical replicates) for each strain and time

point. Colony formation was monitored after two days. All

cultures were presumed to be 100% viable at day 3, with

subsequent colony forming unit (CFU) measurements normalized

to CFUs of day 3 to obtain survival data.

The methodology followed in the present work is summarized in

Figure 7.

Table 4. Yeast strains used in the study.

Strain Genotype Source

BY4742 Mat a; his3D1; leu2D0; lys2D0; ura3D0 EUROSCARF

DSNA3 Mat a; his3D1; leu2D0; lys2D0; ura3D0;
YJL151c::kanMX4

EUROSCARF

DTCB3 Mat a; his3D1; leu2D0; lys2D0; ura3D0;
YML072c::kanMX4

EUROSCARF

DYGR130C Mat a; his3D1; leu2D0; lys2D0; ura3D0;
YGR130c::kanMX4

EUROSCARF

DPST2 Mat a; his3D1; leu2D0; lys2D0; ura3D0;
YDR032c::kanMX4

EUROSCARF

doi:10.1371/journal.pone.0029284.t004

Figure 7. Algorithm of the methodology followed in this work.
doi:10.1371/journal.pone.0029284.g007
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Supporting Information

Figure S1 Number of proteins included in the network
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82. Jiménez-Hidalgo M, Santos-Ocaña C, Padilla S, Villalba JM, López-Lluch G, et al.
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