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Abstract

The Memory-Prediction Framework (MPF) and its Hierarchical-Temporal Memory implementation (HTM) have been widely
applied to unsupervised learning problems, for both classification and prediction. To date, there has been no attempt to
incorporate MPF/HTM in reinforcement learning or other adaptive systems; that is, to use knowledge embodied within the
hierarchy to control a system, or to generate behaviour for an agent. This problem is interesting because the human
neocortex is believed to play a vital role in the generation of behaviour, and the MPF is a model of the human
neocortex. We propose some simple and biologically-plausible enhancements to the Memory-Prediction Framework.
These cause it to explore and interact with an external world, while trying to maximize a continuous, time-varying reward
function. All behaviour is generated and controlled within the MPF hierarchy. The hierarchy develops from a random initial
configuration by interaction with the world and reinforcement learning only. Among other demonstrations, we show that a
2-node hierarchy can learn to successfully play ‘‘rocks, paper, scissors’’ against a predictable opponent.
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Introduction

Adaptive Agents and Reinforcement Learning

In Artificial Intelligence, an adaptive intelligent agent is an

entity (generally, a software program) that continuously learns to

interact with a real or virtual world in such a way that it

increasingly satisfies some internal objectives or optimization

criteria [1]. By this definition, people could be classed as adaptive

intelligent agents because we try to minimize pain and hunger, and

maximize personal comfort.

Agents generally learn to behave in an adaptive way by

interacting with an external world and discovering the conse-

quences of actions. Learning algorithms can be placed into three

classes depending on the type of feedback given during learning.

‘‘Unsupervised’’ methods learn patterns in data, without guidance

or preference for particular patterns. ‘‘Supervised’’ learning

requires ideal output values to be provided for each set of given

inputs. During learning, a supervised algorithm adjusts its output

to match the ideal values provided. After learning, it is hoped that

the supervised system can generalize beyond its training data and

produce good outputs from unseen inputs. A classic example of a

supervised-learning artificial neural network is the multi-layer

perceptron [2].

A third class of algorithms uses a technique called ‘‘reinforce-

ment learning’’, that requires an objective measure of output or

world-state quality, called ‘‘reward’’ [3,4]. The objective of

reinforcement learning is to learn behaviour that maximizes

cumulative reward. Reinforcement learning is often possible in

situations where the ideal output is unknown or difficult to

compute. For example, there may be many complex reasons why

the weather is so cold - but all these scenarios can be improved by

putting on warm clothes. A suitable reward function could be the

difference from optimal body temperature, which is easily

measured. It is then easy to learn that reward increases if you

put on a sweater when you are cold.

The Memory-Prediction Framework
The Memory-Prediction Framework (MPF) is a general

description of a class of pattern recognition and classification

algorithms. MPF describes an unsupervised learning system - there

is no objective except accurate modelling. MPF was developed by

Hawkins and Blakeslee [5] as an attempt to describe the function

of the human neocortex. A successful implementation, known as

Hierarchical-Temporal Memory (HTM), was first produced by

George and Hawkins [6]. An open-source implementation of

MPF/HTM has been produced by Saulius Garalevicius [7]. Both

MPF and HTM are auto-associative memory systems consisting of

tree-like hierarchies of pattern-classifiers. Within each unit of the

hierarchy, data is compressed by the discovery of spatial and

temporal patterns (spatial and temporal ‘‘pooling’’). Messages

about these patterns are transmitted between levels in the

hierarchy.
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HTM extends MPF by borrowing belief-propagation tech-

niques from Bayesian Networks [8,9]; the data transferred

between nodes are likelihood or probability mass functions over

a set of states defined within each node [10][11]. The literature

includes many similar cortical simulations using Bayesian Belief-

Propagation in hierarchical networks, such as [12] and [13].

It is important to understand some properties of the MPF/

HTM hierarchy (figure 1). First, raw data is presented at the

‘‘lowest’’ level. Classifications are extracted at the ‘‘higher’’ level(s).

The hierarchy is traversed in two directions, feed-forward (FF) and

feed-back (FB). In the feed-forward pass, raw data from the lowest

level is incrementally quantized and compressed at each level, until

it reaches the highest level in the hierarchy. Active ‘‘labels’’ in the

highest level of the hierarchy represent classifications of the raw

input.

In the feed-back pass, activity in the highest levels is transformed

and expanded at each level until it becomes a pattern of raw data

at the lowest level. The MPF/HTM hierarchy is expected to find

patterns in space (between inputs, via spatial pooling) and time

(coincidences and sequences, via temporal pooling). Due to

pooling, data at higher levels in the hierarchy are increasingly

invariant over time and space. The accumulation of invariances is

analogous to the production of increasingly symbolic representa-

tions.

Temporal pooling allows the hierarchy to generate predictions.

This occurs because temporal pooling causes states in higher units

to represent sequences observed in lower units. It means that

higher units can’t represent the state of lower units accurately, but

with the benefit that classification in higher units translates into

sequences of states in lower units. These sequences can be used as

predictions.

For example, if a lower unit regularly observes state sequence

A,B, a higher unit will form a model X that represents A,B. When

the higher unit recognizes the current state as X, this message is

translated into states A and B when passed to the lower unit.

Assuming the lower unit is already in state A, the message allows

the lower unit to ‘‘expect’’ state B. In HTM the feedback data

represent a belief of the state of the unit around the current time,

given all the data available higher in the hierarchy, including

observations from sibling units. In this paper, addition of a

predictor within each unit further biases feedback data towards

future states of the unit. At the lowest levels, data in the FB pass

become a prediction of FF input in the near future. In this way the

hierarchy is capable of both classification and prediction.

More recently, Hawkins, George et al have developed a very

detailed understanding of how HTM could be implemented in

biological neural networks [11] and there have been a number of

successes using HTM for optical character recognition [14,15],

image classification [6,11] and spoken digit recognition [16].

Other impressive HTM demonstrations include the classification

of observed human motion into categories such as walking and

sitting [17], preliminary studies on human motion classification

and reproduction [18], and music classification and production

[19]. These tasks are generally considered difficult for machines.

A greater variety of literature is relevant if HTM-like methods

are included: For example, Morse [20][21] described ESNs,

recurrent neural networks that create hierarchical models similar

to HTM. They used SOMs (see below) to compress data between

levels, and explored the relationships between actions and

perceptual learning. But there has been no attempt to use MPF

or related methods in an adaptive agent.

Exploiting the Hierarchy
A key difficulty in creating an adaptive intelligent agent is that

easily measured internal physical conditions such as pain can have

many causes and require complex sequences of actions to fix.

Often, it is necessary to identify and understand quite abstract

concepts - such as the identities of people with different

personalities - to successfully predict what will be nice or not.

Similarly, some threats or opportunities may not be continually

observable, or may take a long time to develop. The ability of the

MPF/HTM hierarchy to construct increasingly time-invariant

and abstract representations suggests that it would be an effective

perception and prediction system for an adaptive intelligent agent,

whose internal objectives are affected by many complex

relationships with its world.

Since knowledge and understanding of agent-world interactions

in a MPF/HTM model would be distributed throughout the

hierarchy, it is not immediately obvious how MPF/HTM can be

included in an adaptive system. Before learning, it is not possible to

predict what objectively-useful concepts will exist, or where they

will be found in the hierarchy. It would be possible to attach an

entirely separate adaptive control system to specific levels in the

hierarchy, but then behaviour would be generated outside the

hierarchy rather than within it. Since this separate system would

have to duplicate a lot of the knowledge already in the hierarchy, it

would be inefficient. It is also biologically realistic to expect

complex behaviours to be generated within the MPF/HTM

hierarchy, if it is an accurate analogy of the human neocortex.

To generate adaptive behaviour within an MPF/HTM

hierarchy, it is necessary to use information at all levels because

(a) details of the current state are distributed between many levels,

and (b), as activity moves from higher to lower levels, behaviours

are refined and given increasing detail both spatially and

temporally. For example, an abstract behaviour such as ‘‘drink’’

Figure 1. Hierarchic structure of the memory-prediction
framework. Blue (upward) arrows show the flow of data from lower
layers to higher layers in a feed-forward (FF) traversal. Data from
multiple children may be concatenated, giving the hierarchy a tree
structure. Data in higher layers has a greater number of invariances. Red
(downward) arrows show the flow of data in the feed-back (FB)
traversal. The FF pass performs classification; the FB pass generates
predictions. Each unit has two inputs and two outputs. l0 is the FF
input; l1 is FF output. p1 is FB input and p0 is FB output.
doi:10.1371/journal.pone.0029264.g001
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must be translated into a series of coordinated movements to

successfully end discomfort caused by ‘‘thirst’’.

With these points in mind, our objectives are:

N To allow the MPF to perform as an adaptive control system

while simultaneously continuing to perform hierarchical

learning and prediction

N To introduce minimal changes, e.g. not introducing a model to

translate the state of the MPF into another form

N To not restrict the organisation of the MPF hierarchy

N To generate and model agent behaviour within the MPF

hierarchy, not in a parallel model

N To effectively exploit information anywhere in the hierarchy,

without prior knowledge of where concepts will exist in the

hierarchy, or what they will represent

N To rely on the MPF discovering and modelling relationships

between complex causes, simplifying the adaptive component

of the system

Hierarchical Reinforcement Learning
In the literature, approaches to hierarchical reinforcement

learning share the same basic approach of defining macro-

operators that represent sequences of simpler actions [4,22]. This

fits neatly into MPF, where increasing temporal pooling will

naturally form states representing sequences of actions from lower

layers.

Skelly [23] describes some of the expected benefits of

hierarchical reinforcement learning: ‘‘… using greater abstraction

will be shown to require less experience from state transitions and

rewards in the environment, because the generalization helps

make maximum use of each experience by diffusing the

information from each experience to the local region of the state

and action space where that information is meaningful’’. Barto

and Mahadevan offer another advantage, that hierarchies

‘‘combat dimensionality by exploiting temporal abstraction where

decisions are not required at each step, but rather involve

execution of temporally extended activities that follow their own

policies until termination. This leads naturally to hierarchical

control architectures and learning algorithms’’ [22].

The majority of Reinforcement Learning (RL) problems can be

collectively best understood as the search for optimal solutions to

Markov Decision Processes (MDPs) [4]. A solution is defined as a

‘‘policy’’ for choosing actions that maximises cumulative future

reward. In the hierarchical case, the Semi-MDP (SMDP)

formalism is adopted [22,24]. SMDP models the time interval

between decisions as a random variable, describing the durations

of macro-actions composed of shorter actions.

Most hierarchical approaches to RL require the hierarchy of

possible actions to be defined in advance [22,25]. In this paper we

allow the MPF to define a hierarchy of state-action pairs, and

allow transition probabilities to be adjusted by reinforcement

learning.

Planning as Inference
A stationary Markov Decision Process (MDP) is one where

states, state transition probabilities and rewards for specific states

do not change over time. Most RL algorithms are only suitable for

finite state/action spaces and stationary MDPs in which the set of

possible actions and consequent rewards are fixed.

A Partially-Observable MDP (POMDP) [4,26] is an MDP in

which the state of the world cannot be known accurately.

Typically, approaches to POMDPs involve assigning probabilities

to observations and updating a probability distribution over an

underlying set of states.

The stationary MDP criterion means that for most hierarchical

RL algorithms, including HAMs,MAXQ and ALisp, the set of

macro and atomic actions must be defined a priori [22,25]. We

propose instead that unsupervised learning within MPF can define

a MDP of actions and macros, but it will evolve over time due to

unsupervised learning and adaptive bias.

In this case, the problem becomes a POMDP. In general,

finding globally optimal mappings from observations to actions in

POMDPs is NP-hard [27] but some locally-optimal solutions have

been proposed [28]. McGovern and Barto [29] have investigated

the problem of constructing hierarchical representations of actions

based on the frequency of successful ‘‘trajectories’’ (sequences of

tasks). This approach is similar to our correlating method.

More recently, several authors have tried to reformulate

planning by reinforcement learning as an inference problem. This

allows use of a variety of well known inference methods such as

Expectation-Maximization (EM) and Markov-Chain Monte-Carlo

(MCMC) [30]. Attias [31] describes an algorithm with separate

modes for exploration and ‘‘exploitation’’, the latter meaning using

learned models for goal-directed navigation. Exploration is

necessary to build models of possible action sequences, and is

implemented by sampling from a fixed prior distribution over

possible actions. In exploitation mode, planning consists of finding

an action sequence that maximizes the posterior distribution

conditioned on arrival at a goal with a fixed number of steps. Both

MDP and POMDP results are presented. In the POMDP case, the

posterior is conditioned on initial observations and the final (goal)

state.

Toussaint and Storkey [32] define solving an MDP as likelihood

maximization in a variable mixture model. This permits use of

Expectation-Maximization (EM) to search for mixture models that

maximize discounted expected future reward over an infinite

horizon, avoiding one of the most significant limitations in Attias’

work. They demonstrate both discrete and continuous action-

space MDPs.

Subsequently, Vlassis and Toussaint [30] extended this

approach to POMDPs using an approach called Stochastic

Approximation EM (SAEM), but this only guarantees convergence

to local optima and only in certain conditions. Their methods are

very relevant to solving the POMDP defined by the states and

action-sequences within the hierarchical MPF.

Structure of this Paper
In this paper we describe and demonstrate a way to generate

adaptive behaviour within an MPF hierarchy by modifying

(biasing) inter-unit messages during the feed-back pass through

the hierarchy. The changes cause the MPF to preferentially

predict states where its output causes actions associated with

higher reward from a hidden objective function. Crucially, we

allow associations between hierarchy states and internal reward to

be generated at any or all levels in the hierarchy, wherever a

strong correlation can be found. The remainder of this paper is

presented as Methods, Results and a Discussion.

In ‘‘Methods’’, we first describe how both sensing and actuation

can be connected to the MPF hierarchy. Next, we describe

additional components required to make a hierarchy adaptive. We

develop the concept of the MPF as part of a reinforcement

learning system, with the impact of external causes being felt

through a single reward function and understood by hierarchical

modelling.

‘‘Methods’’ also gives a detailed description of our implemen-

tation of an MPF unit. The unit performs both spatial and

Adaptive Memory-Prediction Framework
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temporal pooling, and internal prediction (sequence learning). We

discuss implementations of both first-order and variable-order

sequence learning. In ‘‘Results’’ we present several demonstrations

of the ideas within the paper.

Methods

Sensor-Motor Interface
We operate our hierarchy iteratively. Each iteration includes a

feed-forward (FF) pass of every unit, followed by a feed-back (FB)

pass of every unit. The units are traversed in such an order that all

units at the lowest level are FF prior to any unit at the next higher

level (breadth-first or level-order traversal). On the FB pass, the

units at the highest level are FB prior to any ‘‘lower’’ units, until

the lowest level is reached. Each iteration therefore consists of a FF

and a FB pass of the entire hierarchy (figure 2). Although

synchronous operation of the hierarchy is not biologically realistic,

it should not affect the results of the algorithm described below.

Each unit has 4 data structures for input and output. Let lu,0 tð Þ
be the FF input to unit u at iteration t, a vector of real numbers in

the interval ½0,1�. In higher layers lu,0 tð Þ is a mass function, but in

the lowest layer any values in this range can be provided. Let

lu,1 tð Þ be the FF output, a matrix containing a normalized

likelihood function over possible classifications of the input lu,0 tð Þ
within u. For the FB pass, let pu,1 tð Þ be a matrix of equal

dimension to lu,1 tð Þ containing a probability mass function over

predicted future classification-states in unit u. Similarly, let pu,0 tð Þ
be the FB output from u, a vector of equal size to the input vector

lu,0 tð Þ containing a prediction of future input to unit u. To form a

hierarchy, FF outputs from multiple lower units u1,u2,:::,un are

concatenated and presented to higher unit[s]. Conversion from

matrix to vector is not important as the classifiers (see below)

assume all input dimensions are independent.

State-Action Pairing
Many reinforcement learning algorithms - such as Q-learning

[3] and SARSA [33] - model the effect of [state,action] pairs on

reward. The state contains both external and internal measure-

ments from the agent in its world. Actions are generated by the

agent. The expected reward of performing actions a when in state

s is the ‘‘Quality’’ of the pair, typically denoted Q(s,a).
Since in MPF the FF and FB data structures are of equal size,

agent sensor values and motor commands must be present in both

lu,0 tð Þ and pu,0 tð Þ. If xi(t) is a vector of current values from the

agent’s sensors, and mi(t) is a vector of values corresponding to

motor commands, then lu,0(t)~½xi(t) mi(t)�. In other words, the

input/output state to the MPF’s lowest level is a concatenation of

sensor values and motor commands.

However, in an iterative artificial adaptive agent

lu,0(t)~½xi(t) mi(tz1)�, meaning that the state is comprised of

current sensor values and consequent actions taken. The agent

must learn which action to choose given that it is in a particular

world/self state, so we must store this combination together.

Imagine the Markov-Graph of this model; we are encoding the

current vertex and outbound edges, rather than the current vertex

and inbound edges (learning how we got into a nasty situation is

not as directly useful as learning how to get out of it!). This is

similar to the state-action pairing seen in SARSA.

We want the MPF to generate behaviour directly. If

lu,0(t)~½xi(t) mi(tz1)� then pu,0(t)~½xo(t) mo(t)�. Given the

behaviour of the MPF, xo(t) will be a prediction of xi(tz1) and

mo(t) will be a prediction/suggestion of motor commands at tz2;

i.e. when trained, mo(t)&mi(tz2).
If continuous motor outputs are desired, values in mo(t) can be

used without further processing. Discrete outputs are more

problematic because learning within the MPF unit (within a

SOM in this paper) will cause a feedback loop, pulling motor

outputs towards intermediate values. Instead, discrete outputs can

be produced by sampling from a multinomial of possible actions

with probabilities mo(t). mi(tz2) should represent the action

actually chosen from mo(t). Therefore let mi
k(tz2)~1 if action k

was chosen, and mi
k(tz2)~0 otherwise.

The different problems of discrete and continuous outputs

(action spaces) are discussed in the Reinforcement Learning

literature. Many RL algorithms (such as Q-learning and SARSA)

cannot handle continuous action spaces. However, approximately

optimal continuous outputs can be learnt by methods such as

CACLA (Continuous Actor-Critic Learning Automaton) [26].

The RL literature does include Monte-Carlo methods to explore

the space of possible actions (policies) [28], similar to our approach

for discrete outputs.

Additional Adaptive Components
Reward Function. The adaptive-MPF system uses

reinforcement learning rather than supervised learning because

we do not wish to provide ‘‘correct’’ outputs for every conceivable

situation. Instead, we wish to measure impacts of external causes

on properties of the agent, such as pain or hunger. In this paper we

will use the simplest possible reward function, providing a single

Figure 2. Formulation of an adaptive-MPF hierarchy. Messages
between units (U) in different layers are relayed via ‘‘reward correlator’’
components (RC). FF messages (blue arrows) represent classifications of
the current state of the agent in the world; these are correlated with
objective internal measures of agent state (reward). The same reward
value r(t) is provided to every RC; the hierarchy is tasked with modelling
the separate external causes of changes in reward. FB messages p are
‘‘predictions’’ of future agent-world state (red arrows). Biased messages
p are produced by RC components, making the hierarchy more likely to
‘‘predict’’ states in which it performs actions correlated with high
reward. Sensor data x is concatenated with motor output m to form the
interface to the MPF hierarchy. The FB output of an MPF unit is of the
same form as its FF input. Different data may be presented to each unit
at the bottom of the hierarchy. Sensor inputs and motor outputs may
be mixed within one unit or interfaced to different units.
doi:10.1371/journal.pone.0029264.g002
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varying scalar value r(t) such that {1ƒ(t)ƒ1. We use the term

‘‘reward’’ to imply that this function should be maximized. We will

expect the MPF to build a model of the world that is capable of

understanding the causes of changes in reward. By combining all

possible definitions of things good and bad within a single scalar, it

becomes much harder for the MPF to learn the separate causes of

high and low reward.

Since the agent should be highly motivated to improve a bad

situation, it is more useful to maximize the first derivative of

reward. We also wish to measure changes in reward over a period

of time, because the delays between actions and their consequenc-

es are varying and unknown. However, it is more likely that recent

actions are responsible for changes in reward. Over a few

iterations, this can be approximated simply as an exponentially-

weighted moving average:

f(t)~
r(t){r(t{1)

vr

ð1Þ

R(t)~af(t)z(1{a)R(t{1) ð2Þ

vr is the maximum possible absolute derivative of reward per

iteration, if known. The a parameter is determines the influence of

historic reward signals. If consequences of actions may take some time

to be reflected in r(t), the value of R(t) should instead be computed

over a window of time. The period should be increased for units at

higher levels in the hierarchy, whose state changes very slowly.

This differs significantly from conventional reinforcement

learning where a ‘‘discount’’ factor allows future reward signals

to be considered when evaluating state-action pairs [4]. Rewards

further in the future have less influence, and are therefore said to

be ‘‘discounted’’. Many RL algorithms iteratively propagate

discounted rewards backwards in time towards the events that

caused them.

In this paper we rely on the existence of an arbitrarily deep

hierarchy with increasing temporal pooling, to avoid the need to

consider discounted future rewards. We assume that for any event

with delayed reward there will exist a level in the hierarchy that

remains constant for the duration of the event-reward interval. For

example, a state in the hierarchy corresponding to a high-level

plan such as ‘‘walk the dog’’ could be active for long enough for all

relevant rewards to be integrated, despite the existence of other

transient plans during this period. This is unlikely to be an ideal

approach and in future work we will investigate the use of

discounted future reward.

Reward Correlation. Since we have defined that data inside

the MPF hierarchy includes representations both of [sensed world-

state] and [agent motor-actions], it should be possible to correlate

activity patterns within the hierarchy with the reward values that

result from the agent taking specific actions in specific situations.

While it is necessary that concepts with appropriate abstractions

and invariances exist somewhere in the hierarchy, it is not

desirable to have to define where, before learning. We also wish to

preserve the homogeneity of the MPF, therefore it must be

possible to add the adaptive components throughout the hierarchy

without negative effects.

In this paper we suggest that correlation of activity patterns with

reward values could occur between layers of the hierarchy. We

posit a ‘‘reward correlator’’ component that relays messages

between units in different layers, i.e. matrices lu,1 tð Þ and pu,1 tð Þ
are inputs and outputs of a reward correlator above u in FF and

FB passes respectively (figure 3).

The FF pass through the hierarchy should classify the current

state as accurately as possible. The purpose of the FB pass is to

generate predictions, and as a result, behaviour. We choose to

modify messages between units in the FB pass, causing the MPF to

preferentially ‘‘predict’’ states where its output causes actions

associated with higher reward. More specifically, in the FF pass we

correlate matrix lu,1 tð Þ with scalar R(t) and in the FB pass we

modify matrix pu,1 tð Þ. Since there is a feedback loop within each

MPF unit (detailed below), an alternative arrangement would be to

correlate lu,1 tð Þ with R(t) and modify lu,1 tð Þ prior to relaying it to

higher unit[s].

For every unit u, if cu is a correlation lu,1 tð Þ matrix of equal

dimension to lu,1 tð Þ and vc is a scalar learning-rate parameter

(gradually decreased over time), then we define a temporary

matrix t to correlate:

tij(t)~vc
:lu,1

ij (t{1) ð3Þ

cu

ij
(t)~tij(t)R(t)z(1{tij(t))c

u

ij
(t{1) ð4Þ

This formulation arises because we only want to change the

correlation for active elements in lu,1
ij and the influence of R(t) on

any element ij should depend on the probability that SOM model

ij represents the state that caused R(t). vc ensures that the

correlation never changes too quickly, forgetting historic values. If

events happen comparatively quickly compared to the rate of

iterating the hierarchy, a delay of at least 1 iteration should be

applied to the correlating formula as shown above, although

lu,1 tð Þ should be relayed without delay to higher units. In more

sophisticated implementations, integrals of lu,1 tð Þ over time

should be correlated with reward.

Adaptive Bias. In the FB pass we wish to modify message

lu,1 tð Þ passed from higher unit[s] to unit u. Since pu,1 tð Þ is a

probability mass function, we wish to increase the value (mass) of

matrix elements associated with increase in reward, and reduce

elements associated with decreases in reward. This can be done

with the following formulas, in which g is a normalizing factor

ensuring constant mass and vb is a global scalar parameter

determining the maximum influence of adaptive bias B(t). Note

that matrix S(t) is a nonlinear function of the correlation of unit

states with reward, to ensure that weak correlations are rapidly

Figure 3. Reward Correlator component. In the FF pass, delayed
lower unit output l(t) is correlated with reward r(t). The FF message is
then relayed, unaltered. Correlations are stored in matrix C. In the FB
pass, higher unit messages p(t) are modified to bias them towards
states correlated with high reward. The modified message p

0
(t) is then

relayed to lower units.
doi:10.1371/journal.pone.0029264.g003
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tested and either strengthened or depleted. v is a scalar constant

corresponding to the uniform mass value i.e. v~
1

I :J
if I ,J are the

dimensions of pu,1 tð Þ. p
0
(t) is the modified mass function:

Su
ij(t)~

1

1ze
{(((cu

ij
(t)z1):5){5)

{0:5 ð5Þ

Bu
ij(t)~max(0,min(1,(Su

ij(t)
:vb)zv)) ð6Þ

p
0
ij(t)~pu,1

ij (t):Bu

ij
(t):g ð7Þ

SOM-MPF Implementation
Thus far we have described several additions to the Memory-

Prediction Framework to enable it to be used as a complete control

system for an adaptive intelligent agent. In summary, we have

reformulated the input/output data to include sensors and

actuators, and are modifying FB messages between hierarchy

layers, by correlating delayed FF messages with smoothed reward

signals (figure 2).

MPF Unit Structure. Although the above modifications

should be compatible with various implementations of MPF

(including HTM), we will describe our implementation of the MPF

unit. Each unit performs spatial pooling, sequence learning plus

prediction, and temporal pooling. We will discuss each of these

components (figure 4).

Our MPF unit is based on the Kohonen Self-Organising Map

(SOM) [34], and unlike some HTM solutions, is capable of online

learning. The SOM is a biologically-inspired artificial neural

network used for unsupervised classification and dimensionality

reduction. Others have previously used SOMs to build MPF-like

hierarchies, such as Miller and Lommel’s Hierarchical Quilted

SOM (HQSOM) [35]. Pinto [36] extended this to a complete

MPF implementation. Other SOM variants could equally be used.

The chief innovation in Miller and Lommel [35] is use of a

‘‘Recurrent’’-SOM (RSOM) that can perform temporal pooling

(clustering) by allowing current classification to be affected by

previous classifications. Therefore, a SOM-RSOM pair can

perform both spatial (SOM) and temporal (RSOM) pooling, as

described in the MPF.

Feed-Forward Pass: Spatial and Temporal Pooling. The

SOM consists of two matrices W and A. W is an I|J matrix of

models of the input vector lu,0 tð Þ such that given Ns elements in

lu,0 tð Þ, the dimensions of W are I|J|Ns. I and J are

parameters that determine the number of models the SOM will

contain. In this case the SOM has a 2-d topology, which is usually

sufficient but cannot optimally represent all data. A has size I|J

and Aij represents the likelihood of observing the SOM model W ij

given the evidence lu,0 tð Þ. Each SOM model represents a possible

configuration of lu,0 tð Þ and the models in the SOM learn to

maximize their coverage of the input space observed in lu,0 tð Þ
over time. Since the SOM has been thoroughly discussed in many

works, the reader should consult e.g. [35] or [36] for detailed

SOM weight update equations. For our purposes we define the

likelihood function as the inverse of normalized sum of squared

error, giving matrices E and A:

Eij(t)~
XN

n~1

(Wijn{lu,0
n (t))2 ð8Þ

Aij(t)~1{
Eij(t)

max(E(t))

� �
ð9Þ

These equations produce a very smooth result, with significant

responses from many models within the SOM. This is desirable

because we wish to bias the FF classification result using a matrix

B(t{1) that was produced in the previous FB pass. B(t{1) is a

probability mass function representing a (biased) prediction of

lu,s(t), the spatial pooler classification:

lu,s
ij (t)~Aij(t):Bij(t{1):g ð10Þ

g is a normalizing constant such that lu,s(t) becomes a

probability mass function over the classification-states represented

by the spatial pooling SOM models. The superscript ‘s’ indicates

that this is the FF output of the spatial pooler in unit u.

According to MPF, the FF output of the spatial pooler (SOM)

should be the FF input to the temporal pooler (RSOM). Since the

RSOM and SOM treat all input dimensions independently, we

can rearrange the SOM output matrix to become a vector of

Nt~IJ elements. However, as discussed in [35], the RSOM input

should be highly orthogonal. This can be achieved by setting the

maximum value in lu,s(t) to 1 and others to zero. For other details

Figure 4. Internal structure of a SOM-MPF unit. In the FF pass,
SOM and RSOM components perform spatial and temporal pooling
(compression) by classification of l0(t) in terms of the finite sets of
models W s and W t. FF SOM classification output As(t) is biased by
previous prediction B(t{1) resulting in ls(t). ls(t) is the FF input to the
RSOM temporal pooler. RSOM FF output At(t) is used as unit FF output
l1(t). Between the poolers, an internal loop estimates unit state in
terms of SOM models, using both ls(t) and FB predictions from higher
units via the RSOM. Internal predictor output l̂l(t) is combined with
RSOM FB output pt(t) to give the bias matrix B(t). Predictions from
higher units indicate the current sequence, as in HTM; predictions
within the unit allow position within sequences to be tracked also. In
the FB pass, roulette selections from pt(t) and the combined PMF B(t)
are used to reverse the RSOM and SOM transformations, giving unit FB
output p0(t).
doi:10.1371/journal.pone.0029264.g004

Adaptive Memory-Prediction Framework

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e29264



of the RSOM, see [35]. The FF output of the unit would typically

be the FF output of the temporal pooling RSOM:

lu,1(t)~lu,t(t) ð11Þ

but in hierarchy layers where a lot of spatial compression is

required (e.g. in the visual cortex) the temporal pooler can be

omitted. In this case the unit FF output is taken from the spatial

pooling SOM:

lu,1(t)~lu,s(t) ð12Þ

In [37] it is noted that in higher layers of the hierarchy, there is

little or no advantage to further spatial pooling. This is believed to

be represented in biology by the absence of neocortical layer 4

[37]. To reproduce this effect, in these units the spatial pooling

SOM can be omitted.

The classification process in the RSOM is similar to the SOM

but functions as a ‘‘leaky-integrator’’ so that classification outcome

changes slowly. A matrix D of equal dimension to W is needed:

Dijn(t)~a W t
ijn{lu,s

n (t)
� �2

z(1{a)Dijn(t{1) ð13Þ

Et
ij(t)~

XN

n~1

Dijn(t) ð14Þ

It is not necessary to bias the RSOM classification result, either

using a prediction or for adaptive purposes. This asymmetry is

because in the FF pass, active RSOM sequences become spatial

patterns in a higher unit, where they can be predicted. In the FB

pass, adaptive selection between RSOM sequences translates into

preference for sequences containing better spatial patterns. Hence:

lu,t
ij (t)~At

ij(t)
:g ð15Þ

pu,1 tð Þ is therefore a normalized likelihood function if an RSOM is

used, or a probability mass function otherwise.

Prediction and Sequence Learning. The SOM-MPF units

used in our experiments include either first-order or variable-order

Markov prediction. The MPF framework does not require a

prediction feature, as temporal pooling generates predictions of

proximate future and past states in the FB pass. However, our

prediction module predicts only future states, which reduces

uncertainty within the system. It also allows units to track position

within sequences. For prediction and sequence learning, an MPF

unit should do three things: identify the set of observed temporal

sequences, classify the current temporal sequence, and predict

future sequences.

Both first-order and variable order variants of HTM have been

developed. The benefit of variable-order prediction can easily be

illustrated: A 2nd (or higher) -order model can distinguish between

B in sequences A?B?C and C?B?D, whereas a 1st order

model cannot. In [17], Hawkins et al use a Variable-order Markov

Model (VMM) to implement the temporal pooling stage of HTM.

However, they note that even with a VMM, the hierarchy must be

used to distinguish between longer intersecting sequences. (The

hierarchy allows assembly of longer sequences from shorter ones).

The difference is flexibility and efficiency; a VMM-hierarchy can

distinguish longer sequences using fewer layers.

In our SOM-MPF implementation we present a first-order

Markov Model to predict future classification outcomes. Later, we

also show how using the biologically-inspired technique described

in [17], we can adjust the first-order model to behave as if it were a

variable-order model.

First-Order Prediction. The input to the prediction module

is lu,s(t) and the output is a matrix l̂l(t) of the same size. Both are

probability mass functions. l̂l(t) is a prediction of lu,s(tz1). l̂l(t) is

generated from a matrix M of size (IJ)|(IJ) (i.e. each model in

the SOM is treated independently and regardless of SOM

topology). M is updated using lu,s(t) and lu,s(t{1) and

approximates the conditional probability of SOM model

0ƒkƒ(IJ) being active at tz1 given that model 0ƒhƒ(IJ) is

active at time t. The sum of each column of M is normalized to 1.

Mkh&P(lu,s
k (tz1)~1 j lu,s

h (t)~1) ð16Þ

Mkh(tz1)~(Mkh(t)z(vp
:d1
:d2)):g ð17Þ

where vp is the learning rate (typically 0.99 initially and reduced

to around 0.01 over time) and:

d1~max(lu,s
h (t{1){lu,s

h (t),0) ð18Þ

d2~max(lu,s
k (t){lu,s

k (t{1),0) ð19Þ

Equations 17, 18 and 19 increment the conditional probabilities

in M if lu,s
h is observed to decrease while lu,s

k is increasing (a

transition between h and k). Since lu,s is a probability mass

function, a reduction in mass at lu,s
h is interpreted as the exiting of

state h. Similarly, an increase in mass at lu,s
k represents entering

state k. These equations are best understood as approximating

transition probabilities by computing the relative frequency of

transitions between states. The relative frequency of an event

becomes closer to the probability of an event as the number of

trials increases. However, in this case the approximation is biased

towards recent events by vp. Since the underlying system is

continually changing (due to SOM learning), frequency-based

approximation biased towards recent data is simple and effective.

A first-order prediction can be obtained from lu,s(t) and M by:

l̂lk(t)~g:
XIJ

h~1

Mhk
:lu,s

h (t) ð20Þ

Matrices lu,s(t) and l̂l(t) are treated as vectors in equation 20. g
is a normalizing constant giving a total mass of 1:

g~
1

P IJ

k~1
l̂lk(t)

ð21Þ

Feedback Pass. In MPF, the purpose of the FB pass is to

generate a prediction of the next FF pass. MPF proposes that FF

classification be combined with FB prediction, yielding more
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accurate models of the world given noisy, indeterminate or

insufficient data. Feedback also improves state estimation between

sibling units, via higher units. In this paper, the purpose of the FB

pass is also to generate adaptive behaviour.

The FB pass through the unit starts with pu,1 tð Þ, a prediction

from higher units in the hierarchy. (For the highest layer pu,1 tð Þ
can be a uniform distribution). pu,1 tð Þ is a probability mass

function over the set of models in the RSOM. ‘‘Roulette’’ selection

is used to select an element i,j from pu,1 tð Þ (i.e. the probability of

the selection of any element i,j is proportional to the value of

pu,1
ij (t)). The corresponding weights from this RSOM model are

then copied to a matrix pu,t(t).

The use of Roulette selection for the selection of a FB model

from the (R)SOMs is unique to this paper and has some useful

properties. If there are multiple modes in pu,1 tð Þ the FB pass will

test them individually, until one fits. When a mode in pu,1 tð Þ
accurately predicts reality, it will rapidly be reinforced by the

feedback loops within the unit and hierarchy, and the mass of the

other modes will decrease. More importantly, there is no

guarantee that interpolating between the models in the SOM

generates viable patterns, therefore a weighted-sum of the models

in is pu,1 tð Þ not effective given high variance modes or a

multimodal case (in practice, multi-modal distributions are quite

common). Using clustering techniques to find a single mode in

pu,1 tð Þ is more expensive and in our experiments gave no

noticeable improvement. Over time, the series of selections from

pu,1 tð Þ can be interpreted as a probability mass function because

the normalized likelihood functions represented by the SOM

models are conditioned on the distributions in pu,1 tð Þ. The kurtosis

of the distribution in pu,1 tð Þ balances the conflicting demands of

exploration and exploitation; if the distribution is flat chosen

actions will be more random (i.e. exploratory).

We wish to generate all behaviour within the MPF hierarchy

and not require any external module to help control the agent.

However, the MPF must explore the gamut of possible action-

sequences, motor outputs etc. and learn their consequences. This

objective is achieved both by using Roulette selection of individual

SOM models, and by adding random noise to the models in the

FB pass. Let pu,t(t) represent the roulette-selected model from the

RSOM. To add noise:

pu,t
ij (t)/pu,t

ij (t)z((nij{0:5):2:vu
n) ð22Þ

The magnitude of the noise is scaled by vu
n, a parameter that

should initially be 1 and decreased over time to a low value

(&0:01). All results are clamped to unit range. The schedule for

reducing noise magnitude should consider the location of the unit

within the hierarchy; higher units inputs’ are not well defined until

lower units have learned. nij is a uniformly distributed random

value from the interval ½0,1), as produced by most software

random number generators.

pu,t
ij (t) is a mass function of the same random variables as l̂l(t).

They are both predictions of the outcome of the next FF

classification from the SOM. We combine them using the element-

wise product and add a small uniform mass v to every element,

giving us the bias matrix B:

Bij(t)~(l̂lij(t):p
u,t
ij (t))zv ð23Þ

B(t) will be used in iteration tz1. The uniform mass serves to

introduce some plasticity and uncertainty into the system even

when it has modelled predictable data very accurately. It also

prevents numerical instability when predictions from higher layers

do not agree with predictions within the unit, or when the final

bias does not agree with observed reality. There is a fundamental

conflict between the objectives of accurate prediction and adaptive

bias; by definition, adaptive bias disrupts - damages - the

prediction process. It is also important that biased classification

in the FF pass does not become locked into an internal loop,

ignoring observations from below.

The final step in the FB pass is to transform B(t) into so that the

message can be passed down the hierarchy. This is achieved by

using ‘‘Roulette’’ selection to pick a SOM model i,j from B(t) and

adding noise:

pu,0
n (t)~Wijnz((nij{0:5):2:vu

n) ð24Þ

Variable-Order Prediction. To increase the

representational flexibility of the hierarchy, we will describe a

modification to the first-order prediction component that exploits

the 2-d topology of the SOM. The technique is inspired by

Hawkins et al’s article on Sequence Memory [17]. They describe

two levels of organisation for cells in the neocortex: A ‘‘region’’ is a

group of cells receiving the same input. ‘‘Clusters’’ or ‘‘columns’’

are groups of cells within a region, that respond to the same input

patterns.

They suggest that within each column of cells there is a

‘‘winner’’ that locally-inhibits other cells. The winning cell is

(typically) pre-activated by connections from other columns. These

connections allow the encoding of sequences. Although each cell’s

response is not unique in terms of input pattern, it is unique in

both pattern and sequence. Hawkins’ example uses letters; having

several cells that respond to the letter ‘B’, one might respond to ‘B’

in ‘ABC’ and another to ‘B’ in ‘CBD’. This can be most clearly

explained in a diagram (see figure 5).

These groups of ‘‘cells’’ are analogous to clusters of similar

models in the SOM weights matrix W . The topological constraints

in the SOM weight update equation ensure that models

responding to similar input patterns are located together. Within

each cluster, we can use local inhibition to ensure that only one

SOM model responds. We can simulate the connections from

other columns by inhibiting models with strong first-order

relationships, whose priors were not activated.

These modifications can all be made within the prediction

module, because prediction affects FF classification outcome via B.

(This is the same biasing process that allows the SOM-MPF

hierarchy to be adaptive). In addition to modifying predictions to

become adaptive, they will be modified to encourage the

formation of variable-order sequences within each unit. This

reduces predictive accuracy in the short-term, but once variable

length sequences are learnt it can lead to superior predictive ability

within a single unit. This result is shown in one of our experiments,

described later.

Variable-order prediction is implemented by adding prepro-

cessing and postprocessing steps to the first-order prediction

system described above. Preprocessing consists of a local inhibition

around the global maximum in the input matrix lu,s(t),
implemented using a Difference of Gaussians (DoG) function

centred on the maximum value. This ensures a clear winner within

the ‘‘column’’:

dij(t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(i{imax)2z(j{jmax)2

q
ð25Þ
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Hij(t)~
1ffiffiffiffiffiffiffiffiffiffi

2ps1

p e
{

(dij )2

2s2
1

0
B@

1
CA{

1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e
{

(dij )2

2s2
2

0
B@

1
CA

0
B@

1
CA:lu,s

imax ,jmax
(t)ð26Þ

Values dij(t) are temporary scalar quantities to improve readabil-

ity. Hij(t) is a matrix of size I|J. The values of s1 and s2 are

related to the SOM’s weight-update s. If online SOM learning is

used,

s1~sSOM ð27Þ

s2~s1
:Ds ð28Þ

where Ds is a parameter greater than 1 such that in all cases:

s1vs2 ð29Þ

The values in H(t) are linearly scaled to occupy the range ½0,1�,
and then the element-wise product gives the inhibited predictor

input:

lu,p(t)~lu,s(t):H(t) ð30Þ

lu,p(t) must be renormalized to have a total mass of 1.

Postprocessing involves two steps. First, elements for which a

strong first-order prediction exists are inhibited if that prior

element was not active in the previous iteration. Second, around

inhibited elements, neighbouring elements are promoted. This is

because SOM topology ensures that these will respond to similar

input patterns, and are viable alternatives.

Intuitively, the inhibition is a nonlinear (log-Sigmoid) function

of the product of first-order weights M and preprocessed

prediction input; it is maximized when the prior values for high-

probability Markov Graph edges are small (‘‘if A implies B and A

is not observed, inhibit B’’). Again we treat the matrices as vectors

to simplify indexing, and compute h(t), a matrix of equal

dimension to lu,p(t).

hk(t)~
XIJ

h~1

1{ 1{l
u,p
h (t):

1

max(lu,p(t))

� �
: 1

1ze{(Mhk
:10{5)

� �
ð31Þ

The values in h(t) are linearly scaled to occupy the range ½0,1�,
then using the element-wise product:

l̂l
0
(t)~l̂l(t):h(t) ð32Þ

We compute a matrix L(t) of equal dimension to h(t) containing

the mass lost by inhibition:

Lij(t)~max(0,l̂l
0
ij(t){l̂lij(t)) ð33Þ

L(t) is used to construct a ‘‘local-promotion’’ matrix y(t) which

increases the activation of neighbours of inhibited elements. The

promotion matrix is computed using a Difference of Gaussians

(DoG) function:

ymn(t)~
XI

i~1

XJ

j~1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e
{

d(i,j,m,n)2

2s2
2

0
B@

1
CA{

1ffiffiffiffiffiffiffiffiffiffi
2ps1

p e
{

d(i,j,m,n)2

2s2
1

0
B@

1
CA

0
B@

1
CAð34Þ

where d(i,j,m,n) is the Euclidean distance between coordinates i,j
and m,n. y(t) is linearly scaled such that:

XI

i~1

XJ

j~1

y(t)~
XI

i~1

XJ

j~1

L(t) ð35Þ

and then added to l̂l0(t):

l̂l
00
(t)~l̂l

0
(t)zy(t) ð36Þ

These modifications cause the modified prediction to interfere

with the FF classification process, forcing individual SOM models

respond to patterns only at specific points in variable length

sequences.

Results

To demonstrate the methods described in this paper, it is

accompanied by open-source code and a compiled program that

can run 4 separate demos. The code and program can be

downloaded from:

http://code.google.com/p/adaptive-memory-prediction-framework.

The code is provided as a toolkit, enabling interested readers to

develop their own tests. The software is written in Java, and

requires the JDK or JRE to be installed. To run the demos,

download the .jar file and execute with the following command:

Figure 5. Variable-Order prediction. This figure shows two
views of the models within a SOM. Each small square represents
one SOM model. Clusters of models (indicated by dashed-circles)
respond to the same input pattern, in this case the letters A,B,C or D.
The clusters are implicit; they are a consequence of models’ content. If
several models respond to each letter we can individually specialize
them to respond to occurrences of the letter in specific sequences. This
is achieved by developing strong first-order edges between individual
models (blue arrows). For example, a high weight on the edge i?k
represents A?B. Assignment of SOM models to specific occurrences of
letters occurs by inhibiting unpredicted neighbours of predicted
models. In the right panel, activation of SOM model i at time t
promotes k via the first-order edge i?k and inhibits x and other
nearby models at tz1. The neighbourhood of inhibition is indicated by
the red circle.
doi:10.1371/journal.pone.0029264.g005
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java -jar ampf :1:0:1:jar n r½ �

where 1ƒnƒ4 is the number of the demo and ‘r’ is optional. If ‘r’

is omitted, the random number generator uses a fixed seed. The

first demo exhibits the SOM and first-order predictor components.

The second demo is a reproduction of the moving-line recognition

program from Miller et al [35], which uses a SOM-RSOM pair.

Third, we show that a SOM-MPF unit comprising SOM, RSOM

and variable-order prediction can distinguish words such as ‘dad’

and ‘bab’ - the classic variable-order problem described in

Hawkins et al [17]. The fourth demo uses a very simple hierarchy

of 2 SOM-MPF units connected via a reward-correlator. This

hierarchy can be seen to successfully play ‘‘rocks, paper, scissors’’

against a predictable software opponent.

Demo 1: RGB-SOM-1MM
The first demo provides an intuitive visualisation of the SOM.

The input vector lu,0 tð Þ is a 3-tuple in RGB space (i.e.

lu,0 tð Þ= ½r,g,b�T ), and the SOM constructs a 2-dimensional

representation of this 3-dimensional space (visible in figure 6,

panel (a)). Each successive input colour is classified by the SOM,

with the resultant activation matrix A(t), shown on screen (figure 6,

panel (c)). The SOM weights matrix W is also displayed (figure 6,

panel (a)) to allow the reader to view the unsupervised learning

process. The input is a series of samples from a stochastic process

in ½r,g,b�. Each colour channel c is a scalar updated with:

c(t)~c(t{1)zbcz(nc{0:5):0:1 ð37Þ

in which n are normally distributed random variables and b are

biases br~0:2, bg~0:5, bb~{0:1. The colour values wrap at 0

and 1. A first-order Markov Model (1MM) is used to predict

A(tz1) given A(t). The output of the predictor during the

previous iteration B(t{1) is shown in figure 5, panel (d). Roulette

selection from the classification-prediction matrix l̂l(t) enables the

next colour to be predicted and shown. After 3000 iterations of

simultaneously training SOM and 1MM, these components are

able to classify the current colour and accurately predict the next

colour-classification. Euclidean distance between the predicted

RGB colour and the next observed colour is ƒ0:15. Figure 6,

panel (b) shows the current FF input colour and the roulette-

selected FB output colour from the previous iteration (these

colours should therefore be similar).

Demo 2: SOM-RSOM Pair
The second demo is simply a reconstruction of the moving-line

recognition problem given in Miller et al [35]. The problem will

be described only briefly here. The purpose of the problem is to

show that a SOM-RSOM pair can perform both spatial and

temporal compression, by learning to recognize sequences of visual

patterns. In this case, there are 3 sequences to discover:

N No features (blank image)

N A horizontal line that moves from top to bottom of the image

N A vertical line that moves from left to right of the image

The two ‘line’ sequences are interspersed with variable-length

sequences of blank images. After 10,000 iterations, the RSOM

does indeed develop models that correspond to the two moving

line sequences, and a blank-image sequence (figure 7). The SOM

has formed models of the visual patterns it receives; the RSOM

has associated visual patterns that occur close together in time.

Figure 7. Screenshot, Demo 2. This is a demonstration of a SOM-
RSOM pair. A SOM with 5|5~25 models performs spatial pooling. An
RSOM with 2|2~4 models allows temporal pooling. Panel (a1) shows
the hierarchy’s FF input, currently mid-way through the horizontal line
sequence. (b1) shows the SOM models that have been learnt. (c1)
shows the As(t), the activation of SOM models given the current FF
input. Note that matrices are displayed such that brightness indicates
mass or value (i.e. white = 1). (d1) shows the 3 possible input sequences,
being pictures of horizontal or vertical lines and a blank image.
(a2),(b2),(a3) and (b3) show the four RSOM models. RSOM models
represent coincidences of active SOM models and are displayed by
outlining significantly (2|chance) active SOM models in green. After
learning, one RSOM model corresponds to horizontal lines (b2) and one
to vertical lines (a2). (a3) responds to blank images. Panels
(c2),(d2),(c3),(d3) show l1(t), the activity of the RSOM models. The
high value in (d2) shows that the RSOM model (b2) is most active,
meaning that the hierarchy recognises that it is seeing a moving
horizontal line.
doi:10.1371/journal.pone.0029264.g007

Figure 6. Screenshot, Demo 1. (a) SOM weights matrix W s ; each of
the 10|10~100 SOM models has r,g,b values. (b) Upper box shows
input colour. Lower box shows colour predicted during previous FB
pass, so it should be similar to the colour of the upper box. (c) SOM
activation As(t) (shown scaled to full greyscale range). Matrices are
displayed such that brightness indicates mass or value (i.e. white = 1).
The best-matching SOM model is outlined in green. (d) l̂l(t{1), the
output of the predictor in the previous pass. Since the external RGB
process is stochastic and classification quantizes FF input, prediction is
not precise.
doi:10.1371/journal.pone.0029264.g006
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Software Interface Details. We will briefly describe the

software interface for this demo. A screenshot is included (figure 7).

The interface is comprised of a grid of four columns (labelled

a,b,c,d) and three rows (1,2,3). Panel a1 shows the FF input to the

unit. Panel b1 shows the SOM weights matrix W s. Panel c1 shows

the SOM activation matrix As(t). Panel d1 shows the three

possible input sequences (horizontal or vertical moving lines and a

blank sequence). Panels a2:b3 are arranged in a 2|2 grid and

show the state of the RSOM weights matrix W t. Since each

RSOM model represents a distribution of activation of the SOM,

we outline SOM models that are significantly active in the

corresponding RSOM model. For easy reference, the state of the

SOM is shown within each RSOM model. Panels c2:d3 represent

At(t), the activation of the grid of 2|2 RSOM models. White cells

are most active; black cells least active.

Demo 3: SOM-VMM-RSOM ‘‘Words’’
The objective of this demo is to demonstrate variable-order

sequence learning and prediction within the SOM-MPF unit. The

problem is inspired by Hawkins et al’s paper on sequence memory,

[17], in which they describe trying to distinguish the sequences

‘A,C,E’ and ‘B,C,E’. We create a SOM-MPF unit with a variable-

order Markov Model (VMM) predictor. We present sequences of

noisy images to the unit, each image representing a letter from a

word (figure 8). The available words are:

N dad

N bab

N mad

N dam

A random (small) number of blank images are inserted between

words. The ordering of words is also random. Eventually, the unit

produces RSOM models corresponding to each of the words (and

other models corresponding to sequences involving blanks). We

measure the ability of the unit to predict each letter. Each

iteration, we present the current letter and perform FF and FB

passes through the unit. The result of the FB pass is an image of

the predicted letter. The normalized distance between the

predicted letter and the actual next letter is computed as an error

metric.

After 10000 iterations, a mean error of 0:20ƒeƒ0:23 is

achieved (averaged over 500 iterations). If a first-order model is

used instead, mean error does not decrease below 0:25ƒeƒ0:27
(see figure 9). Error does not reduce to zero because it is impossible

to predict that ‘da’ will become ‘dam’ rather than ‘dad’, and

because we can’t predict when a word will start or which one it will

be.

Examination of the SOM models shows that the VMM

successfully biases the SOM classification process to produce

multiple models corresponding to the same letter, exactly as

Hawkins et al anticipated. This also demonstrates the principle for

adaptive control, that the FF classification can be deliberately

disrupted to achieve secondary objectives without compromising

accurate classification (the VMM-biased classification is eventually

more accurate than 1MM classification, despite the latter

attempting to be as accurate as possible).

The chosen words deliberately include many duplicate letters.

By forming separate models for ‘a’, the unit is able to predict that

‘ba’ will not be followed by ‘d’ and ‘ma’ will not be followed by ‘b’.

In contrast, the first-order predictor cannot determine which letter

will follow ‘a’.

Software Interface Details. A screenshot of the software

interface for this demo can be seen in (figure 8). The interface is

comprised of a grid of seven columns (labelled a,b,…,g) and four

rows (1,2,3,4). Matrices are displayed as grids with value 1 being

Figure 8. Screenshot, Demo 3. This is a demonstration of first-order versus variable-order prediction. The interface is organised as a 764 grid of
panels Matrices are displayed such that brightness indicates value (i.e. white = 1). Panel (a1) shows the set of input image sequences (words). (b1)
shows the current input ‘d’ and its sequence ‘mad’. The unit’s previous predicted letter and sequence are immediately below; these images are simply
a copy of the FB output. The unit’s SOM has 6|6~36 models that are shown in (a3). (a2) shows As(t), the activation of these models given the
current FF input. The RSOM has 3|3~9 models displayed in panels (c2:e4) by outlining significant SOM models that form each RSOM sequence. The
outlines are green, and brightness indicates significance. Note that variable-order bias has created 4 SOM models of ‘a’, representing that letter in
different words. The RSOM model in panel (d4) represents ‘mad’. (d1) shows activation of SOM models in response to FF input. Note that the model
displayed in (d4) is active. (a4) shows the bias matrix B(t). (b2) shows FF SOM classification after biasing, i.e. ls(t). The bias has shifted the best
classification from the model outlined in yellow to the model outlined in green, which is the correct ‘d’ for ‘mad’. (b3) shows the FB distribution B(t)
and the roulette-selected model is outlined in red. It predicts all the letters ‘d’, ‘b’, ‘m’ (that start words) and the blank image, because the sequence
has finished and the next word is unpredictable. Panels (f1:g4) show internal state of the variable-order predictor including local inhibition (f2) and
unpredicted-inhibition (g2).
doi:10.1371/journal.pone.0029264.g008
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white and 0 as black. Panel a1 shows the five possible input

sequences, these being the four words and a random image. Panel

b1 shows FF input to the unit (top row) and FB output from the

previous iteration (bottom row). The FB output is shown by

inverting the SOM and RSOM models to get the expected letter

and word respectively.

Panel a2 shows the SOM activation matrix As(t). Panel a3

shows the SOM weights matrix W s. Panel a4 shows B(t{1), the

predicted FF input for the this iteration, generated in the previous

iteration. Panel b2 shows ls(t), the biased FF output of the SOM.

This is the element-wise product of panels a2 and a4. Panel b3

shows B(t), a prediction of the next FF input.

Panel c1 shows previous RSOM FB output, which was used to

produce B(t{1). Panel e1 shows current RSOM FB output,

which contributed to B(t). Panel d1 shows RSOM FF output

At(t). Since in this demo the RSOM is a grid of 3|3 models,

At(t) has the same dimension. RSOM weights matrix W t is shown

in panels c2:e4. Each RSOM model represents a distribution of

activation in the SOM, so to illustrate each RSOM model we

display all the SOM models, and outline significantly active

models in green.

Panel f1 displays the variable-order predictor (VMM) FF input

after preprocessing. Panel g1 shows VMM FF output l̂l(t) after

postprocessing. Panel f2 shows VMM local inhibition around the

winning model. Panel f3 shows raw VMM FF input, i.e. ls(t) also

shown in panel b2. Panel g2 shows inhibition caused by lack of

prediction when a strong first-order edge exists. Panel g3 shows

local promotion around models inhibited in panel g2. Finally,

panel g4 shows VMM FF output before postprocessing.

Demo 4: ‘‘Rocks, Paper, Scissors’’
The objective of this demo is to demonstrate that an MPF

hierarchy can be used for adaptive control. All control outputs are

generated within the hierarchy, not using external learning

systems. A pair of units connected via a reward-correlator (RC)

form the simplest possible adaptive hierarchy, because the RC

needs valid messages to promote or suppress.

‘‘Rocks, paper, scissors’’ is a game popular with children. Each

time it is played, two players simultaneously make one of three

gestures representing rocks, paper and scissors. The combination

of gestures determines the winner: rock beats scissors, paper beats

rock, scissors beats paper, and all other combinations are neutral (a

tie). Neither player knows what the other will do, but must guess

based on past experience of playing that opponent. In this demo

we make an adaptive-MPF hierarchy play against a predictable

computer opponent.

The game is played many times. The hierarchy is iterated once

every time the game is played. Each iteration consists of a FF and a

FB pass of the entire hierarchy. Prior to each iteration, gestures

from the previous play are presented to the lower unit u1 as FF

input. After each iteration, the FB output at u1 includes both a

prediction of the opponent’s move, and a move generated by the

hierarchy. The latter is compared to the opponent’s actual move,

and the winner is decided. In this demo, the opponent is restricted

to a predictable strategy of cycling through all three gestures in

order.

Adaptive Components. The reward function for this game is

very simple. If the hierarchy won the latest game, r(t)~1. In the

case of a tie, r(t)~0:5. If the hierarchy lost, r(t)~0. Note that at

any iteration t the hierarchy is ‘‘perceiving’’ the previous result

and generating the next result.

The sensor-motor interface for this problem is a concatenation

of an image and a discrete control output (figure 10). The images

are 4|4 matrices depicting a gesture made by the opponent. The

hierarchy observes these gestures. The discrete control output

determines the gesture made by the hierarchy. (The hierarchy has

Figure 9. Impact of Variable-Order prediction. These series show prediction error from ‘‘Words’’, Demo 3. The black series was generated by
first-order prediction, the grey series from variable-order prediction. Divergence after 1000 iterations is due to superior predictive ability in the
variable-order case. Peaks in the grey series represent periods of ‘‘re-modelling’’ where one or more SOM models are pulled towards participation in
two or more sequences, before settling into a local minima. The Y-axis is error, i.e. the Euclidean distance between predicted (FB) and actual (FF) input
images. The X-axis shows iterations.
doi:10.1371/journal.pone.0029264.g009
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the same interface structure both as input to the FF pass and

output from the FB pass). However, for effective learning, the

hierarchy needs to explore the gamut of possible [sense-act] pairs.

This is difficult with discrete motor outputs, because we rely on

continuous consequences from small changes in distributions. To

ameliorate this problem, a ‘discrete actuator’ (DA) component is

added between the lower unit u1 and the motor part of the sensor-

motor interface (see figure 10). The DA maps discrete motor

actions into probability mass functions over the set of possible

actions. Like the SOM-MPF units, the DA has four FF and FB

inputs and outputs. The FF input to the DA is a scalar

representing the previous output:

ld,0(t)~mi(t)~mo(t{1) ð38Þ

The FF output of the DA is a PMF over the 3 possible gestures:

ld,1(t)~½mr,mp,ms� ð39Þ

…i.e. mr is equal to the probability the move was Rock. Since the

move is known, ld,1(t) always contains a 1 and two zeros. Since

the FB interface vectors are of equal dimension:

pd,1(t)~½mr,mp,ms� ð40Þ

pd,0(t)~mo(t)~mi(tz1) ð41Þ

mo(t) is selected from pd,1(t) by roulette selection. By concatenat-

ing the DA interface with the 16 observed gesture pixels g0 . . . g15,

the interface to the hierarchy at u1 is:

l1,0(t)~p1,0(t)~½g0,g1, . . . g15,mr,mp,ms�; ð42Þ

Hierarchy Configuration. Two units are used, with a single

reward-correlator (RC) between them (figure 10). The hierarchy is

configured without temporal pooling, because we want the

reward-correlator to select moves, not sequences of moves. First-

order predictors are used in both units, because there are no

variable-order patterns to learn. This is the simplest possible

configuration of an adaptive-MPF hierarchy, given the stated

assumptions about how the hierarchy can be used to produce

adaptive behaviour.

Models in the SOM in u1 represent the outcome of a single

game, including both hierarchy move and opponent’s move. The

predictor in u1 simultaneously predicts both the hierarchy’s next

move and the opponent’s next move. FF messages passed to u2 are

of the same form, a probability mass function over the SOM

models in u1. The SOM in u2 transforms and compresses these

distributions; the predictor in u2 predicts within the transformed

and compressed space.

Since there is no higher unit, predictions within u2 are

combined with a uniform distribution during the FB pass of u2.

Roulette selection within u2 transforms the prediction from u2 into

the a distribution over the SOM models in u1. This is relayed back

to u1 via the reward-correlator, where it is biased towards higher

mass for models that are correlated with high reward. In the FB

pass of u1 the relayed message is combined with the prediction

from u1. This biases the subsequent FF pass, and is also used to

Roulette-select a model from the SOM in u1 which becomes both

a prediction of the next observed gesture, and the probability mass

function given to the discrete actuator component. The latter then

roulette-selects the move made by the hierarchy.

Observations. Within 10000 iterations the SOM in u1 forms

recognizable models of the gestures it observes (figure 11). These

models also include indeterminate distributions for the agent’s own

moves. As the neighbourhood of the SOM in u1 shrinks, these

become models of specific combinations of moves from both

hierarchy and opponent. The SOM and predictor in u2 learn

more slowly, but are successfully able to represent and predict the

sequence of classifications in u1. Without a reward-correlator, the

hierarchy achieves a mean reward of 0.5, averaged over 500

games. The hierarchy is able to predict its opponent, but has no

motivation to do anything about it.

If the messages between units are relayed via a reward-

correlator, other changes occur within the units; both predictors

‘‘predict’’ with increasing confidence that the hierarchy will make

winning moves (figure 12). A mean reward in the range [0.93,0.98]

is reached after 20,000 to 60,000 iterations (figure 13). With

random number seed ‘1234’, a mean reward of 0.983 is reached at

iteration 61809. The score does not reach 1.0 because a small

amount of noise is added to SOM models selected in the FB pass,

and 3 Roulette-selections are made before the FB output from u2

becomes the hierarchy’s chosen move. The distributions used for

Roulette selection also have a small uniform mass added to them.

The hierarchy forms a stable, oscillating system around a

maximum reward of 0.93, since losing moves increase the

probability of future losing moves, until this trend is reversed by

adaptive pressure.

Software Interface Details. Two screenshots of the software

interface for this demo can be seen in figures 11 and 12. The

interface is comprised of a grid of eight columns (labelled a,b,…,h)

and four rows (1,2,3,4). Matrices are displayed as grids, with value

1 being white and 0 as black. Since both figures 11 and 12 show

Figure 10. Hierarchy used for demo 4, ‘‘Rocks, Paper, Scissors’’.
Two units are used, with FF and FB messages relayed via a reward
correlator (RC). A discrete-actuator component (DA) is used to produce
discrete outputs, in this case the 3 gestures.
doi:10.1371/journal.pone.0029264.g010
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Figure 11. Screenshot, Demo 4. This program shows an adaptive-MPF hierarchy playing ‘‘Rocks, Paper, Scissors’’. Two units are connected by a
reward correlator. u1 ’s sensor-motor interface includes observed gestures and motor actions. The latter is a probability mass function (PMF) over the 3
possible gestures. These PMFs can be visualised as RGB values (red is rock, green is paper and blue is scissors). After a little learning, SOM models in u1

respond to specific gestures but are not specific about the hierarchy’s own actions. The motor PMFs are flat (so they appear close to greyscale values).
Panel (a1) shows the sensor values of SOM models in u1 . (a2) shows the motor values of SOM models in u1 . (a4) shows the FB PMF B(t) with the
roulette-selected action outlined in red. (b1) displays As(t), the activation of SOM models in u1 . (d1) and (e1) show the FF input and output of the RC.
(e4) and (d4) show RC FB input and output respectively. (f1) shows SOM models in u2 and (g1) shows As(t) for u2 . (c2),(c3) show input and output of
the first-order predictor in u1 and (h2),(h3) the same for u2.
doi:10.1371/journal.pone.0029264.g011

Figure 12. Screenshot, Demo 4. See figure 11 for details of specific panels. After further learning, adaptive pressure from the reward correlator has
changed the FB messages between u2 and u1 to promote particular SOM models in u1 . Promoted models represent specific adaptive actions and u1

now reliably ‘‘predicts’’ that it will make winning gestures. The hierarchy now wins more than 93% of games it plays.
doi:10.1371/journal.pone.0029264.g012
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the same interface at different times during an experiment, the

panels within them are identical. The structure of the hierarchy is

two units connected via a reward correlator (RC). Columns a,b,c

show the state of unit u1. Columns d,e show the state of the RC.

Columns f,g,h show the state of unit u2.

u1’s sensor-motor interface includes observed gestures and

motor actions. Observed gestures are small images and can be

presented as such. Motor actions are a probability mass function

(PMF) over the 3 possible gestures. These PMFs can be visualised

as RGB values (red is rock, green is paper and blue is scissors).

Panel a1 shows the gesture part of each model in W s in u1. Panel

a2 shows the motor part of each model in W s in u1. Panel f1 shows

W s in u2, where each model is a distribution of activation of the

models in u1.

Panel a4 shows B(t) for u1 and panel f4 shows B(t) in u2. Panels

b1 and g1 show SOM activation matrix As(t) for u1 and u2

respectively. Panels b2 and g2 show B(t{1), used to bias the

current FF output for the two units. Panels b3 and g3 are not in

use. Panels c1 and h1 show ls(t). Panels c2 and h2 show first-order

Markov predictor (1MM) FF input and panels c3,h3 show 1MM

FF output l̂l(t). Panels c4 and h4 show the element-wise product of

l̂l(t) and p1(t), i.e. the bias prior to addition of random noise.

Panel d1 shows the FF input to the RC. Panel e1 shows RC FF

output (equal to RC FF input). Panel d2 shows reward correlation

matrix C. Panel d3 shows adaptive bias. Panel e4 shows RC FB

input and panel d4 shows RC FB output, after adaptive bias has

been applied.

Discussion

We have demonstrated that a hierarchical memory system like

MPF/HTM can generate adaptive behaviour by exploiting

knowledge encoded within and throughout the hierarchy. Since

higher layers of the MPF encode concepts with increasing

invariances in both space and time, this implies larger hierarchies

would generate behaviour using increasingly symbolic or abstract

reasoning. The MPF paradigm removes any distinct transition

between raw, perceptual data and symbolic representation.

Adaptively-biased MPF is a homogeneous system for perception,

memory, prediction, planning & control. We believe this direction

of research holds much promise in attempts to create an

anthropomorphic ‘‘general intelligence’’.

Although the work described in this paper has some limitations

described below, we have met most of our objectives. We have

demonstrated that we can balance the conflicting objectives of

unsupervised learning of an external world (SOM model learning),

and purposeful manipulation of that world via reinforcement

learning. The ‘‘Reward’’ used in reinforcement learning can be

one or more measurements of anything capable of distinguishing

good and bad impacts on the agent. Physical states such as pain,

hunger, temperature, exhaustion are all good candidates for

reward function[s]. One major benefit of our approach is that

when no correlations exist, only transient bias effects are produced

(due to noise); therefore, it is possible to include the adaptive

biasing technique at all levels within the hierarchy and not require

development of specific abstractions/invariances in predetermined

layers.

Constraints and Limitations
The SOM-MPF implementation given in this paper is only an

example of the class of algorithms that are described by MPF. Our

extensions, particularly adaptive bias, could equally well be added

to George et al’s HTM algorithm [10]. Use of the Kohonen SOM

has some advantages, notably SOM topology allowing implemen-

tation of the technique described by Hawkins et al [17] to produce

variable-order prediction from first-order models. However, the

smoothness of the variation between SOM models also makes it an

inefficient technique, if intermediate models are not meaningful.

The Recurrent-SOM (RSOM) is not satisfactory for temporal

Figure 13. Impact of adaptive bias playing ‘‘Rocks, Paper, Scissors’’. Values plotted are the inverse of reward averaged over 500 iterations.
Reward is maximized and error is zero when the game is won. A draw results in a reward and error of 0.5. The grey series shows outcomes without
adaptive bias, a random walk. The black series shows outcomes with adaptive bias, approaching zero (ideal) by 60,000 iterations.
doi:10.1371/journal.pone.0029264.g013
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clustering because older classifications become exponentially less

significant, making it difficult to represent longer sequences

accurately. One solution is to decimate the rate of RSOM update,

and smooth its input.

Disrupting hierarchical classification using adaptive bias works,

but can be problematic. If the bias is too strong, reality is ignored.

If the bias is too weak, the system is not adaptive. Use of a single

reward function is difficult but realistic, because the hierarchy

should learn to separate the various causes of low reward, such as

pain, hunger etc. In our experiment the hierarchy is able to learn

that 6 low-reward move-combinations should be avoided. In this

paper we rely on temporal pooling to allow actions to be

correlated with delayed rewards. A better scheme would be to

exploit the discounted future rewards formulation used in

reinforcement learning [4].

We chose to correlate states with reward on the FF pass, and

modify the messages in the FB pass. This approach is ideal for

reward correlation, because FF messages from lower layers are

more direct observations of external causes. It is also good for

behaviour selection, because FB actions are immediately applied.

Other arrangements are possible, such as biasing the FF

classification directly.

Biological Relevance
An interesting question is whether these extensions to MPF are

biologically plausible. The answer is beyond the scope of this

paper but our extensions have some specific characteristics we can

look for.

Existing work on Thalamo-Cortical microcircuits [11] describes

messages between hierarchy layers being relayed via the

Thalamus. In HTM it is postulated that these messages encode

probability distributions over the possible states within each

hierarchy node. We proposed to modulate these distributions

using a single reward function, to generate adaptive behaviour.

The biological equivalent of our extensions would therefore be a

central relay with access to measurements of nonspecific internal

states, such as pain or hunger. The relay must be between layers in

the cortical hierarchy. Relayed messages would be internally

correlated with rewards, and would be adaptively biased (in one or

both directions). As a central relay for many cortical areas, it is

possible that similar modulation could be part of the role of the

Thalamus.

An alternative candidate for our reward-correlating component

is the basal ganglia. These are widely believed to have a role in the

association of reward and behaviour [38,39] and there is evidence

of circuits connecting the cortex, thalamus and basal ganglia

[40,41]. Interested readers can find models of circuits relating the

neocortex and basal ganglia in [42]. Parallels between the function

of the basal ganglia and reinforcement learning can be found in

[38,43].

Future Work
In our next paper we will demonstrate larger hierarchies of 10–

20 units successfully playing arcade computer games by screen-

scraping and pressing virtual keys. We will also show that by

providing an automated commentary in English, the hierarchy is

capable of associating words with abstract events in the games.

The hierarchy then reproduces the relevant words when executing

strategies in the game; in effect, it is able to tell us what it plans to

do.

If the MPF is analogous to the human neocortex, then software

simulations need to use much bigger hierarchies. The software

described in this paper can be used to simulate stable hierarchies of

more than 100 units at 30 Hz on a typical laptop computer. We

plan to port the code to a massively parallel SIMD platform, to

allow realtime simulation of hierarchies of thousands of units. A

much larger hierarchy with a high branching factor would have

the capacity to combine various derivatives and moments of inputs

in many ways, and in consequence the structure of the hierarchy

would need less prior design. Eventually we plan to add a detailed

vision system and use the adaptive-MPF as the control system for a

mobile robot.
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