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Abstract

A fundamental question in G protein coupled receptor biology is how a single ligand acting at a specific receptor is able to
induce a range of signaling that results in a variety of physiological responses. We focused on Type 1 cannabinoid receptor
(CB1R) as a model GPCR involved in a variety of processes spanning from analgesia and euphoria to neuronal development,
survival and differentiation. We examined receptor dimerization as a possible mechanism underlying expanded signaling
responses by a single ligand and focused on interactions between CB1R and delta opioid receptor (DOR). Using co-
immunoprecipitation assays as well as analysis of changes in receptor subcellular localization upon co-expression, we show
that CB1R and DOR form receptor heteromers. We find that heteromerization affects receptor signaling since the potency of
the CB1R ligand to stimulate G-protein activity is increased in the absence of DOR, suggesting that the decrease in CB1R
activity in the presence of DOR could, at least in part, be due to heteromerization. We also find that the decrease in activity
is associated with enhanced PLC-dependent recruitment of arrestin3 to the CB1R-DOR complex, suggesting that interaction
with DOR enhances arrestin-mediated CB1R desensitization. Additionally, presence of DOR facilitates signaling via a new
CB1R-mediated anti-apoptotic pathway leading to enhanced neuronal survival. Taken together, these results support a role
for CB1R-DOR heteromerization in diversification of endocannabinoid signaling and highlight the importance of heteromer-
directed signal trafficking in enhancing the repertoire of GPCR signaling.
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Introduction

Cannabinoid receptor signaling is involved in a variety of

physiological processes including proliferation and migration,

neurite elongation and guidance, synaptogenesis, and cell survival

[1–4]. The molecular mechanisms that enable a single type of

GPCR to achieve such a broad range of functions are of great

physiological and clinical relevance, but to date are poorly

understood.

CB1R is part of the endocannabinoid system that comprises the

cannabinoid receptors, their endogenous ligands (the endocanna-

binoids), the enzymes that produce and inactivate the endocanna-

binoids, and the endocannabinoid transporters. The two major

endocannabinoids, anandamide and 2-arachidonoylglycerol, are

lipid-derived messengers generated by the metabolism of arachi-

donic acid, that acting as retrograde messengers, regulate

neuritogenesis and neurite outgrowth [5]. In addition, a recent

study reported longer hemopressins as peptide ligands capable of

binding to CB1R and activating a distinct signal transduction

pathway [6]. It is generally accepted that the endocannabinoid

system is responsible for shaping the temporal and spatial diversity

of cellular responses and hence likely to be involved in adaptive

processes and plasticity [1,5].

CB1R belongs to the family A of GPCRs and couples to Gi/o

subtypes of heterotrimeric G proteins. CB1R activation usually

results in the inhibition of adenylyl cyclase activity, inhibition of

calcium channels [7], and activation of potassium channels [8].

CB1R activation also results in the activation of p42/44 MAP

kinase (pERK), downstream of PLCb [4,9]. Finally, CB1R

activation has been shown to lead to recruitment of GPCR kinase

3 and arrestin3, resulting in receptor desensitization [10]. Hence,

cannabinoid receptors share a number of common characteristics

with opioid receptors, and interactions between these two

receptors appear to mutually modulate their activity [11–14].

The majority of studies examining interactions between CB1R

and opioid receptors have focused on the mu opioid receptor

(MOR) [15,16], and relatively few studies have explored the

interaction between CB1R and DOR. At the cellular level, in vitro

studies demonstrate cross-desensitization between CB1R and

DOR at various steps along the signal transduction pathway,
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including G protein activation and inhibition of adenylyl cyclase

activity [17–21]. Functional interaction between CB1R and DOR

has been proposed in vivo by studies showing that a DOR antagonist

could block the anxiolytic activity of a low dose of the CB1R agonist

D9tetrahydrocannabinol (THC) [22] and that mice lacking DOR

show a significant increase in CB1R activity in several brain regions,

as demonstrated by the [35S]GTPcS binding assay [23,24]. These

studies support the concept that CB1R and DOR interact, and that

these interactions impact on CB1R activity.

In this study we characterize the direct interaction between

CB1R and DOR and investigate its consequences on receptor

function. We find that CB1R and DOR associate form receptor

heteromers. Stimulation of CB1R within the CB1R-DOR hetero-

mer leads to changes in CB1R signaling, including recruitment of

arrestin3 to the CB1R-DOR complex and promotion of an

arrestin3-mediated signaling pathway and enhanced neuronal

survival. This, in turn, leads to the activation of anti-apoptotic

signaling pathways. Taken together, we propose that heteromer-

directed signaling leads to the diversification of endocannabinoid

signaling by activating distinct signaling pathways with important

physiological outcomes such as regulation of cell proliferation and

apoptosis.

Materials and Methods

Materials
Neuro2A cells endogenously expressing CB1R (N2ACB1R) were

obtained from ATCC. F11 cells were a gift from Dr. D. Felsenfeld

(Mount Sinai School of Medicine). Monoclonal anti-phos-

phoERK, polyclonal anti-ERK, monoclonal anti-myc, polyclonal

anti-phosphoDOR(S363), monoclonal anti-phosphoSTAT3 (Ser-

727), polyclonal anti-phospho-p90rsk, polyclonal anti-STAT3,

polyclonal anti-phosphop70S6K, polyclonal anti-BAD, polyclonal

anti-lamin A/C and monoclonal anti-phosphoBAD antibodies

were from Cell Signaling Technology Inc. Rabbit anti C-terminal

CB1R antibody was from Cayman Chemicals. The polyclonal

anti-calnexin and anti-FLAG antibodies and pertussis toxin were

from Sigma. The anti AP-3d (anti-delta SA4) monoclonal antibody

was from the Developmental Studies Hybridoma Bank, University

of Iowa. The monoclonal anti-AP-2a antibody was from BD

Biosciences. Rabbit anti C-terminal CB1R and goat anti N-

terminal CB1R polyclonal antibodies were gifts from Dr. Ken

Mackie (University of Indiana). The mouse anti-arrestin3 antibody

was from Abcam. The rat anti-DOR antibody was generated as

described previously [25] and showed no specific signal in ELISA,

Western Blot and immunocytochemistry assays with DOR 2/2

brains (see Figure S1A–C). Monoclonal anti-GAPDH antibody

was from Novus Biological. The anti-pericentrin antibody was

from Abcam. IRDye 680-labeled anti-rabbit or mouse and IRDye

800-labeled anti-mouse antibodies were from Li-COR. The Alexa

488-conjugated anti-goat, mouse or rabbit, Alexa 594-conjugated

anti-rat, goat, mouse or rabbit and Alexa 647-conjugated anti-

rabbit antibodies were from Invitrogen. HRP-conjugated anti-

rabbit and anti-rat IgG antibodies were from GE Healthcare.

Rabbit polyclonal anti-CB1R (C-terminal) antibody coupled to

agarose beads, rabbit polyclonal anti-myc antibodies and siRNA

to arrestin3 were from Santa Cruz Biotechnology. Hu210,

U73122, and edelfosine were from Tocris Bioscience. Wild-type

mouse DOR and DORD15 plasmids were characterized as

described previously [26,27]. The CellTiter-GloH Luminescent

Cell Viability Assay was from Promega. U2OS cells co-expressing

prolink/enzyme donor-tagged human DOR and enzyme activa-

tor-tagged arrestin3 fusion protein and the PathHunter detection

kit were from DiscoveRx.

Cell Lines and transfections
Neuro2A cells endogenously expressing CB1R (N2ACB1R) were

maintained in DMEM containing 10% FBS and penicillin-

streptomycin at 37uC in a humidified 5% CO2 incubator.

Neuro2A cells stably expressing either myc-tagged DOR

(N2ACB1RDOR) or Flag-tagged DORD15 (N2ACB1RDORD15)

or transiently expressing the metalloprotease, endothelin convert-

ing enzyme-2 (N2ACB1RECE2) were grown in DMEM containing

10% FBS, penicillin-streptomycin and 500 mg/ml G418. F11 cells

were grown in F12 media containing 2 mM L-glutamine, 15%

FBS, HAT supplement and penicillin-streptomycin. U2OS cells

co-expressing ProLink/Enzyme Donor (PK)-tagged human DOR

and the Enzyme Activator (EA)-tagged b-arrestin fusion protein (a

gift from DiscoveRx), were grown in MEM-alpha (Invitrogen)

containing 10% fetal bovine serum, penicillin-streptomycin,

500 mg/ml geneticin and 250 mg/ml hygromycin. Transfections

with plasmids and siRNAs were carried out as described [28]. For

experiments with primary cortical or striatal neurons, cerebral

cortices or striata were dissected from wild-type and DOR lacking

(DOR2/2) mice (P1 or P2 mice pups). After trypsin treatment

and mechanical trituration, neurons were seeded into poly-L-

Lysine coated coverslips (cortical neurons) or 24 well plates (striatal

neurons). Cells were grown for 14 days in Neurobasal-B27 media,

supplemented with L-glutamine (growth media). On the third day

(DIV3) after plating 10 mM cytosine arabinoside was added to

inhibit glial growth.

Generation of shRNA lentiviral vector to DOR
GFP-tagged lentiviral shRNA to murine DOR was generated as

described [29] by targeting 364–384 base pairs relative to the start

codon of DOR. Infectious particles were produced by transient

transfection of 293T cells using Effectene (Qiagen, Carlsbad, CA,

USA). After determining the dose at which the virus was able to

efficiently infect F11 cells without killing them (as visualized for

EGFP fluorescence) we used this dose (5 ml) that also reduces

DOR levels by .70% (Rozenfeld and Devi, unpublished) to

examine the effect of down-regulation of DOR expression on

ERK phosphorylation as described below.

Animals
DOR +/2 embryos (Oprd1tm1Dgen; lacking the first exon of

DOR [30]) were purchased from the Mutant Mouse Regional

Resource Center (MMRRC). DOR 2/2 mice were generated at

the Mount Sinai Mouse Genetics Research Facility by implanta-

tion of the embryos into C56/BL6J mice and two successive

breeding cycles with wild-type mice from the same background

(C56/BL6J). The genotypes of DOR2/2 and littermate controls

were confirmed by PCR analysis (not shown) and by immunoflu-

orescence, ELISA and Western blotting with the DOR antibody

(Figure S1A–C). All protocols complied with the National

Institutes of Health Guide for the Care and Use of Laboratory

Animals and were approved by the Mount Sinai School of

Medicine Institutional Animal Care and Use Committee (Permit

# 02-0805). Brain regions from 3 month old male DOR2/2 and

their wild-type littermates were collected and membranes

prepared as described [31–33].

[35S]GTPcS binding assays
Assays were carried out essentially as described [31–33]. Briefly,

membranes from N2ACB1R and N2ACB1RDOR cells, and wild

type and DOR 2/2 mice cortices were prepared as described

[31–33]. The membranes (10 mg) were incubated with increasing

concentrations (0–1 mM) of Hu210 in the presence of 100 mM
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GDP and 0.1 nM [35S]GTPcS for one hour at 30uC. Basal

binding was determined in the presence of GDP and absence of

agonist and cold GTPcS. Non-specific binding was determined by

adding 10 mM GTPcS to a parallel set of tubes. Membrane bound

radioactivity collected by filtration was detected using a scintilla-

tion counter. In experiments examining the effect of the CB1R

antagonist, SR141716, cells were preincubated with SR141716

(1 mM) for 1 h prior to carrying out the assay.

Radiolabeled binding assays
Whole cell binding assays were carried out using N2ACB1R and

N2ACB1RDOR cells as described previously [31–33] using [3H]

SR141716A as a radiolabeled ligand for CB1R and [3H]DPDPE

as a radiolabeled ligand for DOR. CB1R levels were 666.36

21.7 fmoles/mg protein in N2ACB1R cells and 637648 fmoles/mg

protein in N2ACB1RDOR cells. DOR levels were 1357628.5

fmoles/mg protein in N2ACB1RDOR cells.

Cell fractionation
N2ACB1R or N2ACB1RDOR cells were grown in 6-well plates,

serum starved for 6 hours, and stimulated with 100 nM Hu210 for

5 min. Nuclear and cytoplasmic fractions were prepared as

described [34]. Immunoblotting for pERK and ERK were

performed as described under Western blotting. The purity of

the nuclear and cytoplasmic fractions was assessed by immuno-

blotting for the nuclear protein lamin A/C and the cytoplasmic

protein GAPDH as described under Western blotting.

Coimmunoprecipitation
N2ACB1R, N2ACB1RDOR or N2ACB1RDORD15 cells were

lysed for 1 h in lysis buffer (1% Triton, 150 mM NaCl, 1 mM

EDTA, 1 mM EGTA, and 50 mM Tris-Cl, pH 7.4) containing

protease inhibitor cocktail (Sigma). Cell lysates (100–200 mg of

protein) were incubated with 1 mg of either rabbit polyclonal anti-

CB1R (C-terminal) antibody coupled to agarose beads, anti-FLAG

or anti-myc antibodies overnight at 4uC. The beads were washed

three times with lysis buffer and once with the same buffer without

detergent. Proteins were eluted in 60 mL of 26 Laemmli buffer

containing 1% 2-mercaptoethanol, resolved by 10% SDS-PAGE,

and immunoblotted for the specified antibodies as described under

Western blotting.

Enzyme-linked immunosorbent assay (ELISA)
ELISA to quantify CB1R expression in either U2OS cells co-

expressing ProLink/Enzyme Donor (PK)-tagged human DOR,

Enzyme Activator (EA)-tagged b-arrestin fusion protein and myc-

tagged mouse CB1R and to quantify DOR expression in wild-type,

CB1R2/2 or DOR2/2 cortical membranes was carried out as

described [25,33,35] using rabbit anti-myc (1:1000), rat anti-DOR

(1:500), and HRP-conjugated anti-rabbit (1:2000) or anti-rat

antibodies (1:1000). ELISA to quantify, total CB1R levels in

N2ACB1R, N2ACB1RDOR or N2ACB1RECE2 cells was carried out

in cells permeabilized with ice-cold methanol for 5 min while cell

surface CB1R levels were determined in non-permeabilized cells

using anti-CB1R (1:500) and HRP-conjugated anti-rabbit (1:1000)

antibodies.

Confocal microscopy
Confocal microscopy imaging was carried out as described [28].

Primary cortical cells (14DIV) from wild-type or DOR2/2 mice,

N2ACB1R and N2ACB1RDOR cells transfected without or with a

plasma membrane marker (a GFP fused with a prenylation site;

Mb-GFP) or overexpressing arrestin3-eGFP (and treated without

or with 100 nM Hu210 for 5 min) or F11 cells infected with

scramble or DOR shRNA lentivirus were fixed with either 4%

paraformaldehyde (PFA) in phosphate buffered saline (PBS) or

with methanol and permeabilized with 0.1% Triton-X-100. The

following antibodies were used as primary antibodies as described

in the figure legends: goat anti-N-terminal CB1R (1:500), rabbit

anti-C-terminal CB1R (1:500), rat anti-DOR (1:500), mouse anti-

myc (1:1000), rabbit anti-phospho ERK (1:1000), mouse anti-

pericentrin (1:1000), mouse anti-AP-3d (1:1000), mouse anti-AP-

2a (1:1000). The following antibodies were used as secondary

antibodies: Alexa 488-conjugated anti-goat, rabbit or mouse

(1:1000), Alexa 594-conjugated anti-rat, mouse, goat or rabbit

(1:1000), Alexa 647-conjugated anti- rabbit (1:1000). Slides were

visualized with a Leica TCS SP5 confocal microscope. Images

were acquired with an 663/1.32 PL APO objective lens, and

analyzed in sequential scanning mode. For studies examining

colocalization of CB1R with the membrane marker Mb-GFP,

colocalization was examined in horizontal and vertical sections of

the cells. Metamorph software (Molecular Devices) was used for

quantification of colocalization in multiple horizontal sections of 8

individual cells/group. The percentage of CB1R pixels colocalized

with Mb-GFP was calculated in each section and the average for

each cell represented in a graph (Figure S2C).

Phospho-ERK assays
Phospho-ERK assays were carried out as described in [28,36].

Briefly, N2ACB1R, N2ACB1RDOR or N2ACB1RDORD15 cells

alone or transiently transfected with control or arrestin3-targeting

siRNA, or F11 cells infected with scramble or DOR shRNA

lentivirus (,40,000 cells/well) were seeded on 24-well plates. The

next day, cells were starved for at least 4–6 h in serum-free

medium prior to stimulation with Hu210 for the indicated times at

the indicated concentrations. In some cases cells were preincu-

bated for 30 min with indicated kinase inhibitors, followed by

treatment with Hu210 in the presence of these inhibitors. In

experiments examining the effect of pertussis toxin (PTX)

pretreatment, cells were preincubated for 16 h with PTX

(15 ng/ml) prior to carrying out the phospho-ERK assay. Cells

were solubilized by directly adding 16SDS buffer pre-warmed to

65uC, followed by sonication with a microtip for 5 sec and

subjected to Western Blotting as described below.

Western blotting analyses
Western blots were carried out as described in [28,36]. Briefly,

proteins in cell lysates (30 mg protein; Laemmli buffer containing

1% 2-mercaptoethanol) were resolved in 10% SDS-PAGE gels

and subjected to Western blot analysis. The following antibodies

were used as primary antibodies: rabbit anti-phosphoERK

(1:1000), mouse anti-ERK (1:1000), rabbit anti-CB1R (C-terminal;

1:500), mouse anti-arrestin3 (1:500), rabbit anti-phosphoDOR Ser

363 (1:1000), mouse anti-myc (1:1000), rabbit anti-lamin A/C

(1:2000), mouse anti-GAPDH (1:2000), rabbit anti-STAT3

(1:1000), mouse anti-phosphoSTAT3 (1:1000), rabbit anti-phos-

pho p70S6K (1:1000), rabbit anti-phospho-p90rsk (1:1000), rabbit

anti-phosphoBAD (1:1000), mouse anti-BAD (1:1000), rabbit anti-

calnexin (1:1000). In experiments examining the specificity of rat

anti-DOR antibodies, cortical membranes from wild-type and

DOR2/2 mice (30 mg protein) were solubilized in Laemmli

buffer containing 1% 2-mercaptoethanol, followed by sonication

with a microtip for 5 sec and subjected to Western Blotting using

rat anti-DOR (1:1000) antibodies. The following antibodies were

used as secondary antibodies: IRDye 680-labeled anti-rabbit

(1:10,000), IRDye 800-labeled anti-mouse (1:10,000) and IRDye

680-labeled anti-rat (1:10,000). Blotting, imaging and band
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intensity measurements were performed using the Odyssey

imaging system (LI-COR, Lincoln, NE) according to the

manufacturer’s protocols.

Arrestin recruitment assay
U2OS cells co-expressing ProLink/Enzyme Donor (PK)-tagged

human DOR and the Enzyme Activator (EA)-tagged b-arrestin

fusion protein, were transfected with myc-tagged mouse CB1R

using FuGene as per manufacturer’s protocol (Roche Diagnostics).

Expression of myc-CB1R was determined by ELISA as described

above. The day after transfection, cells were seeded in 96 well

plates (20,000/well) in growth media. The following day media

was removed and replaced with 90 ml growth media without

antibiotics. Hu210 (0–10 mM in 10 ml) was added to the wells and

incubated for 30 min. b-arrestin recruitment was determined

using the PathHunter Detection Kit, as described in the

manufacturer’s protocol. Samples were read on a luminescence

plate reader (Perkin-Elmer).

Survival and caspase-3 assays
N2ACB1R and N2ACB1RDOR cells (20,000 cells/well) were

plated in complete media (+FBS) on poly-L-lysine coated 24-well

plates. Next day, cells were placed in starving media (media

containing 0.1% FBS). The cells were treated with 1 mM Hu210.

Control cells were not subjected to any drug treatment. Fresh

ligands were added daily without changing the medium. The

number of live cells was determined by the Trypan Blue exclusion

method. For the caspase-3 assay, N2ACB1R and N2ACB1RDOR

cells (16106 cells/well) were plated in complete media on 6-well

plates. Next day, cells were placed in starving media and treated

with 1 mM Hu210. Control cells were not subjected to any drug

treatment. Fresh ligands were added daily without changing the

medium. After 3 and 8 days, the medium was removed, wells

washed with PBS, cells collected and assayed for caspase-3 activity

using a colorimetric CaspACE TM assay system (Promega

Corporation, Madison,WI) as per manufacturer’s protocol.

For experiments involving the survival of striatal neurons, the

CB1R receptor antagonist, AM251 (10 mM) was added to the

growth media at DIV7 and cellular viability was assessed at

DIV10 by monitoring intracellular ATP using the CellTiter-GloH
Luminescent Cell Viability Assay as described in the manufactur-

er’s protocol.

Data Analysis
Data were analyzed (and EC50 and Emax values were deter-

mined) using Prism 4.0 (Graph Pad, San Diego, CA, U.S.A.).

Student’s t-test was used to determine statistical significance.

Results and Discussion

Increased CB1R signaling in the absence of DOR
In order to examine the extent to which DOR would affect

CB1R signaling, we compared classic G protein-mediated signal-

ing in cortical membranes from wild type mice to signaling in

membranes from mice lacking DOR (DOR2/2), using the

[35S]GTPcS binding assay. We found that in the absence of DOR

there was a small but significant increase in basal [35S]GTPcS

binding; this increase could be partially blocked by treatment with

the CB1R inverse agonist SR141716 (Fig. 1A). Absence of DOR

also led to a ,3-fold increase in the potency of Hu210 (a CB1R

agonist) to induce [35S]GTPcS binding (Fig. 1B). These findings

suggest that the presence of DOR regulates CB1R-mediated

G-protein activation. This could be due to a functional interac-

tion between CB1R and DOR arising either from an indirect

intercellular regulatory mechanism (with the two receptors

interacting within the same neuronal circuit) or from direct

intracellular cross-talk (such as altered G protein coupling and/or

physical interaction).

CB1R and DOR co-localize in primary cortical neurons
Since the presence of intracellular cross-talk would require co-

expression of these two receptors, we examined expression and

localization of CB1R and DOR in primary cortical neurons. Using

an antibody that selectively recognizes DOR (as evident from

confocal microscopy analysis, ELISA and Western blotting assays

either with cells expressing one or both receptors or membranes

from DOR2/2 mice and their littermate controls; Figure S1A–

C) we found that DOR is expressed in primary cortical neurons

(that also expresses CB1R) and that there is a large degree of co-

localization between CB1R and DOR within neuronal cell bodies

and in the processes (Fig. 1C). These findings suggest the

possibility of intracellular interactions between CB1R and DOR

in cells that express both receptors.

CB1R and DOR form interacting complexes
Next, we examined if CB1R and DOR exist in an interacting

complex using co-immunoprecipitation analysis of membranes

from Neuro2A cells that endogenously express CB1R (N2ACB1R)

and from Neuro2A cells stably expressing myc-DOR (N2ACB1R-

DOR). We found that myc-DOR could be detected in CB1R

immunoprecipitates from N2ACB1RDOR cells but not from

N2ACB1R cells (Fig. 2A). Conversely, CB1R could be detected in

myc-DOR immunoprecipitates from N2ACB1RDOR cells but not

from N2ACB1R cells (Figure S1D). These results support a direct

interaction between DOR and CB1R and are in agreement with

our previous study using a bioluminescence resonance energy

transfer (BRET) assay that showed that CB1R and DOR exist in

close proximity for interaction in live cells [15]. In a previous study

we had reported that CB1R, when expressed alone, associates with

the adaptor protein AP-3 (involved in sorting to the endolyso-

somes) [28]. Here we find that the level of AP-3 associated with

CB1R-DOR is significantly lower as compared to CB1R (Fig. 2B).

In contrast, we find that the level of the adaptor protein AP-2

(involved in GPCR endocytosis [37]) associated with CB1R-DOR

is substantially higher as compared to CB1R (Fig. 2B). These

results, showing that the association of DOR with CB1R results in

differential recruitment of adaptor proteins, suggest that CB1R-

DOR interactions would lead to altered localization of CB1R.

Association with DOR affects CB1R localization
Given the differential recruitment of adaptor proteins by CB1R-

DOR, and the finding that when expressed alone, CB1R is mostly

present in intracellular vesicles [37,38], whereas DOR is found

primarily at the cell surface, we examined changes in the sub-

cellular localization of CB1R in the presence of DOR. Consistent

with previous findings, we observed that in N2ACB1R cells,

endogenous CB1R is not detected at the plasma membrane, but is

mostly localized in intracellular compartments (Fig. 2C, left). In

contrast, in N2ACB1RDOR cells, endogenous CB1R is localized at

the plasma membrane (Fig. 2C, right). This DOR-induced plasma

membrane localization of CB1R was confirmed by incubating

non-permeabilized living N2ACB1R and N2ACB1RDOR cells with

primary antibodies raised against extracellular epitopes of CB1R

and myc-DOR (Fig. 2D). Under these conditions, there was

virtually no CB1R staining in N2ACB1R cells (Fig. 2D, left) whereas

both CB1R and DOR were readily detected at the plasma

membrane of N2ACB1RDOR cells (Fig. 2D, right).

Receptor Heteromerization Expands CB1R Signaling
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We also quantified CB1R levels at the plasma membrane in

N2ACB1R and N2ACB1RDOR cells by measuring the extent of

colocalization with a plasma membrane marker, a GFP fused with

a prenylation site (Mb-GFP) (Figure S2A–C). We found ,5% of

CB1R colocalized with Mb-GFP in N2ACB1R cells, whereas .40%

of CB1R staining colocalized with the plasma membrane marker

in N2ACB1RDOR cells. In order to determine the specificity of the

change in CB1R localization, we measured the changes in cell

surface CB1R immunoreactivity in Neuro2A cells stably express-

ing the metalloprotease ECE2, a type II transmembrane protein

that is transported to the plasma membrane via the secretory

pathway (Gagnidze and Devi, unpublished). While the presence of

DOR led to a significant increase in cell surface CB1R

immunoreactivity, the presence of ECE2 did not affect CB1R

plasma membrane levels (Figure S2D), confirming the specificity

of CB1R-DOR interaction in modulating CB1R cell surface

expression. We also examined the effect of decreasing endogenous

DOR expression (by shRNA-expressing lentivirus) in F11 cells

(that express both DOR [39] and CB1R [40]) on the localization

of endogenous CB1R. We found that in cells transduced with a

DOR shRNA-expressing lentivirus, there was no detectable CB1R

at the cell surface (Figure S2E) indicating that expression of DOR

modulates the localization of CB1R. These results are consistent

with the notion that DOR associates with CB1R and facilitates its

cell surface localization.

Co-expression of CB1R and DOR affects CB1R-mediated
ERK signaling

We examined if the association with DOR altered CB1R

signaling by examining CB1R-mediated G protein coupling in

N2ACB1RDOR cells. The presence of DOR led to a ,10-fold

decrease in the potency of Hu210 (a CB1R agonist) to induce

[35S]GTPcS binding (Fig. 3A). We also examined the presence of

DOR on CB1R-mediated modulation of pERK levels; pERK is a

known downstream effector of CB1R. We find that the presence of

DOR led to a 3-fold decrease in the potency of Hu210 to

Figure 1. Increased CB1R activity in the absence of DOR. A, Basal [35S]GTPcS binding was measured in cortical membranes from wild-type and
DOR 2/2 mice. Membranes from cortices were prepared as described [31–33], treated with vehicle or 1 mM SR141716 (SR) for 1 hour and subjected
to [35S]GTPcS binding as described in Methods. Basal [35S]GTPcS binding/10 mg protein in vehicle treated membranes is taken as 100%. Data
represent Mean 6 SEM (n = 3 individual animals in triplicate). Statistically significant differences between vehicle and SR141716 treatment are
indicated *p,0.05, (t test). B, [35S]GTPcS binding assay in cortical membranes from wild-type and DOR 2/2 mice. Membranes were treated with
increasing concentrations of the CB1R agonist Hu210 (0–1 mM) and [35S]GTPcS binding was measured as described in Methods. EC50 and Emax values
were calculated using GraphPad Prism software. Data represent Mean 6 SEM (n = 3 individual animals in triplicate). *p,0.05; **p,0.01 for DOR2/2
vs wild-type (t test). C, Localization of endogenous CB1R and DOR in mouse primary cortical cells, 14DIV. Cells fixed with 4%PFA in PBS and
permeablized with 0.1% Triton, were immunostained with the goat polyclonal anti-CB1R(N-terminal) antibody (1:500; green) and rat polyclonal anti-
DOR antibody (1:500; red) and visualized using Alexa 488-conjugated anti-goat (1:1000) and Alexa 594-conjugated anti-rat (1:1000) secondary
antibodies using confocal microscopy as described in Methods. Representative figure from 3 independent experiments shown.
doi:10.1371/journal.pone.0029239.g001
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phosphorylate ERK (Fig. 3B & Figure S3A). In order to confirm

that CB1R signal modulation was solely due to DOR co-

expression, we downregulated DOR using shRNA expressing

lentivirus in F11 cells that endogenously co-express CB1R and

DOR and we examined pERK levels in response to CB1R activa-

tion. We find that downregulation of DOR leads to enhance-

ment in pERK levels as compared to scrambled shRNA treatment

(Fig. 3C & Figure S3B). Taken together these results are consistent

with the idea that association with DOR leads to reduction in

CB1R signaling; this could be due to recruitment of distinct sets of

signaling molecules.

CB1R activation leads to arrestin3 recruitment in cells co-
expressing CB1R and DOR

We hypothesized that reduced CB1R signaling in N2ACB1R-

DOR cells could be due to altered arrestin3 recruitment to CB1R,

as previous studies had demonstrated arrestin recruitment to

opioid receptor heteromers [36]. We tested this by co-immuno-

precipitation and found that the levels of arrestin3 associated with

CB1R in the presence of DOR are higher than in the absence of

DOR (Fig. 3D). Interestingly, activation of CB1R leads to a further

increase (.2-fold higher in N2ACB1RDOR cells as compared to

N2ACB1R cells) in arrestin3 recruitment (Fig. 3D). Further support

for this comes from studies using the PathHunter arrestin assay

(DiscoveRx). In this assay, DOR is fused to one fragment of b-

galactosidase (b-gal), and arrestin3 is fused to its complementary

fragment. Upon arrestin recruitment to DOR the complementa-

tion of the two b-gal fragments result in the restoration of enzyme

activity. When CB1R (untagged) is expressed in these cells, we find

that Hu210 treatment leads to a dose-dependent increase in b-gal

activity; this is seen only in cells co-expressing CB1R and DOR

and not in cells only expressing DOR (Fig. 3E) confirming activity

Figure 2. Association between CB1R and DOR alters CB1R localization. A, Lysates (100–200 mg) from N2ACB1R and N2ACB1RDOR cells were
subjected to immunoprecipitation with 1 mg of anti-CB1R (C-terminal) antibody, the immunoprecipitates were resolved on 10% SDS-PAGE and
probed for the presence of myc-DOR using mouse monoclonal anti-myc antibody (1:1000) and for CB1R using rabbit polyclonal anti-CB1R (C-terminal)
antibody (1:500) as described in Methods. IRDye 680 anti-rabbit and IRDye 800 anti-mouse were used as secondary antibodies (1:10,000).
Representative of 3 independent experiments shown. B, CB1R-DOR complexes exhibit greater interaction with AP-2 than AP-3. Lysates (100–200 mg)
from N2ACB1R and N2ACB1RDOR cells were subjected to immunoprecipitation using 1 mg of an anti-CB1R (C-terminal) antibody as described in
Methods. The immunoprecipitates were resolved on 10% SDS-PAGE and probed for the presence of AP-3 (1:1000), AP-2 (1:1000) and CB1R (C-term)
(1:500) using specific antibodies as described in Methods. IRDye 680 anti-rabbit and IRDye 800 anti-mouse were used as secondary antibodies
(1:10,000). Representative of 3 independent experiments shown. C, Localization of endogenous CB1R in N2ACB1R and of CB1R and DOR in
N2ACB1RDOR cells. Cells fixed with 4%PFA in PBS and permeablized with 0.1% Triton, were stained with the rabbit polyclonal anti-CB1R (C-terminal)
antibody (1:500; green) and the mouse monoclonal anti-myc antibody (1:1000; red) and visualized using Alexa 488-coupled anti-rabbit or Alexa 594-
coupled anti-mouse secondary antibodies (1:1000) using confocal microscopy as described in Methods. Representative of 3 independent
experiments shown. D, Cell surface staining of endogenous CB1R and stably expressed DOR in N2ACB1RDOR cells. N2ACB1R and N2ACB1RDOR cells were
stained with a goat polyclonal anti-CB1R (N-terminal) antibody (1:500) and mouse monoclonal anti-myc antibodies (1:1000) prior to fixation of the
cells to label cell surface receptors, as described [28]. After fixation, cells were visualized with Alexa 594-coupled anti-goat and Alexa 488-coupled
anti-mouse secondary antibodies (1:1,000) using confocal microscopy as described in Methods. Representative of 3 independent experiments shown.
doi:10.1371/journal.pone.0029239.g002
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dependent recruitment of arrestin3 to the heteromer. We directly

examined enhanced arrestin3 recruitment to the CB1R-DOR

heteromer by confocal microscopy analysis of N2ACB1RDOR cells

expressing arrestin3-eGFP. We found that Hu210 treatment

induces arrestin3 translocation to the cell membrane to a greater

extent in N2ACB1RDOR cells as compared to N2ACB1R alone

(Figure S2F). These findings suggest that the presence of DOR

enhances arrestin3 binding to CB1R in cells co-expressing CB1R

and DOR.

Next, we tested if DOR phosphorylation at Ser363 is

differentially affected by CB1R-DOR interactions since this site

is reported to be involved in desensitization and recruitment of

arrestin3 [41]. We find that in N2ACB1RDOR cells, CB1R

stimulation induced an increase in DOR Ser363 phosphorylation

(Fig. 3F). Interestingly, PLC inhibitors, U73122 or edelfosine,

completely block this effect (Fig. 3F & Figure S3C). These results

suggest that the presence of DOR in N2ACB1RDOR cells leads to

phosphorylation of DOR C-tail resulting in arrestin3 recruitment

to the CB1R-DOR complex and PLC activity appears to be

involved in this process.

Promotion of arrestin3-dependent signaling in cells co-
expressing CB1R and DOR

Next we examined arrestin3-dependent signaling by focusing on

MAPK phosphorylation since previous studies have reported

arrestin3 to mediate G protein-independent ERK activation

[36,42]. Interestingly, arrestin3 downregulation by RNAi led to

a significant decrease in pERK levels in N2ACB1RDOR, but failed

to do so in N2ACB1R cells (Fig. 4A & 4B) underscoring a role for

arrestin3 in ERK signaling. We next examined the contribution of

Figure 3. PLC-dependent arrestin3 association with CB1R-DOR complex. A, [35S]GTPcS binding assay in membranes from N2ACB1R and
N2ACB1RDOR cells. Membranes (10 mg) were treated with indicated concentrations of the CB1R agonist Hu210. [35S]GTPcS binding was measured as
described in Methods. EC50 and Emax values were calculated using GraphPad Prism software. Data represent Mean 6 SEM (n = 3 independent
experiments in triplicate). B, Dose-response of Hu210-mediated ERK phosphorylation in N2ACB1R and N2ACB1RDOR cells. Starved N2ACB1R and
N2ACB1RDOR cells seeded in 24 well-plates were treated with indicated concentrations of Hu210 for 5 minutes. Cell lysates (30 mg protein) were
analyzed by Western blotting and probed for the levels of pERK (1:1000) and ERK (1:1000) as described in Methods. IRDye 680 anti-rabbit and IRDye
800 anti-mouse were used as secondary antibodies (1:10,000). EC50 and Emax values were calculated using GraphPad Prism software. Data represent
Mean 6 SEM (n = 3 independent experiments). *p,0.05 for N2ACB1RDOR vs N2ACB1R (t test). C, Effect of DOR down-regulation on ERK
phosphorylation. F11 cells transduced with the DOR shRNA expressing lentivirus were starved for 4–6 h and treated with Hu210 (100 nM) for 5 min.
Cell lysates (30 mg protein) were analyzed by Western blotting and probed for the levels of pERK (1:1000) and ERK (1:1000) as described in Methods.
IRDye 680 anti-rabbit and IRDye 800 anti-mouse were used as secondary antibodies (1:10,000). Data from 3 independent experiments is shown.
*p,0.05 (t test). D, Examination of arrestin3 interaction with CB1R after Hu210 treatment. N2ACB1R and N2ACB1RDOR, starved for 4 hours were
stimulated with 100 nM Hu210 for 5 minutes and cell lysates prepared as described in Methods. Lysates (30 mg protein) were subjected to either
Western blotting using rabbit anti-CB1R (C-terminal 1:500) and mouse anti-arrestin 3 antibodies (1:500) or to immunoprecipitation using 1 mg of
agarose-coupled anti-CB1R (C-terminal) antibody. Immunoprecipitates were probed for arrestin3 levels by Western blot using the mouse anti-arrestin
3 antibody. IRDye 680 anti-rabbit and IRDye 800 anti-mouse were used as secondary antibodies (1:10,000). Representative of 3 independent
experiments shown. E, Effect of Hu210 on arrestin recruitment. U2OS cells co-expressing ProLink/Enzyme Donor (PK)-tagged DOR and the Enzyme
Activator (EA)-tagged arrestin3 fusion protein without or with CB1R were treated with indicated concentrations of Hu-210. Arrestin3 recruitment was
determined using the PathHunter Detection Kit as described in Methods. Data represent Mean 6 SEM (n = 4). F, Effect of PLC inhibitor (U73122) on
DOR phosphorylation at serine 363 after Hu210 treatment. N2ACB1RDOR cells were starved for 4–6 hours, and incubated with vehicle (DMSO) or
U73122 (1 mM) for 30 minutes, then stimulated with 100 nM Hu210 for 5 minutes. Cell lysates (30 mg protein) were subjected to Western blotting
using rabbit polyclonal phosphoDOR Ser 363 (1:1000), mouse monoclonal anti-myc (1:1000) antibodies and IR Dye 680 anti-rabbit and IR Dye 800
anti-mouse secondary antibodies (1:10,000) as described in Methods. Data represent Mean 6 SEM (n = 3).
doi:10.1371/journal.pone.0029239.g003
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DOR C-tail to arrestin3-mediated signaling. We find that in

N2ACB1RDORD15 cells (in which the C-term tail of DOR is

deleted, but still forms heteromers with CB1R, see Figure S1D),

arrestin3 down-regulation did not affect Hu210-mediated ERK

phosphorylation (Fig. 4C). Since these 15 amino acids in the C-

terminus contain residues important for receptor phosphorylation

and downregulation [26], these results indicate that the C-terminal

tail of DOR is required for recruiting and facilitating arrestin-

dependent signaling by the heteromer. Taken with our previous

observations that CB1R activation leads to phosphorylation of

DOR at the C-terminal tail Ser363 (Fig. 3F), these results elucidate

a possible mechanism for CB1R-DOR heteromer-mediated

signaling that involves recruitment of novel, heteromer-specific

signalosomes by DOR C-tail. Interestingly, we find that Hu210-

mediated ERK phosphorylation is blocked by pretreatment with

pertussis toxin in both in N2ACB1R and in N2ACB1RDOR cells

(Figure S3D). This suggests that, in these cells, Hu210 treatment

leads to arrestin3 mediated G-protein dependent ERK activation.

The finding that cannabinoid stimulation leads to DOR

phosphorylation-dependent arrestin3 recruitment indicates that

direct interaction with DOR contributes to the desensitization of

CB1R. In addition, in contrast to a single PLCb-mediated

signaling pathway, CB1R in the presence of DOR engages both

PLC- and arrestin3-mediated pathways to phosphorylate ERK.

Novel signaling pathways activated in cells co-expressing
CB1R and DOR

We have previously shown that GPCR heteromerization can

lead to changes in the localization of pERK [36]. We examined

the location of pERK in N2ACB1RDOR and N2ACB1R cells

following CB1R activation and found a small but consistent

increase in pERK in the nucleus of N2ACB1R but not in N2ACB1R

DOR cells (Fig. 5A). However, upon further examination of

N2ACB1RDOR cells, it was clear that pERK exhibited a distinct

punctate distribution in a juxtanuclear compartment and this was

not seen in N2ACB1R cells (Fig. 5B). This pERK enriched

compartment in N2ACB1RDOR cells was identified as centro-

somes using the centrosome marker, pericentrin (Fig. 5B). This is

interesting since previous studies have reported the presence of

arrestin3 and associated signaling molecules in centrosomes

[43,44]. This, taken with the reports that arrestin3 can regulate

the phosphorylation of BAD and thereby activate anti-apoptotic

signaling pathways [45] led us to predict that pERK substrates

involved in cell survival would be differentially phosphorylated in

N2ACB1RDOR vs. N2ACB1R cells. To test this we examined the

phosphorylation levels of BAD, STAT3 and p70S6K as potential

pERK substrates [4,9]. We found that CB1R activation leads to

substantially enhanced phosphorylation of BAD and reduced

phosphorylation of STAT3 and p70S6K in N2ACB1RDOR cells as

compared N2ACB1R cells (Fig. 5C & D). Furthermore, inhibition

of PLC and MEK or downregulation of arrestin3 leads to a

substantial decrease in phosphoBAD levels (Fig. 5D & 5E; Figure

S4) supporting the involvement of the arrestin-pERK pathway in

mediating BAD phosphorylation in N2ACB1RDOR cells (Fig. 6 D

& E). The activation of this pathway, which has been implicated in

blockade of apoptosis [46], suggests a role for heteromer-directed

signaling in cannabinoid-mediated cell survival and differentiation.

Cell survival is enhanced and apoptosis is decreased in
cells co-expressing CB1R and DOR

We directly examined Hu210-mediated cell survival in

N2ACB1RDOR cells, and compared it to N2ACB1R cells. We

Figure 4. Engagement of arrestin3-dependent signaling in N2ACB1RDOR. Time course of Hu210-mediated ERK phosphorylation in
A, N2ACB1R; B, N2ACB1RDOR; and C, N2ACB1RDORD15 cells transfected with control or arrestin3-targeting siRNA. N2ACB1R alone or stably expressing
either DOR or DORD15, transfected with a control or arrestin3-targeting siRNA, were starved for 4 hours, then stimulated with 100 nM Hu210 for the
indicated times. Cell lysates (30 mg protein) were subjected to Western blotting for the levels of ERK (1:1000), pERK (1:1000), and arrestin3 (1:500) as
described in Methods. IRDye 680 anti-rabbit and IRDye 800 anti-mouse were used as secondary antibodies (1:10,000). Data represent Mean 6 SEM
(n = 3); *p,0.05; **p,0.01; ***p,0.001, for control vs Arr3 siRNA (t test).
doi:10.1371/journal.pone.0029239.g004
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found a ,2–4-fold increase in cell survival of N2ACB1RDOR

compared to N2ACB1R cells (Fig. 6A). We also found that the

enhanced survival of N2ACB1RDOR cells was due to decreased

apoptosis, since the level of caspase-3 activity was reduced by ,2-

fold in N2ACB1RDOR compared to N2ACB1R cells (Fig. 6B). Next

we tested the involvement of CB1R-DOR interactions in cell

survival of primary cortical neurons from wild-type and compared

that to the survival of neurons from DOR2/2 mice. We find that

treatment with the CB1R antagonist, AM251 leads to a substantial

and significant decrease in survival of wild-type cortical neurons;

this treatment did not affect survival of neurons from DOR 2/2

mice (Fig. 6C). This effect of the CB1R antagonist AM251, largely

absent in neurons lacking DOR, supports the idea that activation

of CB1R-DOR in the context of the heteromer leads to unique

signaling involved in neuronal survival. These observations are

relevant in light of recent studies reporting a role for cannabinoid

signaling in neuronal development [5]. Therefore our results

support the notion that DOR provides CB1R with a platform for

recruiting new signaling molecules, leading to new levels of

receptor regulation and fine-tuning of physiologically important

signaling.

In this study, we show that the functional properties of CB1R

are modulated by co-expression and heteromerization with DOR.

We show that: (i) CB1R and DOR interacting complexes can be

immunoprecipitated from cells expressing these receptors; (ii)

CB1R receptors exhibit cell surface localization only in the

presence of DOR; (iii) arrestin3 is recruited in a PLC dependent

fashion to CB1R-DOR after Hu210 stimulation in cells expressing

both receptors; and (iv) arrestin3 recruitment leads to an alternate

pathway for pERK activation, which in turn leads to enhanced cell

survival. These results support the notion that CB1R and DOR

form heteromers, facilitating the promotion of distinct signaling

pathways. A schematic summarizing this is shown in Fig. 6 D & E.

In N2ACB1R cells, Hu210-mediated activation leads to PLC-

dependent pERK activation via the classical G protein-PLC

pathway, leading to the phosphorylation of ERK substrates

STAT3 and p70S6 kinase (substrates ‘‘A’’). In N2ACB1RDOR

cells, Hu210 treatment leads to the PLC-dependent phosphory-

Figure 5. Role of arrestin3 and ERK substrates in cannabinoid signaling by the CB1R-DOR heteromer. A–B, Effect of CB1R-DOR
heteromerization on subcellular localization of pERK. A, N2ACB1R and N2ACB1RDOR cells were treated with Hu210 (100 nM; 0, 5 or 10 min),
cytoplasmic and nuclear extracts were prepared as described in Methods and analyzed (30 mg protein) by Western blotting with pERK (1:1000), ERK
(1:1000), lamin A/C (1:2000), and GAPDH (1:2000) antibodies. IRDye 680 anti-rabbit and IRDye 800 anti-mouse were used as secondary antibodies
(1:10,000). B, N2ACB1R and N2ACB1RDOR cells treated with Hu210 (100 nM; 5 min) were immunostained with pERK (1:1000, red) and pericentrin
(1:1000, green) antibodies and visualized using Alexa 488-conjugated anti-rabbit (1:1000) and Alexa 594-conjugated anti-mouse (1:1000) secondary
antibodies using confocal microscopy as described in Methods. Representative of 3 independent experiments shown. C, Time course of
phosphorylation of pERK substrates. Lysates (30 mg protein) from N2ACB1R and N2ACB1RDOR cells treated with Hu210 (100 nM; 0, 5, 10 or 30 min)
were analyzed by Western blotting with STAT3 (1:1000), phosphoSTAT3 (1:1000), phospho-p70S6K (1:1000), phospho-p90rsk (1:1000) and
phosphoBAD (1:1000) antibodies. IRDye 680 anti-rabbit and IRDye 800 anti-mouse were used as secondary antibodies (1:10,000). ERK (1:1000) is used
as a loading control. Representative of 3 independent experiments shown. D, Involvement of PLC and MEK in the phosphorylation of STAT3 and BAD.
Lysates (30 mg protein) from N2ACB1R and N2ACB1RDOR cells treated with 100 nM Hu210 for 5 min in the absence or presence of U73122 (1 mM) or
PD98059 (PD, 10 mM) were analyzed by Western blotting with STAT3 (1:1000), phosphoSTAT3 (1:1000), and phosphoBAD (1:1000) antibodies. IRDye
680 anti-rabbit and IRDye 800 anti-mouse were used as secondary antibodies (1:10,000). ERK (1:1000) is used as a loading control. Representative of 3
independent experiments shown. E, Involvement of arrestin3 in BAD phosphorylation. Arrestin3 was down-regulated in N2ACB1RDOR cells by
transfection with a siRNA. These cells were stimulated with Hu210 (100 nM) for 5 min, in the absence or presence of PD (10 mM). Lysates (30 mg
protein) were analyzed by Western blotting with phospho-p90rsk (1:1000) and phosphoBAD (1:1000) antibodies. IRDye 680 anti-rabbit and IRDye 800
anti-mouse were used as secondary antibodies (1:10,000). ERK (1:1000) is used as a loading control. Representative of 3 independent experiments
shown.
doi:10.1371/journal.pone.0029239.g005
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lation of DOR and recruitment of arrestin3 to the CB1R-DOR

complex; activation of the arrestin3 pathway can lead to ERK

activation and phosphorylation of additional ERK substrates

p90rsk and BAD (substrates ‘‘B’’). Enhanced arrestin3 recruitment

to the CB1R-DOR complex may be associated with increased

CB1R desensitization resulting in reduced, G protein-dependent-

ERK activation via the classical pathway (leading to phosphory-

lation of substrates ‘‘A’’).

The results of this study, together with other recent work,

suggest a special role for arrestin3 in directing signals from

interacting GPCRs [36]. We have previously shown that direct

interaction between MOR and DOR leads to distinct signaling

through recruitment of arrestin3 and promotion of arrestin-

mediated signaling which, in turn, leads to the phosphorylation of

distinct pERK substrates and activation of downstream transcrip-

tion factor activity [36]. These previous findings, along with our

current findings suggest that arrestin3 may play a pivotal role in

orchestrating fine tune signaling regulation of GPCR heteromers.

In this study we show that a single cannabinoid agonist (Hu210)

is able to elicit distinct signaling responses by binding and

activating the same receptor, CB1R, based on its association with

another GPCR, in this case DOR. We also show that the new

pathway activated by CB1R in the presence of DOR is involved in

the regulation of cell survival, suggesting that GPCR heteromer-

ization contributes to the promotion of context-specific cellular

responses, which occur only upon co-expression of the two

receptors. Thus, the presence of DOR can influence CB1R activity

either by direct interactions where DOR could serve as a

chaperone helping to target CB1R to the cell surface and induce

the recruitment of novel signaling molecules to the CB1R-DOR

heteromer or by indirectly modulating signaling pathways

activated by CB1R. In the GPCR field, it has recently been

established that one GPCR can elicit multiple types of signaling/

biological responses when stimulated by different types of ligands;

this is termed ‘ligand-directed signaling specificity’ [47,48]. Thus

some agonists have been shown to preferentially activate G

Figure 6. CB1R-DOR heteromerization promotes cell survival. A, Hu210-treated N2ACB1RDOR cells exhibit increased survival compared to
N2ACB1R cells. N2ACB1R or N2ACB1RDOR cells were treated with 1 mM Hu210 for the indicated days and survival measured by trypan blue exclusion as
described in Methods. Data represent Mean 6 SEM (n = 4 in triplicate). B, Hu210-treated N2ACB1RDOR cells exhibit lower apoptosis as compared to
N2ACB1R cells. Apoptosis of N2ACB1R or N2ACB1RDOR treated for 3 or 8 days with 1 mM Hu210 was measured using caspase-3 activity assay as
described in Methods. Data represent Mean 6 SEM (n = 4 in triplicate); ***p,0.001 N2ACB1RDOR vs N2ACB1R (t test). C, CB1R antagonist treatment
decreases neuronal survival of striatal neurons from wild-type but not DOR2/2 mice. Primary striatal neurons from wild-type or from DOR2/2 mice
were prepared as described in Methods. The CB1R antagonist AM251 (10 mM) was added to the growth media at DIV7 and cellular viability assessed
at DIV10 as described in Methods. Data represent Mean 6 SEM (n = 2–4) D–E, A schematic of the signaling pathways emanating from CB1R in
N2ACB1R (D) and N2ACB1RDOR (E) cells. Activation of CB1R in N2ACB1RDOR cells leads to differential activation of signaling molecules and
phosphorylation of ERK substrates.
doi:10.1371/journal.pone.0029239.g006
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protein-mediated pathways while other agonists for the same

receptor preferentially activate an arrestin-mediated pathway [49].

In this context, our current findings establish a key role for

receptor heteromerization in directing signal specificity in response

to a single ligand which we term as ‘heteromer-directed signaling

specificity’. We identify the biochemical pathways by which

heteromers facilitate distinct signaling cascades and show that

activation of a heteromer-specific signaling pathway by a single

agonist can induce distinct biological effects.

Supporting Information

Figure S1 A–C, Specificity of rat polyclonal DOR antibody: A,

Immunofluorescence with mouse primary cortical cells, 14DIV.

Cells from wild type or DOR 2/2 mice were fixed with 4% PFA

in PBS and permeablized with 0.1% Triton, then stained with

1:500 dilution of rat polyclonal anti-DOR antibody (red) and

1:1000 dilution of Alexa Fluor 594 goat anti-rat secondary

antibodies. Representative of 3 independent experiments shown.

B, ELISA with cortical membranes from wild type, CB1R 2/2,

and DOR 2/2 mice. ELISA was carried essentially as described

[25,33,35] with cortical membranes from wild type, CB1R 2/2,

and DOR 2/2 mice prepared as described [31–33] and 1:500

dilution of rat polyclonal anti-DOR antibody and 1:1000 dilution

of HRP-conjugated anti-rat secondary antibody. Data represent

Mean 6 SEM (n = 3 animals/group). C, Western blot with

cortical membranes from DOR 2/2 and wild-type mice. Cortical

membranes (,30 mg) from DOR 2/2 and wild-type mice

prepared as described [31–33] were subjected to Western blotting

using 1:1000 dilution of rat polyclonal anti-DOR and rabbit

polyclonal anti-calnexin (CNX) antibodies and 1:10,000 dilution

of IRDye 680-labeled anti-rat and IRDye 800-labeled anti-rabbit

antibodies as described in Methods. (n = 2 animals/group).

D, CB1R and DOR form interacting complexes. Lysates were

prepared from N2A cells endogenously expressing CB1R

(N2ACB1R) or stably transfected with either myc tagged DOR

(N2ACB1RDOR) or Flag tagged DORD15 (N2ACB1RDORD15).

(Left panel) Lysates (,30 mg) were subjected to Western blotting

with anti-CB1R (1:500) or anti-calnexin (1:1000) antibodies

followed by incubation with IRDye 680-labeled anti-rabbit

antibody (1:10,000) as described in Methods. (Right panel) Lysates

(100–200 mg) were subjected to immunoprecipitation using either

anti-myc or anti-Flag antibodies (1 mg) to pulldown myc tagged

DOR or Flag tagged DORD15 immunoprecipitates respectively.

The immunoprecipitates were resolved on 10% SDS-PAGE and

probed for the presence of CB1R (1:500) as described in Methods.

Representative of 3 independent experiments shown.

(TIF)

Figure S2 A, N2ACB1R or B, N2ACB1RDOR cells were

transfected with a plasma membrane marker (Mb-GFP, green),

and the cells were stained with the rabbit polyclonal anti-C-ter

CB1R antibody (1:500; magenta) and the mouse monoclonal anti-

myc antibody (1:1000; red). The secondary antibodies used were

Alexa 594-coupled goat anti-mouse and Alexa 647-coupled goat

anti-rabbit antibodies (1:1,000). Colocalization of CB1R with the

plasma membrane marker was examined in horizontal (left panel)

and vertical (xzy) (right panel) sections of the cells. The position of

xzy section is indicated by a white line. Representative of 3

experiments shown. C, Quantification of CB1R localized at

plasma membrane in N2ACB1R or N2ACB1RDOR cells. Using the

metamorph software (Molecular Devices), multiple horizontal

cross-sections of 8 individual cells per group were used for

quantification, and the average of all the values obtained per cell is

plotted. Briefly, the percentage of CB1R pixels colocalized with

Mb-GFP was calculated in each section, and the average for each

cell is represented in the graph. ***p,0.001 N2ACB1R vs

N2ACB1RDOR cells. In colocalization studies we find ,5% of

CB1R colocalize with Mb-GFP in N2ACB1R cells alone, whereas,

.40% colocalize with the plasma membrane marker in

N2ACB1RDOR cells. D, Cell surface localization of CB1R in

N2ACB1R stably expressing DOR or ECE2. Non-permeabilized

and permeabilized N2ACB1R stably expressing either DOR or

ECE-2 were used to quantify the cell surface and total CB1R levels

by ELISA as described in Methods. Increase in plasma membrane

CB1R is seen in N2ACB1RDOR cells but not in cells stably

expressing a type II transmembrane protein, the metalloprotease

endothelin converting enzyme 2 (ECE2), confirming the specificity

of DOR in the alteration of CB1R localization. Data represents

Mean 6 SE (n = 3). E, Effect of DOR down-regulation on CB1R

cell surface localization. F11 cells transduced with the DOR

shRNA expressing lentivirus, were stained with an anti-N-ter

CB1R antibody (1:500) prior to fixation of the cells to label cell

surface receptors and visualized using Alexa 594 anti-rabbit

antibodies (1:1000) as described in Methods. Among the cells

visualized, the green ones are transduced with the shRNA

expressing virus (visualized as green, due to the concurrent

expression of nuclear-targeted eGFP). CB1R could not be detected

at the cell surface of the transduced cells (see arrowheads), whereas

CB1R was present at the cell surface of untransduced cells (see

arrows). F, Localization of arrestin3 in N2ACB1R and N2ACB1R-

DOR cells. N2ACB1R and N2ACB1RDOR cells transfected with

arrestin3-eGFP were stimulated with 100 nM Hu210 for 5 min.

Cells were fixed with methanol and incubated with DAPI for

nuclear staining (blue). Representative of 3 experiments shown.

(TIF)

Figure S3 A, Dose-response of Hu210-mediated ERK phos-

phorylation in N2ACB1R and N2ACB1RDOR cells. Starved

N2ACB1R and N2ACB1RDOR cells seeded in 24 well-plates were

treated with indicated concentrations of Hu210 for 5 minutes. Cell

lysates (30 mg protein) were analyzed by Western blotting and

probed for the levels of pERK (1:1000) and ERK (1:1000) as

described in Methods. IRDye 680 anti-rabbit and IRDye 800 anti-

mouse were used as secondary antibodies (1:10,000). Representa-

tive blot from 3 independent experiments shown. B, Effect of

DOR down-regulation on ERK phosphorylation. F11 cells

transduced with the DOR shRNA expressing lentivirus were

starved for 4–6 h and treated with Hu210 (100 nM) for 5 min.

Cell lysates (30 mg protein) were analyzed by Western blotting and

probed for the levels of pERK (1:1000) and ERK (1:1000). IRDye

680 anti-rabbit and IRDye 800 anti-mouse were used as secondary

antibodies (1:10,000). Representative blot from 3 independent

experiments shown. C, Effect of PLC inhibitor (edelfosine) on

DOR phosphorylation at serine 363 after Hu210 treatment in

N2ACB1RDOR cells. N2ACB1RDOR cells were starved for 4–

6 hours, and incubated with vehicle (DMSO) or edelfosine (1 mM)

for 30 minutes, then stimulated with 100 nM Hu210 for

5 minutes. Cell lysates (30 mg protein) were subjected to Western

blotting and probed for the levels of phospho-DOR Ser 363

(1:1000) and myc-DOR (1:1000) as described in Methods. IRDye

680 anti-rabbit and IRDye 800 anti-mouse were used as secondary

antibodies (1:10,000). Data represent Mean 6 SEM (n = 3).

D, Effect of pertussis toxin on Hu210-mediated ERK phosphor-

ylation in N2ACB1R and N2ACB1RDOR cells. Starved N2ACB1R

and N2ACB1RDOR cells pretreated with pertussis toxin as

described in Methods were treated with increasing concentrations

of Hu210 (0–100 nM) for 5 minutes. Cell lysates (30 mg protein)

were analyzed by Western blotting and probed for the levels of

pERK (1:1000) and ERK (1:1000). IRDye 680 anti-rabbit and
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IRDye 800 anti-mouse were used as secondary antibodies

(1:10,000). Quantitation of data obtained with 100 nM Hu210

shown. Data represent Mean 6 SEM (n = 3 independent

experiments).

(TIF)

Figure S4 A, Effect of PLC inhibitor (edelfosine) on ERK

phosphorylation. N2ACB1R and N2ACB1RDOR cells were starved

for 4–6 hours, and incubated with vehicle (DMSO) or edelfosine

(1 mM) for 30 minutes, then stimulated with 100 nM Hu210 for

5 minutes. Cell lysates (30 mg protein) were subjected to Western

blotting and probed for the levels of pERK (1:1000) and ERK

(1:1000) as described in Methods. IRDye 680 anti-rabbit and

IRDye 800 anti-mouse were used as secondary antibodies

(1:10,000). Representative blot from 3 independent experiments

shown. B, Effect of PLC inhibitor (edelfosine) on STAT3

phosphorylation. N2ACB1R and N2ACB1RDOR cells were starved

for 4–6 hours, and incubated with vehicle (DMSO) or edelfosine

(1 mM) for 30 minutes, then stimulated with 100 nM Hu210 for

5 minutes. Cell lysates (30 mg protein) were subjected to Western

blotting and probed for the levels of pSTAT3 (1:1000) and STAT3

(1:1000) as described in Methods. IRDye 680 anti-rabbit and

IRDye 800 anti-mouse were used as secondary antibodies

(1:10,000). Representative blot from 3 independent experiments

shown. C, Effect of PLC inhibitor (edelfosine) on BAD

phosphorylation. N2ACB1R and N2ACB1RDOR cells were starved

for 4–6 hours, and incubated with vehicle (DMSO) or edelfosine

(1 mM) for 30 minutes, then stimulated with 100 nM Hu210 for

5 minutes. Cell lysates (30 mg protein) were subjected to Western

blotting and probed for the levels of pBAD (1:1000) and BAD

(1:1000) as described in Methods. IRDye 680 anti-rabbit and

IRDye 800 anti-mouse were used as secondary antibodies

(1:10,000). Representative blot from 3 independent experiments

shown.

(TIF)
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