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Abstract: Seamounts shape the topography of all ocean
basins and can be hotspots of biological activity in the
deep sea. The Census of Marine Life on Seamounts
(CenSeam) was a field program that examined seamounts
as part of the global Census of Marine Life (CoML)
initiative from 2005 to 2010. CenSeam progressed
seamount science by collating historical data, collecting
new data, undertaking regional and global analyses of
seamount biodiversity, mapping species and habitat
distributions, challenging established paradigms of sea-
mount ecology, developing new hypotheses, and docu-
menting the impacts of human activities on seamounts.
However, because of the large number of seamounts
globally, much about the structure, function and connec-
tivity of seamount ecosystems remains unexplored and
unknown. Continual, and potentially increasing, threats to
seamount resources from fishing and seabed mining are
creating a pressing demand for research to inform
conservation and management strategies. To meet this
need, intensive science effort in the following areas will be
needed: 1) Improved physical and biological data; of
particular importance is information on seamount loca-
tion, physical characteristics (e.g. habitat heterogeneity
and complexity), more complete and intensive biodiver-
sity inventories, and increased understanding of sea-
mount connectivity and faunal dispersal; 2) New human
impact data; these shall encompass better studies on the
effects of human activities on seamount ecosystems, as
well as monitoring long-term changes in seamount
assemblages following impacts (e.g. recovery); 3) Global
data repositories; there is a pressing need for more
comprehensive fisheries catch and effort data, especially
on the high seas, and compilation or maintenance of
geological and biodiversity databases that underpin
regional and global analyses; 4) Application of support
tools in a data-poor environment; conservation and
management will have to increasingly rely on predictive
modelling techniques, critical evaluation of environmental
surrogates as faunal ‘‘proxies’’, and ecological risk
assessment.

Introduction

Seamounts are prominent components of the seascapes of all

ocean basins [1]. These raised topographical features and the

ecosystems which they support, have historically been viewed as

unique, diverse and productive systems embedded in a more

homogeneous deep-sea environment [e.g., 2–4].

Research on seamounts has recently been focused in a field

programme as part of the Census of Marine Life (CoML)–

The Census of Marine Life on Seamounts (‘‘CenSeam’’) [5–6].

CenSeam brought together scientists working in the fields of

seamount ecology, taxonomy, conservation, fisheries, geology,

physical oceanography, and informatics. Census funding catalyzed

two main areas of activity: 1) enhanced collaboration amongst the

scientific communities of numerous countries encompassing

multiple disciplines, and 2) an expansion of studies to regional

and global scales that enabled research of greater generality and

scope to address key ecological hypotheses.

The expansion of research effort beyond national programmes,

coupled with the ability to plan and carry out research at broader

geographic scales, substantially advanced our understanding of

how seamounts are structured, how they function as ecosystems,

and how human activities impact on them. This progress is evident

across a range of fields. For example, descriptions of many new

species added to the stock of knowledge on seamount biodiversity,

as did numerous scientific papers published on seamount

oceanography, ecology, and the vulnerability and management

of seamount resources [4,7–8].

Five major scientific summaries of seamount ecology have been

published in the last 5 years: 1) a book bringing together

contributions on seamount geology, ecology, and fisheries [9],

2) a critical evaluation of commonly held views on seamount

ecological structures, processes and drivers [10], 3) a detailed

review of the state of knowledge of seamounts in terms of

oceanographic processes and settings, biological mechanisms (e.g.

trophic transfers), connectivity, and impacts from fishing [1], 4) a

compilation of synoptic papers focussed on the geology and

geophysics of seamounts [11], and 5) scientific output from the

CenSeam programme itself contained in a special issue of Marine

Ecology [8]. The Marine Ecology issue papers address key aspects

of seamount ecology and human impacts, and it contains a

thorough critique of existing ‘paradigms’ about seamounts [4].

Since then, further studies associated with CenSeam have been

completed and a number have been published in a thematic

collection of PLoS ONE (Marine Life on Seamounts – The

CenSeam Collection (2012) PLoS Collections: http://www.
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ploscollections.org/CenSeam). Taken together, these papers form

the basis to assess where seamount research has been in the last

few decades, where it is currently, and where it should head to

address conservation and management needs in the future.

In this paper we review recent seamount research, evaluate how

well some key ecological aspects of seamounts are understood, and

highlight where gaps remain that need to be filled to improve the

robustness and uptake of scientific advice for environmental

management of seamounts. We restrict our list to research that, in

our view and from our experience, is both achievable and of the

highest priority for conservation and sustainable use of deep-sea

seamount ecosystems.

Analysis

1. Key seamount results
To evaluate where future research priorities should lie, it is

useful to briefly review some of the main findings of CenSeam and

other seamount research in recent years that are relevant to the

management of seamounts.

1.1 Seamounts are generally not isolated habitats with a

highly endemic fauna. Because most seamounts are geograph-

ically isolated topographic features, separated from other

seamounts by deep water and considerable distance, it seems

logical to equate them with oceanic islands (sensu MacArthur &

Wilson [12] and Hubbs [13]). However, a growing number of

studies suggest seamounts are generally not ecologically isolated or

island-like systems, and they can, and often do, have assemblages

of similar species composition to those found in adjacent deep-sea

habitats on the continental slope or banks e.g. [14–17].

Nevertheless, despite such similarity in species composition,

seamount assemblages can have a different structure in terms of

the abundance or frequency of species [18–20].

Connectivity between seamounts is a key element affecting the

degree of isolation or similarity of seamount populations. Recent

studies indicate connectivity is highly variable, but there are

reports of considerable genetic linkages among populations of

invertebrates on distant seamounts [21–24]. Traditionally, high

levels of endemism had been reported from seamounts e.g.

[3,25,26], but it is unclear how sampling effort may have biased

these estimates. Conversely, more recent studies indicate that rates

of endemism may not be elevated on seamounts [16,27–30].

1.2 Seamounts are heterogeneous habitats. Seamounts

span a broad depth range, are influenced by diverse oceano-

graphic processes, are situated in diverse geological settings, and

comprise heterogeneous habitat types. Thus, the concept of

seamounts as a single, relatively well-defined habitat type appears

outdated, giving way to a growing recognition that within-

seamount variability can be high, and seamounts differ

substantially across a range of spatial scales. For example,

environmental parameters that vary with depth are a major

driver of species composition on seamounts [31] as elsewhere in

the deep sea [32]. Similarly, seafloor type and character (e.g.

substratum, hardness, composition, mobility), and the complexity

of habitat arrays are key determinants of species occurrence,

distribution and diversity in the benthos of both shallow and deep

marine habitats [33–35]. Such faunal-habitat associations clearly

operate on seamounts [16,36], which is well illustrated by the

small-scale distribution of corals which cluster on hard substratum

on raised topographical features where currents are strongest [37].

Volcanic activity, lava flows and areas of hydrothermal venting

add to habitat diversity on seamounts [38,39], creating unique

environmental conditions which support specialized species and

assemblages [40].

1.3 Communities on seamounts are variable over large

spatial scales. The amount of species turnover within

seamount fauna varies with spatial scale, with both similarities

and differences recorded among sites separated from kilometres

[41,42] to ocean basins [43]. Set against recent biogeographic

classifications [44] there is an expectation of marked differences in

the biological community composition in different parts of the

world. Physical characteristics, water column stratification, and

oceanic flow conditions interact on a seamount to provide a

number of local dynamic responses that can regulate the spatial

scale of faunal distributions. These can include Taylor Columns or

Cones, doming of density surfaces, enclosed circulation cells

and enhanced vertical mixing [45]. However, variability in

background oceanic flow means these processes can also be

variable, and there are many ways in which a seamount can alter

local oceanographic conditions, and how seamount biological

communities can be affected by oceanic currents e.g. [37,46–48].

The distribution of faunal communities on seamounts is affected

by different environmental factors and levels of variability [1].

Deep-sea fish assemblages have been shown to be similar between

seamounts and the adjacent slope (scales of km) [18], as well as

across oceans (1000 s of km) [43]. In the latter case it appears

that global-scale circulation of deep-sea water masses is a key

component of fish distribution. At the regional scale, similarities in

faunal composition between seamounts and other habitats have

been reported for galatheids [17] and molluscs [30] in the South

Pacific: in both cases, seamounts share a common regional pool of

species with the communities of non-seamount habitats. On

seamounts along the Vitoria-Trinidade seamount chain off Brazil,

the general invertebrate assemblages differ from those on the shelf,

yet there is no gradient in species richness with distance offshore

along the linear east-west chain [41]. These recent studies

emphasise that it is impossible to generalise about the spatial

scales over which faunal assemblages of seamounts are structured.

1.4 Seamounts are increasingly exploited by humans.

Fishing on seamounts is a widespread activity with a long tradition

of exploitation. Seamounts continue to be fished globally, with

targeted bottom trawling for deep-sea, commercial species such

as orange roughy (Hoplostethus atlanticus), pelagic armourhead

(Pseudopentaceros wheeleri) and alfonsino (Beryx spp.) [49–51] and

for pelagic species such as tunas [52–54]. Clark & Tittensor [55]

developed an index of risk for seamounts to fishing. This index

combined several global and local sources of data to determine the

vulnerability of seamounts based on the coincidence of seamount

summit location and depth, target fishery ranges, and predicted

habitat suitability of seamounts for coral. It then evaluated the

potential risk of future exploitation based on the known

distribution of fisheries, and hence where seamounts had not

already been impacted. The spatial maps showed the most ‘‘at-

risk’’ seamounts are spread throughout the world’s oceans, with

many in areas of the high seas, especially in the South Atlantic,

southern Indian, South Pacific, and North Atlantic Oceans [55].

Mining in the deep sea is an emerging environmental issue

potentially affecting seamounts and other habitats [56–58].

Seamounts have become the focus of exploration for seabed

minerals, particularly poly-metallic sulphides in the Southwest

Pacific [59] and cobalt-rich crusts in the central Pacific Ocean

[60–62]. In recent years exploration licences have been granted in

offshore waters of several countries in the Southwest Pacific for

poly-metallic sulphides, and mining is likely to occur at the

Solwara I site off Papua New Guinea in one or two years (http://

www.nautilusminerals.com). Additional licence areas in the Indian

Ocean have been applied for by China and Russia in 2011.

Although seamounts that could host these sulphide deposits are
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worldwide, an indication of the relative amount of habitat can be

gained from the distribution of hydrothermal vents along the back-

arc basins of the Southwest Pacific. The known number of vent

sites is about 40 (http://www.noc.soton.ac.uk/chess/database/

db_home.php) out of over 2000 large seamounts in the region with

summit depths less than 2000 m (based on Allain, et al. [63]).

Exploration activities for cobalt-rich ferromanganese crust sea-

mounts are not as advanced, although there are about 1200 large

seamounts and guyots which fall inside a ‘cobalt crust rich zone’ of

commercial potential in the central Pacific region [62].

1.5 Seamounts are affected by human exploitation.

Fishery resources on seamounts are susceptible to adverse

impacts: the life history characteristics of many seamount fishes

make them unproductive e.g. [64,65], few seamount fisheries have

been sustainable [66], and bycatch species also decline rapidly

following fishing on seamounts [67,68].

There have been few specific research studies on the impacts of

fishing in the deep sea (see review by Gage, et al. [69]). However,

studies on seamounts off Australia and New Zealand have clearly

demonstrated significant differences in the structural complexity of

benthic habitats, species numbers and abundance, and the

composition and structure of assemblages between fished and

unfished seamounts [70–72]. Large sessile taxa (e.g. sponges,

echinoids, cold-water corals) are particularly susceptible to

damage, showing dramatic reductions in coverage after only a

few trawls [73,74].

The effects of mining are more uncertain because few studies

have been carried out. Mining for poly-metallic sulphides could

occur on inactive seamounts, or those with active (but not extreme

temperature) hydrothermal vents. Hence impacts at inactive sites

could be on ‘‘normal’’ benthic fauna, such as corals and sponges,

in which case some of the effects may be similar to bottom trawling

(see references above). Creation of sediment plumes in the water

column, and discharge of processed material can be additional

impacts (see section 4.5). Direct physical impacts at active sites on

the spatially restricted hydrothermal vent fauna are likely to be

significant initially, with the removal of habitat and a largely

endemic fauna [75].

1.6 Seamounts are very slow to recover from impacts.

Recovery of vulnerable species, and the assemblages which they

form, from human impacts is predicted to be very slow in the deep

sea [76]. The expectation of protracted returns (if any) to pre-

impact conditions is mainly based on the exceptionally slow

growth rates of large, deep-sea megafauna [77–79], and variable

recruitment due to intermittent dispersal between seamount

populations [80]. Williams, et al. [81] examined changes in

benthic invertebrate composition on seamounts off Australia and

New Zealand following their closure to bottom trawling, and

found no signs of recovery after 5–10 years.

In contrast, following disturbance to active hydrothermal areas,

regrowth of mineral chimneys may be rapid [82]. A number of

studies suggest that re-colonisation, and hence recovery of the

dominant vent populations, will probably occur within 5 years

[83,84]. However, this assumes that nearby vent sites remain

active and act as sources of recruits to the mined areas [75].

2. What science is required for the conservation and
management of seamounts?

The exploitation of new marine resources, especially fisheries,

has often started without management measures in place. The

high seas in particular illustrate how fisheries can develop

unchecked, which typically results in overexploitation and stock

declines e.g. [66,85]. Research normally lags behind exploitation,

and management further behind again. Hence resource managers

are often playing ‘‘catch up’’ and faced with data-poor situations

where decisions need to be made without robust or adequate

information.

The management and conservation of seamount resources, and

seamount habitat, varies in different countries and organisations

[76,86]. However, recent initiatives by the Food and Agriculture

Organisation (FAO) for fisheries, the International Seabed

Authority (ISA) for mining, and parties to the Convention on

Biological Diversity (CBD) and the United Nations General

Assembly for more generic conservation, stress a growing need for

a more common international approach and information and tools

from the science community.

Management approaches for seamounts comprise two comple-

mentary categories of management tools: site-specific, and activity-

related [76]. Fisheries management is often focussed on the latter,

and there is an extensive literature on information needs to

conduct stock assessments and manage deep-sea seamount

fisheries [51,87,88], but ecosystem-based spatial management is

currently the main approach called for by international bodies

[89].

Some of the key questions that managers may ask in relation to

spatial planning include:

1) Where are seamounts located, and what are their physical

characteristics?

2) What seamount species may be rare or unique, or

particularly vulnerable to the effects of human activities?

3) How connected are seamount ecosystems to enable re-

colonisation?

4) How different are seamount communities from one another

and from adjacent environments (e.g., continental slope)?

5) What other impacts are there apart from direct physical

disturbance?

6) How long may it take for impacted communities to recover?

7) Will climate change and ocean acidification affect faunal

communities on seamounts?

Answers to these questions (as well as many others) are usually

provided as direct advice in response to individual initiatives

that focus on particular geographic areas or on particular human

threats. For example, programmes on Vulnerable Marine

Ecosystems (VMEs) or Ecologically and Biologically Significant

Areas (EBSAs) [89,90] require specific information on species

composition, richness, and vulnerability to human impact

(predominantly in the fisheries context). Science can also feed

data into risk management frameworks that provide for a more

quantitative assessment of risk to various ecological components;

this is a tool that managers can use to prioritise the nature and

extent of management action [91,92].

Against the recent findings from seamount research (section 2)

and the science needs of environmental managers (this section), the

next two sections outline what we regard as priority areas of

research for conservation and management over the next decade

(section 4), and some of the key data and tools required (section 5).

They are either tractable issues using existing data, or are areas

where new data and resources are likely to measurably advance

seamount conservation and management in a short (5–10 year)

time frame (Figure 1).

3. Future research needs for seamount conservation and
management

In the following sections we summarise some of the key research

requirements for future seamount management (and see Table 1).
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3.1 Improved seamount location and physical

characteristics. A fundamental input to all conservation and

management measures is accurate information about the

geographic distribution of habitats and their biological resources:

all strategies require this spatial knowledge. Hence, there is an

urgent need for better bathymetry and identification of

topographic features.

Although many areas within EEZs, or those near major

shipping lanes, have well-known bathymetry, much of the ocean’s

seafloor has not been accurately mapped using ship-based

techniques, and the topography of most of the global seafloor is

predicted from satellite altimetry. Several analyses of seafloor

topography, using a range of algorithms, have been carried out to

locate seamounts and other similar features such as peaked ridges

[93–96]. These estimates vary considerably, although the most

recent suggest there are about 30,000 large seamounts and over

100,000 smaller knolls [96]. However, the underlying gravity data

have limitations, and the algorithms are not always effective and

accurate in identifying raised topography; this can result in

multiple counts of single seamounts and inaccurate estimates of

the summit depth of seamounts. For example, Yesson, et al. [96]

compared seamount locations predicted from satellite altimetry

with a well-known region around New Zealand. They achieved a

90% match of large (.1 km elevation) seamounts, and a good

correlation between predicted and actual summit depth. Con-

versely, smaller features (250–1000 m elevation) had poor spatial

congruence between model and actual locations, and the

algorithms tended to define broad ridge peaks as seamounts.

Recent improvements in satellite resolution and algorithms to

locate seamounts need to be complemented by direct, ship-board

depth measurements. Wessel, et al. [97] suggest that considerable

progress could be made by asking ships (especially oceanographic

research vessels undertaking trans-ocean passages) to slightly alter

course to cover new, or potentially interesting, regions of the

seafloor. The Seamount Discovery Tool [98], which allows ship

operators to determine whether a proposed ship track will cover a

charted or uncharted region, may facilitate better mapping efforts.

3.2 Better descriptions of biodiversity. A good knowledge

of biodiversity is required to evaluate whether a seamount has rare

or endemic species which may need protection, or a fauna with

similarities or differences from other seamounts or habitats that

need to be considered in any form of spatial management.

Overall knowledge of species and community composition on

seamounts has increased considerably in recent years. However,

there are still a number of aspects that require improvement to

provide appropriate and adequate information on seamount

biodiversity to managers. There is a need to plan sampling to fill

gaps from geographic areas or seamount types, especially deep

seamounts, and those at high latitudes and in equatorial regions.

There are large areas of the South Atlantic, central Pacific, and

southern Indian Oceans were few data are available [1]. There

have been recent surveys to the mid-Atlantic Ridge off Brazil [99]

and to the Southwest Indian Ocean [100], but large gaps remain.

The summits of seamounts have also been more intensively

sampled than flanks or bases [1]. This is understandable as the

summits and upper flanks of seamounts are often where faunal

densities are highest for fish, cold-water corals and sponges e.g.

[74,101] yet it gives an incomplete picture of seamount

biodiversity.

A second key element of improving knowledge of diversity is to

increase the level of sampling during research surveys. In almost

all studies of seamount diversity there is a clear pattern that more

sampling results in a greater number of species being recorded,

whether from individual seamounts [19,102] or from broader

regions [3,43]. Hence researchers cannot be sure how well the

species richness of seamounts is currently described, as sampling

effort is uneven. It is very likely that most seamounts are

undersampled, and hence species numbers per seamount are

underestimated.

More intense sampling is likely to be required in many cases to

describe and enable the protection of rare species, or those with a

very localised distribution (‘‘spot endemism’’) which is an objective

of many management agencies. To our knowledge there has been

no published evaluation of how estimates of endemism may be

affected by sampling effort on seamounts or elsewhere in the sea.

However, unpublished modelling by scientists within CenSeam

suggests that undersampling will likely result in inflated estimates

of rare species (authors’ unpublished data). These predictions need

Figure 1. The key areas of research required for improved management and conservation of seamounts over the next decade.
doi:10.1371/journal.pone.0029232.g001
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to be tested with field data to determine adequate levels of

sampling coverage and quantify biases arising from variable

sampling effort in seamount surveys.

A third element of future biodiversity description relates to

expanding the taxonomic coverage of collections and analyses. To

date, the focus of most biological seamount research has been on

the larger (e.g. macro- and megafauna) epifauna. Fishes, corals,

and crustaceans are the most commonly reported taxa [1],

whereas other macrofaunal groups and meiofauna are poorly

sampled or identified. Macro-infauna, meiofauna, and bacterial

biodiversity may be high on seamounts [103–106], and the same

aspects that are important, and obvious, for conservation of large

megafauna (e.g. diversity, endemism, local population size) apply

also to these other elements of faunal communities. Hence a wider

range of taxa should be sampled and, most importantly, identified

and reported. For some taxa, international efforts have recently

resulted in collaboration between taxonomists to ensure that

regional or global datasets are accurate (e.g., galatheids [107],

stony corals [79]). These sorts of efforts to standardise taxonomic

identification and compile regional or global datasets are very

important for future analyses of biodiversity patterns, and should

be encouraged wherever possible for as many faunal groups and

size components as possible.

A further key element of improving biodiversity description is

faster identification of species. The recent achievements of the field

programmes of the Census of Marine Life in fostering interna-

tional survey work has highlighted that taxonomists often cannot

keep pace with the collection of new species [6]. Variations in

identification between taxonomists in different parts of the world,

and the uncertain status of operational taxonomic units can make

it difficult to undertake robust analyses. Genetic techniques can be

used to supplement morphological taxonomy, to ensure accurate

specification (separating cryptic species) and potentially rapid

processing of samples. A combined approach is to be encouraged

[108].

Genetic diversity should be included where possible in

evaluating biodiversity. Although genetic techniques are common-

ly used in taxonomic or connectivity studies, they also give

important information on the degree of population differentiation

between seamounts [1,80].

3.3 Spatial scales of population connectivity. The spatial

scale of management and conservation depends to a large extent

Table 1. Summary of research priorities for seamounts over the next decade based largely on science input required for the
growing demands of conservation and management strategies to be developed for seamount ecosystems; no ranking of priorities
is implied.

Rationale Actions Output(s)

Seamount locations and physical characteristics

Accurate information on location and physical
characteristics of seamounts underpins spatial
planning approaches

Complement satellite-based predictions of raised
topography by direct, ship-based surveys of
seafloor.

Seamount locations and attributes better documented
over larger geographic areas.

Description of biodiversity

The biodiversity of seamount biota is unknown
for most seamounts, and remains incompletely
documented in many cases.

Sample in unexplored regions; investigate sampling
effort and estimates of species numbers, expand
biodiversity inventories; include genetics

More accurate and geographically comprehensive
estimates of biodiversity as inputs to conservation
planning and management.

Spatial scales of population connectivity

Determining scales of population connectivity
among seamounts allows testing key ecological
paradigms

Studies on reproductive and larval biology,
modelling of particle transport, and genetic
structure of populations with depth and distance.

Scales of connectivity among populations of seamount
species better known and useful for planning
conservation measures.

Seamounts as part of the deep-sea ecosystem

The role of seamounts in supporting species of
conservation significance needs comparison with
other deep-sea systems.

Expansion of seamount sampling to abutting
habitats and ecosystem types using, wherever
possible, standardised collection and analysis
methods.

Levels of similarity between seamounts and other
deep-sea habitats are determined, and indicate the
potential for seamounts to act as ‘source’ or ‘sink’
populations

Broader effects of human disturbance

Trawling and mining create sediment plumes.
Neither the magnitude nor spatial extent are known.

Determine the nature and magnitude of ecological
effects caused by sediment plumes and measure
their dispersal and persistence.

Resource managers incorporate such disturbance into
mitigation strategies.

Overexploitation of fauna occupying one trophic
level is hypothesized to have ecosystem-wide
consequences for seamounts

Assess the impact of fishing on large predators,
including any implications for food webs and
community dynamics.

More ecologically comprehensive assessment of
human impacts on seamount ecosystems.

Recovery dynamics

Key rates and metrics of recovery remain
unknown for seamount ecosystems.

Determine recovery dynamics of species resilient to
physical disturbance, recruitment dynamics, species
composition (‘succession’), growth rates of species,
genetic connectivity of populations

Environmental managers can establish thresholds of
acceptable impact and set time durations for seamount
closures to allow recovery.

Climate change

Changes in temperature, chemical composition,
circulation patterns and productivity of the world’s
oceans are occurring. Seamounts may offer sites of
‘‘refuge’’ from such changes.

Determine the ability of different taxa to disperse
vertically. Link with studies examining the drivers of
species composition/abundance to improve
predictions.

Refinement of models to predict changes in faunal
distribution with respect to parameters that vary with
climate change and ocean acidification (e.g. aragonite
saturation horizon).

doi:10.1371/journal.pone.0029232.t001
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upon the distributional range of species and faunal groups. Spatial

patterns of biodiversity, and aspects of population dynamics such

as recolonisation and recovery, are strongly driven by biological

connectivity between seamounts at a range of temporal and spatial

scales. Knowing the level of exchange between seamounts (as well

as other habitats) informs managers about the ‘‘downstream’’

effects of impacting one seamount, and the consequences of

interrupting this exchange. Recovery from impacts caused by

human activities (fishing, mining) depends upon the ability of

animals to recolonise an affected area and such re-colonisation will

in turn depend on dispersal of organisms from unaffected source

populations.

There are numerous factors that can influence dispersal and

connectivity between seamount populations. After Clark, et al.

[1] these include 1) the physical structure of the oceans (e.g.,

hydrographic retention mechanisms, currents), 2) environmental

conditions affecting development time and larval survival (e.g.,

temperature, availability of food, presence of predators), 3) spatial

separation and the presence of suitable habitat for early life history

stages as well as adults, and 4) reproductive mode of fauna,

especially for sessile species which disperse only via eggs and larvae

compared with mobile species which can, theoreticaly, move

between seamounts as juveniles and adults [109]. Variability in

oceanographic conditions around seamounts together with

differences in biological characteristics means there can be large

variations in dispersal distances between species [22,80].

Clark, et al. [1] and Shank [80] summarised much of the

seamount genetic connectivity literature. Most studies have been

undertaken on commercially fished species, and have generally

shown genetic homogeneity at oceanic or regional geographical

scales. The spatial genetic structure of invertebrate species has

shown more variable patterns, and appears highly dependent upon

reproductive mode. However, many of the connectivity studies

have an unbalanced design of sample collection that can make it

difficult to separate the effects of distance, depth, and habitat on

population connectivity [23], requiring careful survey designs to

determine the influence of these factors on dispersal of seamount

species [22,24].

Future studies on connectivity need to involve a combination of

morphological and genetic studies, but also consider:

1) Reproductive biology of adults. This needs to include

determination of fecundity (as an indicator of how quickly

populations could increase given favourable environmental

conditions) and in particular spawning characteristics (e.g.,

brooders or broadcast spawners, planktotroph (feeding) or

lecithotroph (non-feeding) larvae) and fertilisation success as

these have clearly been shown to be important in the

distribution of species [30,110].

2) Early life history stage ecology. Larval biology, behaviour

and ecology are poorly known for most seamount species,

fish as well as invertebrates. Their mobility, and distribution

by depth, can affect whether they are capable of widespread

dispersal, or are likely to remain close to their site of

hatching.

3) Modelling of current flows and prediction of patterns of

particle advection and transport. The potentially complex

nature of current flows on and around seamounts (see

summary accounts by White, et al. [45], Clark, et al. [1])

means that it can be difficult to make assumptions about

likely dispersal of eggs and larvae. Detailed oceanographic

studies over broad spatial scales and density of sampling

required may be prohibitively expensive in offshore

situations. Modelling of currents (through the water column

to allow for vertical migration of species)and the likely

spread and direction of particle advection [48,111,112] can

contribute to understanding the physical dimension of

dispersal and improve advice on the spatial extent of

management measures.

4) Monitoring of seamount sites for temporal recruitment

series. Time series of observations are also needed for

verification of the frequency and levels of colonisation

events. This could be achieved through, for example, regular

monitoring surveys of seamounts using high definition

camera equipment able to resolve small-sized recruits on

the seafloor, placement and monitoring of settlement plates,

and use of in-situ plankton pumps.

3.4 Seamounts evaluated as part of a wider deep-sea

ecosystem. Seamounts are one of many habitat types in the

deep sea. An important management consideration is whether

seamounts should be treated as discrete units, supporting faunal

assemblages clearly distinct from other deep-sea habitats. If

seamounts are not discrete, then management decisions should

be informed by the extent to which seamounts overlap with other

habitats. In sections 2.1 and 2.3 it was discussed that seamounts

are now believed to have lower rates of endemism than previously

thought, and seamount species in most situations are drawn

from wider regional pools [4]. However, these findings are still

challenged by the relatively small numbers of seamounts sampled,

the limited amount and type of sampling carried out on individual

seamounts, the over-representation of certain regions of the oceans

in seamount studies, and the small, though increasing, number of

studies that investigate biodiversity across habitats e.g. [17]. Also,

even when the species composition of seamounts may resemble

that of other habitats, they can support higher biomass [20]

(potentially supporting the bulk of the population of a species) and

species of high vulnerability [72] making them prime conservation

targets.

Future seamount research programmes must broaden their

focus to wider deep-sea communities in order to understand their

regional significance, and include habitats such as the continental

slope, canyons, and sites of hydrothermal venting or methane

seeps that host chemosynthetic communities. Successful deep-sea

management regimes will need to consider a suite of biological

systems in a regional framework.

In expanding sampling effort to habitats surrounding sea-

mounts, there is a challenge to improve standardisation of

sampling gear and survey design which is required for valid

comparisons. This may not always be possible but should be

consistent within regions where the same sampling gear at least

can be widely used.

3.5 Understand the broader effects of human

disturbance. The direct physical impact of human activities

on seabed communities can be observed and measured (though

additional well-designed studies are needed). However, manage-

ment needs to consider a wider range of impacts than just those in

the immediate area of disturbance, because of the likelihood of

‘downstream effects’. If such spill-over impacts are spatially

prominent and found to be detrimental to the biota abutting the

actual physical impact zone, spatial conservation planning will

have to incorporate buffer zones around fishing or mining areas.

This will be especially relevant in current fisheries management

strategies that rely heavily on closing areas to protect marine

ecosystems [113,114].

Bottom trawling and mining cause direct physical changes to

the seafloor and biota; these impacts are now well documented

[71,72,75,115]. Conversely, indirect effects and impacts that occur
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outside the area of direct physical disturbance are poorly

understood. Such impacts are predicted to be mainly caused by

sediment plumes generated during the trawling and mining

operations. It is believed that sediment plumes can remain

suspended at abyssal depths for long periods and dissipate very

slowly [111]. Higher current flows around some seamounts may

disperse plumes faster, but, although modelling work on dispersal

rates has been carried out [116], there has been very little

experimental work done on this aspect. The spatial scale of such

effects is unknown and needs to be determined, both on seamounts

and in other deep-sea habitats.

Summaries of information on seamount trophic architecture

indicate that they comprise a diverse array of pelagic and benthic

consumers [1,78] often with elevated biomass compared with the

surrounding ocean [20]. Changes in the relative abundance of

species on a seamount can almost certainly influence trophic

linkages and the overall structure of the system, yet few detailed

trophic studies have been conducted on seamount communities.

Of particular concern are large-scale removals of filter-feeders

such as corals and sponges that can dominate the benthic

invertebrate assemblages [117]. However, also important is the

potential depletion of predator populations where the consequenc-

es of overexploitation of low productivity taxa (such as sharks) on

ecosystem structure and function are increasingly recognised in

shallow waters [118]. These types of indirect effects from trawling

or longline operations are uncertain, and should be addressed.

3.6 Quantified recovery dynamics. A common manage-

ment option to mitigate the impacts of human activity is to close a

seamount to fishing or mining [76]. However, whether such action

is effective depends upon whether seamount communities will

recover to their original state.

The immediate physical and ecological impacts of human

activities (e.g. bottom trawling, mining) on the benthos of

seamounts are now well documented [49,71,72]. By contrast,

although some seamounts have been closed to fishing for several

years, medium- and long-term effects of fishing are uncertain

[86,119]. Benthic assemblages on seamounts that were closed to

fishing for 5 years in New Zealand and for 10 years in Australia

had not recovered to any measurable extent, suggesting that

seamount biota are likely to take very long periods to revert to pre-

fishing conditions [81]. It remains, however, uncertain what the

rates of recovery are, how community composition changes over

time following cessation of disturbance, which species recruit early

to disturbed patches, how fast newly recruited species grow, and

whether structurally complex habitats formed by deep-water corals

can return. Thus, it is important to increase studies on connectivity

between seamounts, recruitment and recolonisation rates, and the

age and growth of benthic fauna. The most practical way forward,

however, is to undertake time-series surveys to measure changes in

the seamount communities over many years. New research needs

to be developed, as well as to continue existing time series, such as

the ones on the Tasmanian seamounts off Australia [72] and the

‘Graveyard’’ seamounts off New Zealand [74].

3.7 Determine the effects of climate change. There are

numerous potential impacts of climate change on the marine

environment as conditions alter; such as temperature, CO2 levels,

ocean circulation, O2 levels, and primary productivity. These can

affect all deep-sea communities, although seamount habitat is

perhaps particularly relevant to the first two conditions.

The presence of so-called living fossils has been taken as support

for the contention that seamounts formed refugia from past

dramatic environmental change [13,78,120]. For terrestrial

species, survival in a globally warming environment is thought

to partly depend upon the existence of a nearby ‘‘cool refuge’’

[121], and hence it is possible that the deeper and cooler waters of

seamount slopes could act as refugia for benthic fauna from the

effects of ocean warming.

Other likely future impacts upon the marine environment

resulting from elevated CO2 emissions include the consequences of

ocean acidification for benthic communities [122]. For example,

Guinotte, et al. [123] predicted that, by the end of the 21st century,

shallowing of the aragonite saturation horizon (ASH) could leave

the majority of deep-sea stony corals in water unsuitable for

building their carbonate skeletons. However, Tittensor, et al. [124]

found that the effects of ocean acidification on suitable coral

habitat, whilst dramatic, are likely to be less pronounced for

seamounts than for other deep-sea habitats. Their model predicted

that some seamount summits will occur in water better saturated

with aragonite and remain as suitable habitat for coral, and thus

may act as ‘shallow-water’ refugia for stony corals from the

detrimental effects of ocean acidification at greater depth

(particularly in the North Atlantic).

The seamount refuge hypothesis depends upon the ability of

organisms such as corals to disperse vertically. A recent study by

Miller, et al. [24] on the genetic population structure of the deep-

sea coral Desmophyllum dianthus showed that corals from different

depth strata (even on the same or nearby seamounts) were strongly

differentiated, indicating limited vertical larval dispersal. Although

the reasons for this depth stratification are unclear, it could mean

that deep populations of such corals are unable to colonise

shallower water at the seamount summit as the ASH rises and

deep waters become uninhabitable. Similarly, deep waters might

not act as refuges for shallow populations that are impacted by

higher temperatures.

Thus, while seamounts may have acted as faunal refuges over

historical time-scales, it appears equivocal as to whether they will

provide a similar function over the time scale that current climate

change and ocean acidification effects are likely to operate (,100

years). Climate change effects are multiple in the ocean (warming,

current flow pattern changes, stratification etc) and can operate

synergistically with other human impacts (e.g. fishing) [125].

Clearly more research is required to determine the impact of

increased levels of atmospheric CO2 upon ocean fauna, including

those found at seamounts.

4. Future data and tools for seamount conservation and
management

In the sections above we have described seven research areas

that we believe need to be progressed to inform managers and

management agencies. These research focus areas will provide

important scientific information necessary to improve our

understanding of seamount structure and function, and hence

gain better insight into the efficacy of various management and

conservation options.

However, there are additional data sets and analysis techniques

that we feel should be developed and applied to support a range of

research and management objectives, and we describe these in the

sections below (and see Table 2).

4.1 Seamount data and information. Recent years have

seen improved collation of global data on seamounts and other

deep-sea habitats through initiatives such as CoML and national

science projects directed at the establishment of research networks

e.g. [6,11]. The momentum these projects have created amongst

the seamount and deep-sea scientific communities should be

maintained, and in particular the sharing of data that has

improved dramatically. Many of the advances in scientific

understanding enabled by these programmes has come about

through the analysis of global or regional-scale data [5].
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There are two major examples of global-scale seamount-focused

databases:

1) The biogeography database SeamountsOnline, which con-

tains species records specifically from seamounts compiled

from a wide variety of databases, survey records, published

reports and papers [126] (http://seamounts.sdsc.edu). This

database has full taxonomic information, and includes

detailed sampling effort information as well as species

records, and hence can enable a wide range of analyses.

SeamountsOnline has also provided data to the Ocean

Biogeographic Information System (OBIS. http://iobis.org),

although the latter hosts only a subset of the information

(species, location, depth). The database currently has

information from about 300 seamounts, with over 20,000

individual faunal records.

2) The geological compilation SeamountCatalog [127] (http://

earthref.org). This database holds physical information on

seamounts, including location, height, volume, and shape, as

well as processed bathymetry and contour maps of each

seamount. It currently contains maps and corresponding data

from over 1800 seamounts.

Such datasets can inform global-scale analyses and act as a long-

term resource for science research and planning, yet lack long-term

funding. In addition to maintenance costs, there are still numerous

national or regional datasets that can be entered into Seamount-

sOnline, and increasing amounts of multibeam-derived bathymetry

of seamounts into SeamountCatalog, and hence the long-term

operation of such global databases need to be supported.

4.2 Seamount fisheries data and information. In order to

conserve and manage seamounts, particularly on a global scale

and for the high seas, it is necessary to understand which

seamounts in which regions have already been fished, and the

extent of that fishing effort. Site-specific data, ideally from

individual tows is recognised as a requirement for undertaking

robust stock assessment of deep-sea fisheries [89]. In addition,

without this knowledge it is not possible to assess the impact that

may have already occurred, nor the vulnerability or risk of

seamounts to fisheries-driven disturbance [55].

Several compilations of fisheries data for seamounts have been

undertaken but these have not been at an appropriate spatial scale

to confidently associate catch and effort with individual seamounts

[50,66,128]. Several Regional Fisheries Management Organisa-

tions (RFMOs) are attempting to collect data at such a scale for

regional management under the FAO guidelines for deep-sea

fishing in the High Seas [89]. However, global knowledge of trawl

distribution on seamounts remains poor over large areas of the

ocean. National fisheries logbook records and vessel monitoring

system data [129–131] can be used to complement regional and

global data compilations.

Two initiatives can improve the data situation:

Firstly, wherever possible, historical data, in particular those

from nations with major distant-water fishing fleets (e.g. USSR,

Cuba, China, Korea, Japan) need to be compiled and entered into

existing databases. The FAO catch system is the primary data

repository globally, but it does not contain records from the largest

seamount fishery - the Soviet and Japanese fishery in the 1980 s

for armourhead and alfonsino on the Emperor and Hawaiian

seamount chains. This task should be done urgently, because catch

Table 2. Summary of resource priorities for seamounts over the next decade based largely on science input required for the
growing demands of conservation and management strategies to be developed for seamount ecosystems; no ranking of priorities
is implied.

Rationale Actions Output(s)

Seamount data and information

Recent international efforts have compiled physical and
biological data on seamounts at regional and global
scales. These enabled analyses that have improved our
understanding of the drivers of faunal assemblages on
seamounts, and their spatial distribution. However, many
more data are available for inclusion in these databases.

Expand and maintain regional and global databases
that document seamount fauna and physical
characteristics (e.g. SeamountsOnline, Seamount
Catalog).

Data in these databases can be used in a variety
of analyses (e.g. biogeographic patterns ,
environmental classifications) that can
contribute to spatial planning strategies for the
conservation and management of seamounts.

Fisheries data and information

Development of effective fisheries management requires
catch and effort data that cover all major operations
and geographic areas and identify individual seamounts
catches.

Capture historical data sets into existing global
repositories, and improve the spatial resolution
at which data are reported.

The detailed distribution of fisheries, and hence
impacts on seamounts can guide conservation
efforts. Fisheries stock assessment is improved
with better data.

Predictive species distribution modelling

Biodiversity maps will for the foreseeable future remain
incomplete due to limited sampling coverage. Predictive
modelling can extrapolate biodiversity across large
ocean scales.

Produce models of species and assemblage
distribution as data compilations become
available.

Better maps on biogeography are used for
management purposes. Models likely to be
especially useful for taxa of particular
management interest.

Environmental surrogates

Biological sampling of seamounts will remain sparse, so
alternative approaches that provide surrogates for
biodiversity are needed.

Determine the extent by which physical and chemical
parameters can predict biological information, and
test the validity of surrogacy models.

In the absence of biodiversity information,
managers should be able to use classifications
and other measures of surrogacy,

Risk assessments

There is an increasing need for the provision of
ecological risk assessments (ERA) for seamounts, as
environmental managers attempt to understand the
threats posed by fishing and mining.

Refine ERA methods so that they are robust,
transparent, and understandable. Assessments
tailored to management objectives and available
data.

ERAs should facilitate the effective management
of seamount resources and inform conservation
strategies.

doi:10.1371/journal.pone.0029232.t002
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records from the 1960–1980 s are unlikely to be in electronic

format, and could be lost forever as institutional ‘memory’ fades

over time.

Secondly, catch and effort data should be reported at the scale

of individual seamounts, and, ideally, at the finer scale individual

tows/sets, as this would make it possible to assign catch and effort

to individual seamounts. This level of location detail is routinely

recorded on fishing vessels, but is rarely reported to fishery

agencies at that level of precision. Analysis of catch per unit effort

data is a common method for deep-sea fish stocks, and is regularly

used where no fisheries-independent information exits [132]. Such

data would enable management agencies to monitor changes in

the degree of fishing success, which arguably can be interpreted as

indicative of changes in relative abundance of the target fish and

bycatch species [68]. It will also clarify movement of the fishing

operations on a scale necessary to monitor environmental impact,

by highlighting areas where fishing is occurring repeatedly

compared with areas where effort (and hence fishing impact) is

minor, or if fishers are moving from one seamount to another in

turn, serially depleting the fish populations [133].

4.3 Predictive species distribution modelling. Seamount

management, especially in areas well offshore, is restricted by the

quality and quantity of scientific information. The large number of

seamounts in the world’s oceans makes it physically impossible to

sample even a moderate proportion of them. Even if detailed

surveys were possible, these would only cover a few seamounts,

and likely take several years to complete. Hence science input to

management and conservation initiatives often has to be based on

limited data.

Recent advances in three areas have improved our capabilities

to predict species occurrences in regions for which no species

records exist: 1) new comprehensive global datasets of species

occurrences (e.g., cold-water corals) and their habitat associations;

2) finer resolution of environmental data layers that can be

correlated with biological data, and 3.) the availability of analytical

methods better suited for presence-only data (e.g., Environmental

Niche Factor Analysis, Maximum Entropy modelling, Boosted

Regression Trees).

Predictive modelling is a useful tool for generating species

distribution based on environmental conditions under which

species are likely to occur. The technique has been successfully

applied to cold-water corals on an ocean-basin or global scale

[134,135] as well as smaller regional studies [136–138]. This

method appears to work well over broad areas such as the

continental slope, but there are issues with the small size of

seamounts and the scale of environmental data [42]. It is also

critical to determine which environmental data are most

important in determining the abundance, as well as the

distribution, of a species or taxon, and to more rigorously

ground-truth model outputs.

Biodiversity maps will, for the foreseeable future, remain

incomplete due to limited sampling coverage compared with the

vastness of the oceans. Thus, predictive modelling is valuable to

extrapolate species richness (e.g. demersal fish [139]) and

assemblage composition (e.g. ophiuroids [140]) beyond the

physically known and should be applied to other taxa as data

compilations become available.

4.4 Environmental surrogates. A possible solution to

overcome a dearth of biological data is to use physical,

geological and chemical surrogates for biological information.

Environmental parameters (e.g. water chemistry, bathymetry,

seafloor composition) are often better known at the scale of ocean-

basins than biological information. Thus, environmental ‘proxies’

that have some biological meaning can be used to generate first-

cut, approximate estimates of biodiversity to inform spatial

management [44]. Examples are two studies that have used

biologically-meaningful environmental variables to group

seamounts into a seamount-scale classification (Rowden, et al.

[141] for New Zealand, and Clark, et al. [142] for the global

ocean), giving managers an idea of the scale of potential

management for benthic communities, and the type of

management option that may be appropriate to achieve certain

objectives.

However, the relationship between deep-sea communities and

habitat descriptors is complex and ill-resolved for many regions

and assemblages. Thus, while environmental surrogates can be

useful, they remain proxies, often of unknown accuracy, for actual

biological data [8,143]. A greater emphasis on ‘‘ground-truthing’’

regional-scale studies is necessary to improve confidence in

applying the results of these techniques.

4.5 Risk assessments. Risk assessment approaches and

analyses can also be applied to identify seamounts that could be

most at risk from human impacts.

Clark & Tittensor [55] combined data on seamount physical

characteristics, fishery depth and geographical location with a

habitat suitability index for stony corals to derive an estimate of the

relative vulnerability of the seamount benthos to bottom trawling.

Other approaches can be applied using expert knowledge to

inform ‘‘first-cut’’ risk assessment [144], or developed further

depending on the amount of data available (e.g., Ecological Risk

Assessment for the Effects of Fishing (ERAEF) method of Hobday,

et al. [145]). A risk assessment framework with a hierarchical

structure enables higher-risk interactions to be identified and

prioritised in the early and intermediate assessment stages by

screening out lower-risk interactions. The ERAEF method was

applied using data from biodiversity surveys and knowledge of

commercial fishing patterns to evaluate risk to benthic habitats

from bottom trawling for a group of seamounts off New Zealand

[146]. Although this sort of method can become very detailed,

where data are lacking inferences can be drawn from other areas

or ecological theory, and can provide a way to assess risks to

marine habitats in a rigorous, transparent, and repeatable manner

[147]. Risk assessment frameworks can also serve to highlight

where critical gaps in knowledge occur that could help prioritise

future research.

Discussion

There are many aspects of seamount and deep-sea ecosystem

structure and function that we do not understand, and which may

in the long-term be critical for effective management. However,

research is in many respects still at the stage of describing the

composition and structure of seamount habitat and communities,

and appreciating complex functional processes is still a long way in

the future. Arguably, we have proposed that the priorities for

science that can best inform management are at present to

describe structural patterns over various spatial scales, rather than

in-depth studies of a small number of seamounts (refer summary of

these elements in Table 1). Ideally, future research can comprise a

combination of broad scale as well as detailed studies, but the

former is needed to plan for the latter if it is to be achieved.

Better science is one thing, but just as critical is the transfer of

this information into robust advice which is in a form that

managers can readily understand and use. A key element for this

to happen is close cooperation and collaboration between

scientists, managers, policy agencies, commercial companies, and

NGOs at the outset when planning research [148]. The

international network of scientists created by the CenSeam
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programme facilitated communication because of the extensive

linkages between managers and scientists in various countries, and

ready access to the large amount of data and information within

the network [5]. This should happen as a matter of course because

much seamount research today is funded by management agencies

that are responsible for regulating mining or fishing activities.

However, it appears that too often there is a lack of understanding

between scientists and managers about what is required, or the

appreciation that basic descriptive research is needed to underpin

more applied objectives.
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117. Freiwald A, Fosså JH, Grehan A, Koslow T, Roberts JM (2004) Cold Water

Coral Reefs: out of sight, no longer out of mind. Cambridge, UK: UNEP–
WCMC.

118. Sandin S, Smith J, Demartini E, Dinsdale E, Donner S, et al. (2008) Baselines

and degradation of coral reefs in the Northern Line Islands. PLoS One 3:
e1548.

119. Brodie S, Clark M (2003) The New Zealand Seamount Management Strategy
– steps towards conserving offshore marine habitat. In: Beumer JP, Grant A,

Smith DC, eds. Aquatic Protected Areas: what works best and how do we

know? Proceedings of the World Congress on Aquatic Protected Areas, Cairns,
Australia, August 2002. CairnsAustralia: Australian Society of Fish Biology. pp

664–673.
120. Galil BS, Zibrowius H (1998) First benthos samples from Eratosthenes

Seamount, eastern Mediterranean. Mar Biodiversity 28: 111–121.

121. Wright SJ, Muller-Landau HC, Schipper J (2009) The future of tropical species

on a warmer planet. Conserv Biol 23: 1418–1426.
122. Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on

marine ecosystems. Ann N Y Acad Sci 1134: 320–342.

123. Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R (2006) Will
human induced changes in seawater chemistry alter the distribution of deep-sea

scleractinian corals? Front Ecol Environ 4: 141–146.
124. Tittensor DP, Baco AR, Hall-Spencer JM, Orr JC, Rogers AD (2010)

Seamounts as refugia from ocean acidification for cold-water stony corals. Mar

Ecol 31(suppl 1): 212–225.
125. Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad O-A, Clark MR, et al.

(2011) Man and the last great wilderness: human impact on the deep sea. PLoS
ONE 6(7): e22588. doi:10.1371/journal.pone.0022588.

126. Stocks KI (2010) SeamountsOnline: a desktop window into the lives of
seamounts. Oceanography 23: 145.

127. Koppers AAP, Staudigel H, Minnett R (2010) Seamount Catalog: seamount

morphology, maps, and data files. Oceanography 23: 37.
128. Watson R, Kitchingman A, Cheung W (2007) Catches from world seamount

fisheries. In: Pitcher TJ, Morato T, Hart PJB, Clark MR, Haggan N,
Santos RS, eds. Seamounts: ecology, fisheries, and conservation. Blackwell

Fisheries and Aquatic Resources Series 12. Oxford, UK: Blackwell Publishing.

pp 400–412.
129. Clark MR (2004) Descriptive analysis of orange roughy fisheries in the New

Zealand region outside the EEZ: Lord Howe Rise, Northwest Challenger
Plateau, West Norfolk Ridge, South Tasman Rise, and Louisville Ridge to the

end of the 2002–03 fishing year. N Z Fish Assess Rep No. 2004/51. 36 p.
130. Hall-Spencer JM, Tasker M, Soffker M, Christiansen S, Rogers S, et al. (2009)

Design of Marine Protected Areas on high seas and territorial waters of Rockall

Bank. Mar Ecol Prog Ser 397: 305–308.
131. Benn AR, Weaver PP, Billet DSM, van den Hove S, Murdock AP, et al. (2010)

Human activities on the deep seafloor in the North East Atlantic: an assessment
of spatial extent. PLoS ONE 5(9): e12730. doi:10.1371/journal.pone.0012730.

132. Clark MR (1996) Biomass estimation of orange roughy: a summary and

evaluation of techniques for measuring stock size of a deepwater fish species in
New Zealand. J Fish Biol 49(suppl A): 114–131.

133. Clark MR (1999) Fisheries for orange roughy (Hoplostethus atlanticus) on
seamounts in New Zealand. Oceanol Acta 22: 593–602.

134. Tittensor DP, Baco-Taylor AR, Brewin P, Clark MR, Consalvey M, et al.
(2009) Predicting global habitat suitability for stony corals on seamounts.

J Biogeogr 36: 1111–1128.

135. Davies AJ, Guinotte JM (2011) Global habitat suitability for framework-
forming cold-water corals. PLoS One 6(4): e18483. doi:10.1371/journal.

pone.0018483.
136. Bryan TL, Metaxas A (2007) Predicting suitable habitat for deep-water

gorgonian corals on the Atlantic and Pacific continental margins of North

America. Mar Ecol Prog Ser 330: 113–126.
137. Woodby D, Carlile D, Hulbert L (2009) Predictive modeling of coral

distribution in the Central Aleutian Islands, USA. Mar Ecol Prog Ser 397:
227–240.

138. Tracey DM, Rowden AA, Mackay KA, Compton T (2011) Habitat-forming
cold-water corals show affinity for seamounts in the New Zealand region. Mar

Ecol Prog Ser 430: 1–22, 2011.

139. Leathwick JR, Elith J, Francis MP, Hastie T, Taylor P (2006) Variation in
demersal fish species richness in the oceans surrounding New Zealand: an

analysis using boosted regression trees. Mar Ecol Prog Ser 321: 267–281.
140. O’Hara TD, Rowden AA, Bax NJ (2011) A southern hemisphere bathyal fauna

is distributed in latitudinal bands. Curr Biol 21: 226–230.

141. Rowden AA, Clark MR, Wright IC (2005) Physical characterisation and a
biologically focused classification of ‘‘seamounts’’ in the New Zealand region.

NZ J Mar Freshw Res 39: 1039–1059.
142. Clark MR, Watling L, Rowden AA, Guinotte JM, Smith CR (2011) A global

seamount classification to aid the scientific design of marine protected area

networks. J Ocean Coast Man 54: 19–36.
143. Anderson TJ, Nichol SL, Syms C, Przeslawski R, Harris PT (2011) Deep-sea

bio-physical variables as surrogates for biological assemblages, an example from
the Lord Howe Rise. Deep Sea Res II 58: 979–991.

144. Fletcher WJ (2005) The application of qualitative risk assessment methodology
to prioritize issues for fisheries management. ICES J Mar Sci 62: 1576–1587.

145. Hobday AJ, Smith ADM, Stobutzki IC, Bulman C, Daley R, et al. (2011)

Ecological risk assessment for the effects of fishing. Fish Fish 108: 372–384.
146. Clark MR, Williams A, Rowden AA, Hobday AJ, Consalvey M (2011)

Development of seamount risk assessment: application of the ERAEF approach
to Chatham Rise seamount features. New Zealand Aquat Environ Biodivers

Rep No. 74. 18 p.

147. Williams A, Dowdney J, Smith ADM, Hobday AJ, Fuller M (2011) Evaluating
impacts of fishing on benthic habitats: a risk assessment framework applied to

Australian fisheries. Fish Res 112: 154–167.
148. van den Hove S (2007) A rationale for science-policy interfaces. Futures 39:

807–826.

Seamount Research

PLoS ONE | www.plosone.org 12 January 2012 | Volume 7 | Issue 1 | e29232


