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Abstract

We introduce a new polymer model for mitotic chromosomes. The key assumption of the model is the ability of the
chromatin fibre to cross-link to itself due to binding proteins. These protein-chromatin interactions are included by a
probabilistic and dynamic mechanism. The hypothesis is motivated by the observation of high repulsive forces between
ring polymers. We performed computer simulations to validate our model. Our results show that the presence of loops
leads to a tight compaction and contributes significantly to the bending rigidity of chromosomes. Moreover, our qualitative
prediction of the force elongation behaviour is close to experimental findings. The Dynamic Loop Model presented here
indicates that the internal structure of mitotic chromosomes is based on self-organization of the chromatin fibre rather than
attachment of chromatin to a protein scaffold. It also shows that the number and size of loops have a strong influence on
the mechanical properties. We suggest that changes in the mechanical characteristics of chromosomes in different stages of
the cell cycle, for example, can be explained by an altered internal loop structure.
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Introduction

During mitosis the dispersed interphase chromosomes undergo

a transition into rigid, tightly compacted objects. This condensa-

tion mechanism and the inner structure of the chromosomes in

this phase has been the target of many studies so far. The

lengthwise compaction ratio of DNA in mammalian metaphase

chromosomes is of the order of 10 000–20 000 [1]. On the lowest

folding level, double-helical DNA wraps around histone octamers

and thus forms nucleosomes about every 200 base pairs [2]. In a

next step the coiling of this 10 nm thick beads-on-a-string fibre

into a 30 nm thick filament was suggested [3–5]. These first two

levels of folding account for a 40 fold compaction of the naked

DNA. However, the existence of the 30 nm fibre is still under

debate. The higher order folding motifs that are responsible for the

remaining approx. 500 fold compaction still remain largely

unknown [6,7].

Many models have been put forward for the description of the

chromatin structure in mitosis, including radial loop models,

hierarchical folding models and network models [8]. In an early

model Bak et al [9] suggested a helical folding of a 400 nm thick

chromatin fibre. The composition of the chromosome of a thin

fibre of 200–300 nm in diameter was also proposed by Sedat and

Manuelidis [10]. Most textbooks feature the radial loop model

which is based on histone-depletion experiments. It assumes the

chromosome shape to be essentially governed by an axial non-

histone protein scaffold to which chromatin loops are attached

[11,12]. Condensins and Topoisomerase II were found to be the

main components of the protein core and are therefore the main

candidates for the driving forces of the condensation [13,14].

However the radial loop model has been put more and more into

question. Different experiments report that Topoisomerase II and

condensins are highly mobile within mitotic chromosomes [15,16].

Kireeva et al [17] showed that axial staining of condensins cannot

be seen until late prophase when considerable condensation has

already taken place. Instead of an axial protein scaffold, the

authors suggest a hierarchical folding of the chromatin fibre.

These kind of models predict different folding levels from the

30 nm fibre into the &1 mm thick chromosome. Possible folding

levels are a 100–130 nm fibre and subunits in the size of 250 nm

[10,18,19].

Another approach to the analysis of mitotic chromosome

structure are micromechanical manipulation experiments which

target the elastic properties of chromosomes [20]. Human

chromosomes and chromosomes from newt lung cells were found

to be very elastic objects which can be stretched to several times of

their native length [21,22]. Houchmandzadeh and Dimitrov

measured the bending rigidity and the stretching stiffness of single

in vitro assembled chromatids from Xenopus egg extract. They

found the chromatids to be very flexible objects with the

persistence length being only a few times the thickness of the

chromosomes. For small extensions the authors reported a linear

force-elongation behaviour and reversible deformability. Further-

more chromosomes were extensible up to 100 times their native

length with a force plateau being observed at relative extensions

larger than & 15 [23]. This kind of elastic response was also

confirmed for chromosomes from newt lung cells. The chromo-

somes showed reversible extension up to three times of their native

length. For intermediate extensions, hysteresis was observed and

for long extensions beyond 30 times of the native length, the force-
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extension curve decreased to a plateau [24]. Further experiments

by Poirier and Marko [25] targeted the force-relaxation behaviour

of stretched chromosomes, especially during nuclease digestion.

The authors concluded that mitotic chromosomes do not have a

mechanically contiguous protein scaffold but rather proposed a

network model, where the 30 nm chromatin fibre is cross-linked to

itself by binding proteins [26]. While results on the stretching

stiffness agree widely for chromosomes of different species, this is

not the case for the bending rigidity. As described above, Xenopus

egg extract chromatids were reported to be very flexible [7,23].

However, experiments on in vitro and in vivo assembled

chromosomes from other animals yielded much higher rigidities

with persistence lengths being much larger than the length of the

chromosomes themselves [27,28]. Recent investigations showed

that human mitotic chromosomes have very similar mechanical

properties to mitotic newt chromosomes and thus likely smiliar

structures, too [29].

All studies on mitotic chromosome structure indicate that

chromatin loops play an important role in its organization. Loops

can compact the chromatin fibre and be in part responsible for the

mechanical properties. Especially the size and the number of loops

were suggested to be closely connected to them [30,31]. Moreover,

there is evidence that looping of the chromatin fibre is crucial for

chromosome compaction during all stages of the cell cycle. FISH

experiments and new 3C/4C/5C/HiC experiments showed that

loops of all length scales can be found in the interphase

chromosome, possibly connected to transcriptional activity and

genome function [32–36]. The Random Loop Model and its

further development, the Dynamic Loop Model, assume dynamic

formation of loops on all length scales. They predict the confined

folding of the chromosome without spatial constraints [37–39].

However, in contrast to the interphase, the chromatin fibre does

not show long range interactions between distant segments in

mitosis. Estimates for loop sizes here are in the range of 20 to

90 kb [11,25]. Marko [40] pointed out that local coiling of a

polymer along its length while long-range cross-linking is absent

can be responsible for a lengthwise condensation.

In this work we investigate how the formation of loops can

account for the condensation and mechanical properties of

chromosomes during mitosis. Polymer rings have been found to

repel each other much stronger than linear polymers [41].

Therefore, looping alone can already be responsible for a

considerable stiffening up of the chromosome. However, our

model does not impose an ordered structure on the chromatin

fibre. Rather, cross-links and thus loops are formed upon collisions

of fibre segments. Condensins and Topoisomerase II were

suggested to be responsible for the cross-linking of chromatin

during mitosis [1]. The probabilistic nature of our model, where

loops form and dissolve dynamically, can account for the mobility

of these proteins within the chromosome.

For the mitotic chromosomes we assume a restricted interaction

range for the formation of cross-links in order to achieve a

lengthwise compaction of the chromatin fiber. The restricted

interaction range of the cross-links is motivated by the geometrical

shape of mitotic chromosomes, which appear to be rod-like and

thus very different to the more spherical shapes of chromosome

territories in interphase. On the other hand, a strong compaction

in length especially in eukaryotic mitotic chromosomes can be

observed. Therefore, the model assumes a short-ranged folding of

the chromatin fiber that results in a length-compaction and

condensation of the fiber into rigid rods. This kind of folding also

guarantees that genes are aligned linearly along the mitotic

chromosome. Essentially, the coiling of the chromatin fiber can be

seen as the folding of a thin fiber into a thick fiber.

Our results suggest that mechanical properties can be explained

by self-organization of the chromatin fibre without the need of any

axial protein scaffold. With this dynamic formation of loops, the

resulting structure of the chromatin fibre is similar to a chromatin

network. Moreover, our model can be seen in the context of a

hierarchical folding model.

Results

Dynamic Loop Model for mitotic chromosomes
Condensins and Topoisomerase II are presumably the proteins

that establish cross-links of chromatin in mitotic chromosomes

[13,14]. Christensen et al [15] found Topoisomerase II to be

mobile in human mitotic chromosomes. High mobility of

condensin I in Drosophila metaphase chromosomes was reported

by Oliveira et al [16]. Hence, the loop structure of mitotic

chromosomes is not fixed but rather subject to fluctuations in loop

sizes and positions of the loops. However, the complex dynamics

of proteins and their interactions with the chromatin fibre are too

complicated to be modeled in detail on the scale of a complete

chromatid. Coarse grained approaches are therefore used to

model the chromatids.

We present a model, where the cross-linking due to Topoisom-

erase II and condensins is incorporated by a dynamical looping

mechanism of the fibre. This mechanism consists of the ability of

distant fibre segments to form cross-links when they come into

physical proximity of each other by diffusion. The shape of mitotic

chromosomes is rod-like, as opposed to the more spherical shape

of interphase chromosomes. Bohn et al [39] have shown before

that long-range interactions unevitably lead to spherical shaped

objects if the number of cross-links is high, which it has to be in the

case of highly condensed mitotic chromosomes. On the other

hand, short ranged interactions and the lack of long-range

interactions at the same time were discussed to be responsible

for a lengthwise condensation of the chromatin fiber [40].

Therefore, in this model for mitotic chromosomes, we included

a restriction for the interaction range of the chromatin fiber and

thus for the maximum loop size. Below this limit, all loop sizes are

equally possible.

Such a lengthwise condensation also accounts for the fact that

genes are aligned linearly in mitotic chromosomes, whereas long-

range interactions can easily lead to mixing of distant chromo-

somal parts, bringing genomically distant genes into physical

proximity of each other. A restriction of the length of loops is also

consistent with experimental observations which do not give any

indications for the existence of long-range interactions in mitotic

chromosomes. Consequently, all proposed models for the folding

of mitotic chromosomes implicitly include restricted interaction

ranges with the estimates for loop sizes ranging from 20 kb to

90 kb.

Additionally, in order to mimic the dynamics and mobility of

the involved proteins, the cross-links have limited lifetimes, after

which they dissolve again. The two important parameters of the

model are therefore the restriction on the interaction range, the

cutoff length C which determines the maximum size of loops, and

the number of loops divided by the number of statistical segments

that the chromatin fibre consists of, the loop concentration kp. A

value of C~50 means that segments can only form cross-links if

they are separated by no more than 50 statistical segments. A value

of kp~1 means that there is on average one cross-link and thus

one loop per statistical segment.

The dynamic crosslinking mechanism in our model implicitly

mimicks the presence of binding proteins like condensins in the

surrounding solvent of the chromatin fibre. The cutoff length for

Loops/Mechanical Properties in Chromosomes
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the size of loops accounts for the fact that long-range interactions

are not present in mitotic chromosomes. However, we do not wish

to imply that proteins like condensins would not be able to

crosslink two chromatin regions that are genomically far away.

Our presented model does not include explicit binding mecha-

nisms of condensins and other proteins to chromatin. Instead, we

suggest that condensins and Topoisomerase II cause a local folding

up of the chromatin fiber leading to the formation of a thicker and

strongly compacted filament. The emerging chromatin-solvent

interfase following this compaction could then be a reason for the

prohibition of long range interactions within mitotic chromo-

somes. The cutoff length is meant to account implicitly for such

phenomenons which prevent the formation of large loops.

One of the major questions addressed in this work is whether

this dynamic looping mechanism could be responsible for the

condensation of the chromatin fibre into the mitotic chromosome.

Furthermore, it was shown experimentally that mitotic chromo-

somes have high bending rigidities while still being very elastic.

The other important question that is addressed here is to which

extent entropic effects invoked by the formation of chromatin

loops can account for the mechanical properties of mitotic

chromosomes.

Dynamic looping mechanism promotes condensation
into rigid objects

We analysed the shape and morphology of the model

chromatids. In Figure 1 typical conformations for different

parameter configurations can be seen. When no loops are present,

the fibre behaves like an ordinary self-avoiding walk. For low loop

concentrations, cross-links at different positions along the chro-

matin fibre are formed. In these regions a compaction and a

formation of blobs can be observed. These blobs are connected by

fibre sections with no loops. However, when the settings for the

looping probability and the mean loop lifetime are increased, the

chromatin fibre condenses into a thicker, rod-like filament. The

structure then resembles a flexible rod and is homogeneous along

its contour. Thus, for high loop concentrations, the Dynamic Loop

Model produces coiled fibres with a strong resemblance to mitotic

chromatids.

We used coarse grained polymer chains consisting of up to 800
segments to represent the underlying chromatin fibre. Assuming a

DNA content of approx. 108 bp in the chromosome we obtain the

size of one statistical segment to be approx. 125 kb. We

investigated configurations with loop concentrations up to

kp~1:4. We observed that a value of at least kp&0:9 is needed

for condensation of the fibre into a rod that resembles a mitotic

chromatid. A value of kp~0:9, which means on average 0:9 cross-

links per statistical segment, would thus correspond to one cross-

link every approx. 140 kb. Likewise, kp~1:4 would mean one

cross-link every approx. 90 kb.

In order to analyse the shape and mechanical properties we

calculate backbones which represent the alignment of the model

chromatids. Each backbone can be seen as a coarse grained polymer

that describes the large scale properties of the model chromatid

without the details of the coiling on the local scale. Figure 2 illustrates

this fact. The backbones are used to estimate the geometrical

properties and the directional correlation between different

segments of the chromatids. The mean chromatid lengths are

calculated and compared for different settings of cutoff length C and

loop concentration kp. When the maximum loop size C is increased,

the length of the rod decreases as large loops condense the fibre

more efficiently than small loops. The compaction is also tighter

when the mean loop concentration kp is higher. Therefore, the

chromatid length decreases with higher loop concentrations, too.

The estimation of the chromatid thickness involves the

calculation of the average radial monomer density functions.

Radial in this case means perpendicular to the calculated

backbone. Figure 3 shows radial monomer density functions and

their dependency on the cutoff length C and the loop

concentration kp. At the central axis the density has a minimum,

but increases quickly with the distance from the backbone, until a

plateau area is reached. This broad plateau is then followed by the

expected decay for large distances. The drop off at the backbone

indicates that the fibre tends to form rings around a central axis

and is roughly organized in a helical-like structure. However the

Figure 1. Examples for model chromatids with different
parameter sets. The grey tube represents the chromatin fibre. The
orange sticks visualize the cross-links between distant fibre segments.
Each chain embodies a single chromatid. The chromatin fibre in both
examples consisted of N~650 segments. The cutoff length for the loop
sizes is C~50. It means that fibre segments which are separated by a
genomic distance greater than 50 monomers cannot form an additional
bond. A. In this example, the mean loop concentration is kp~0:7. At
these low loop concentrations the conformations are non-homoge-
neous. Rather, a2 formation of blobs can be observed in regions with
many cross-links. These regions are connected by fibre section with no
or only few loops. B. When the loop concentration is high enough, a
condensation of the chromatin fibre into thick, homogeneous rods can
be observed. In this configuration the loop concentration is kp~1:2.
Cross-links are distributed homogeneously along the chain.
doi:10.1371/journal.pone.0029225.g001
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organization is much more complex than a simple helix. The

broad plateau region suggests that the chromatid is radially

homogeneous on a large scale.

Next we look at the dependency of the density and the width of

the model chromatids on the parameters C and kp. As expected,

larger cutoff lengths result in a more extended plateau and thus

thicker chromatids. On the other hand the number of cross-links

has only little influence on the thickness. For the same cutoff

length, conformations with more cross-links only yield higher

monomer densities but have the same widths as conformations

with fewer cross-links. The dependency of the chromosome

thickness on the cutoff length C is displayed in Figure 4. A linear

behaviour can be observed.

We used many different parameter settings (C,kp) to investigate

how they influence the geometry of the resulting model

chromosome. To illustrate that the model chromosomes do match

the geometry of real chromosomes, for example human metaphase

chromosomes, we consider the result of a setup with N~650
statistical segments, a cutoff length C~50 and a loop concentra-

tion of kp~1:37. Assuming a lattice constant of 0:05 mm, the mean

length of the model chromatid would then be 4:75 mm and the

thickness would be 1:07 mm, corresponding to a cross-section of

0:90 mm2. This example demonstrates that our model chromo-

somes have indeed the dimensions of real chromosomes.

Our results for the geometry of the model chromatids show that

the Dynamic Loop Model covers a broad range of different

geometries, depending on the parameters C and kp. When the

maximum loop size is higher, the chromatid is thicker and shorter.

On the other hand, the mean loop concentration influences the

compaction and length of the chromatid but not the thickness.

Therefore, the loop structure, the number and size of loops,

obviously plays an important role for the shape of chromosomes.

In Table 1 an overview of results on the length and width of model

chromatids is given. The length-to-width ratios match those of

natural mitotic chromosomes in different stages of mitosis.

Presence of loops enhances the bending rigidity due to
entropic repulsion

The analysis of mechanical properties, especially the bending

rigidity and the elastic response have been important parts in the

experimental examination of mitotic chromosomes. Therefore, we

analyse results from our model and from models without loops such

as the self-avoiding walk with respect to the directional correlation

using the calculated backbones. Figure 5 shows a comparison

between the mean directional correlation of both models when the

same degree of coarse graining for the calculation of the backbone is

used. The directional correlation function for the Dynamic Loop

Model shows an exponentially decaying relationship with the

separating genomic distance. Therefore the backbone of the model

chromatid behaves like a worm-like chain on this length scale. This

result is consistent with experimental findings of Houchmandzadeh

and Dimitrov [23] who found chromatids from in vitro assembled

Xenopus laevis egg extract to show an exponentially decaying mean

directional correlation for one order of magnitude. Furthermore,

when compared to a self-avoiding walk, the Dynamic Loop Model

polymer has a much higher bending rigidity. This is a very

important finding as it shows that simply the existence of loops

enhances the bending rigidity of the chromatin fibre. The entropic

repulsion between polymer rings is responsible for this observation.

In the presence of a large number of rings within the chain as in the

case of the Dynamic Loop Model, bending of the chromatid will

reduce the distance between closely aligned loops. Hence the energy

required to bend the chromatid is higher than in the case where no

loops are present, leading to an enhanced stiffness of the filament.

However, it should be noted that already the calculation of a

backbone for the self-avoiding walk is not meaningful since the

conformations of self-avoiding walks do not have the shape of

mitotic chromosomes. On the other hand, the rescaling for the

Dynamic Loop Model generates worm-like backbones which truly

represent the overall alignment of the model chromatid.

Simulations with different cutoff lengths and loop concentrations

show that the bending rigidity is very sensitive to both parameters.

Directional correlation functions for different values of cutoff length

and loop concentration can be seen in Figure 6. Increasing the

cutoff length results in a higher mean loop size. This in turn leads to

chromatids with larger thickness and thus reduced flexibility of the

filament. For a homogeneous cylinder, the bending rigidity is

proportional to the fourth power of the radius [42]. Furthermore,

large loops within the chromatin fibre tie parts of the fibre together

which would normally be farther apart. This tightening also

Figure 2. Visualization of the backbone for a model chromatid. In order to analyse the shape and the mechanical properties of the
condensed rods, it is necessary to calculate backbones which represent the alignment of the model chromatids. These backbones are obtained by a
coarse graining method that is applied to each single conformation. The original polymer chain is divided into Nsec sections that contain k statistical
segments each and the center of masses of each section is calculated. The new chain consists of the center of masses of the sections. The degree of
coarse graining, characterized by the parameter k is an important parameter in this method. It has to be chosen correctly in order to guarantee that
the backbone truly represents the alignment of the chromatid.
doi:10.1371/journal.pone.0029225.g002

Loops/Mechanical Properties in Chromosomes

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e29225



contributes to the enhanced stiffness. Consequently, the flexibility of

a chromatid with higher cutoff length is reduced compared to a

chromatid with smaller cutoff length. The bending rigidity is also

influenced by the number of loops within the polymer. Higher mean

loop concentrations kp are associated with stronger compactions of

the chromatids. Hence, the loops or chromatin rings are spaced

closer to each other increasing the entropic repulsive forces between

them. Bending becomes therefore even more energy consuming.

The persistence lengths for model chromatids with different

parameters are shown in Figure 7. Clearly the bending rigidity

increases with the number of loops in the chain and also with

higher cutoff lengths. We find typical values of the persistence

length to be in the range between 1:5 to 4 times the diameter of

the chromatid, depending on the parameter settings. This is in

good agreement with results on mitotic chromatids from Xenopus

egg extract [23].

Variations in size and number of loops evoke different
elastic responses

Measuring the elastic response is one possibility to study the

internal structure of mitotic chromosomes. Simulations of model

chromatids under an external pulling force are done to examine

their elasticity. In the pulling simulations, model chromosomes are

first subjected to the Monte Carlo algorithm of the Dynamic Loop

Model until they are fully condensed. Then a constant pulling

force F is applied to the chromatid ends directed along the end-to-

end vector. A corresponding pulling energy Upull is added to the

energy of the conformation. Conformations are then sampled from

the equilibrium distribution including the additional pulling

potential. Thus, the pulling can be viewed as adiabatic. For fixed

parameter sets, we analyse the mean end-to-end distances of the

model chromatids at different pulling forces and calculate the

mean relative extensions E.
We have to point out that in our coarse grained model no

additional potential between the segments exist apart from the

dynamic cross-linking mechanism. Furthermore, the stretching in

Figure 3. Mean radial monomer density functions r(r) of
different configurations. A. Larger cutoff sizes C give thicker model
chromatids but smaller densities and lengthwise compaction ratios. B.
The number of loops has only small influence on the chromatid
thickness. However, chromatids with more loops show tighter
compactions and hence higher monomer densities.
doi:10.1371/journal.pone.0029225.g003

Figure 4. Influence of the parameter settings on the spatial
dimensions. A. A linear relationship between the average distance of
monomers from the backbone and the cutoff length is found. Together
with the observed drop off of the monomer density at the central axis
we conclude that the fibre coils around the backbone in a helical-like
folding manner. However this gives just a general tendency and the
exact structure is much more complicated. B. Interestingly we can see
that at constant values for C=N the lengthwise compaction ratio still
increases linearly with the chain length N . In this example C=N~0:05
and the mean loop concentration is kp~1:0. When extrapolating the
linear curve to a compaction ratio of 500-fold, a polymer with
N&24 000 statistical segments and cutoff length C&1200 would be
needed.
doi:10.1371/journal.pone.0029225.g004
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the model is performed in equilibrium. The stretching forces in

our model are therefore much smaller than the forces that are

measured in experiments. Assuming a lattice constant of 0:05 mm
in our model, the forces are in the range of 10{15 N which is

several orders of magnitude smaller than forces measured in

micromechanical experiments on mitotic chromosomes. However,

using this kind of coarse grained modeling it is possible to make

qualitative tests and predictions.

The elastic response of the model chromatids shows different

domains. Furthermore, the size and number of loops play a crucial

role for the elasticity. Force elongation curves for different settings

of cutoff length C and loop concentration kp can be seen in

Figure 8. For relative extensions of up to twice the native length of

the model chromatid, we observe a linear relationship between

force and relative extension. This means that in this region the

chromosome has the elasticity of a homogeneous, elastic material.

Such a behaviour of mitotic chromosomes was found in numerous

experiments [23,24,29]. In this region no significant decrease in

the total number of loops can be seen. The chromatid is stretched

but its looping mechanism still efficiently cross-links different

chromatin segments. However, the analysis of the loop size

distribution shows that although the total number of loops does

not change, there is a reorganization of the loop domains. The

number of small loops increases while the number of large loops

decreases, hence there is a shift from large to small loops.

Apparently, when only small forces are applied, the formation of

larger loops is inhibited because distant chromatin segments are

pulled apart. However on the local scale the looping mechanism is

still intact and thus more small loops are formed, keeping the total

number of loops constant.

At larger pulling forces the loop formation on all scales is

inhibited. The formation of large loops is still obstructed stronger

than the formation of small ones. The force extension curve is very

flat in this region and resembles a plateau. At this strength, the

applied force destroys the cross-linked structure of the polymer.

The region of E&2 to approx. 20 times elongation of the native

length can be characterized as the decondensation domain of the

model chromatid. In this domain the internal structure of tightly

condensed loops is destroyed. The slope of the force-extension

curve is very low in this region and a small increase of the force

results in a vast stretching of the chromatid. Such force plateaus

were also found in the experiments, although at larger relative

extensions [22,24].

We evaluate the slope of the force extension curves in the linear

domain from relative extensions of E~0 to E~2 for several

different parameter sets. The slope is then used to calculate

Young’s modulus that characterizes the elasticity of an elastic

material. Almagro et al [7] showed that mitotic chromosomes do

Table 1. Excerpt of results for size and persistence length of
chromosomes.

N C # loops/N lB [l.u.]
thickness
xR [l.u.] jp [l.u.]

650 30 0:89 190:2 8:8 14:4

1:00 185:0 8:6 14:8

1:09 146:4 8:5 15:2

1:22 138:8 8:4 17:2

40 0:89 155:8 9:8 15:8

0:99 153:6 9:7 16:1

1:10 146:4 9:5 17:3

1:23 138:8 9:4 20:3

50 0:89 134:6 10:6 17:4

0:99 131:1 10:4 17:8

1:09 126:5 10:4 20:6

1:24 117:8 10:3 21:2

1:37 94:9 10:7 37:0

80 0:89 96:0 12:5 20:2

0:99 91:5 12:5 23:0

1:24 82:4 12:3 29:3

doi:10.1371/journal.pone.0029225.t001

Figure 5. Comparison between Dynamic Loop Model and self-
avoiding walk. A. The upper conformation is a Dynamic Loop Model
chromatid with N~650, cutoff size C~50 and mean loop concentra-
tion kp~1:4. For comparison, a conformation without loops with the
same chain length N~650 is shown below. B. For both, self-avoiding
walk and Dynamic Loop Model the coarse-graining method is applied
and the directional correlation is calculated. The same degree of coarse-
graining is used for both models. The figure shows an exponential
decay of the directional correlation function of the Dynamic Loop
Model, while the the self-avoiding walk does not show this behaviour.
Most importantly, the Dynamic Loop Model chromatid is much stiffer
than the self-avoiding walk. This shows that the entropic repulsion of
the chromatin loops that are generated by the cross-linking mechanism
leads to a considerable stiffening up. Error bars represent the standard
error of the sampled conformations.
doi:10.1371/journal.pone.0029225.g005
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not have a homogeneous elasticity but that rather different

segments show different elastic moduli. Furthermore the elastic

behaviour of mitotic chromosomes can be changed by exoge-

nously added agents, such as trypsin, proteinase K or Topoisom-

erase I and II [43,44]. These alterations of the mechanical

properties were suggested to be related to changes in the internal

chromatin structure for example by reducing the number of

protein cross-linkers.

Results of our simulations on stretched chromosomes show that

the elasticity is highly dependent on the mean loop concentration.

We performed simulations with the same cutoff length C~50 for

polymers consisting of N~650 monomers, but different loop

concentrations. The results show that when the mean loop

concentration is increased from 0:9 to 1:2, the Young’s modulus of

the model chromatid increases by a factor of two. Tighter

compaction is thus associated with a strongly decreased elastic

response. This result is plausible as more cross-links within the

fibre means that segments are glued to each other more efficiently

and hence are harder to be stretched by an external force.

Therefore, the loop formation is also responsible for the elastic

response and the number of loops controls the stretching stiffness

of the chromatid. We calculated the bending moduli that would be

associated with the obtained Young’s moduli if chromatids were

cylinders made of a homogeneous material. The calculated

bending moduli are three to five times smaller than the ones

obtained from direct measurement of the flexibility. Table 2 gives

an overview over results obtained from both, elasticity measure-

ment and direct measurement of bending fluctuations.

Estimation of the thickness of elongated chromatids show that

the widths decrease when the chromatids are pulled. This is

consistent with the observed shift of the loop size distribution from

larger to smaller loops and the decrease of the mean loop size. We

calculated Poisson’s ratio to quantify this finding. The inset in

Figure 8C shows the relative change in width to the relative

change in length of the chromosomes. The relationship is not

linear from the start but rather converges to a linear curve. The

Poisson’s ratio is determined by fitting the linear region of the

curves. Experimental studies by Poirier et al [24] resulted in a

Poisson’s ratio of n~0:069+0:005 for newt lung cells. For our

studies, different Poisson’s ratios were obtained for different mean

loop concentrations. With values between n~0:045 and n~0:065,

our results are in the same range as the experimental findings.

Discussion

In this work we used a coarse grained polymer model to

investigate if the condensation during mitosis can be understood

by a probabilistic, locally restricted cross-linking mechanism of the

chromatin fibre. We showed that this mechanism results in a tight

compaction of the chromosome. The restriction of the loop sizes

by a cutoff length in our model implicitly describes the fact that

long range interactions cannot be formed in mitosis while the

dynamical formation and dissolution of crosslinks implicitly

accounts for the dynamics of the binding proteins in the surround

solvent.

Figure 6. Directional correlation functions for model chroma-
tids with varying parameters. The chain length for all configura-
tions is N~650. Error bars represent the standard error. A. For fixed
mean loop concentration kp~1:0 we can see that the stiffness increases
with the cutoff length C. Larger cutoff lengths result in thicker
chromosomes and in turn less flexibility. B. Shown are results for C~50
and different mean loop concentrations. An increased number of cross-
links is associated with a more densly packed chromosome. Thus, the
distance between loops is decreased and the repulsive forces between
them are stronger. Consequently higher bending rigidities are obtained.
doi:10.1371/journal.pone.0029225.g006

Figure 7. Persistence length in dependency of the cutoff length
C and the mean loop concentration kp. The persistence length and
thus the bending rigidity increases with higher cutoff length and higher
mean loop concentration. However, no simple dependency can be
derived from the results. As the internal structure of the model
chromatids is complex, the persistence length also has a complicated
relation to the parameters.
doi:10.1371/journal.pone.0029225.g007
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Although we do not describe explicitly the binding of proteins to

DNA at special binding sites and do not want to state that

condensins or Topoisomerase II could not link distant segments of

chromatin to each other, we believe that it cannot be excluded that

there could be principles that allow binding proteins to distinguish

between different chromosomal regions. We believe that the

cohesion of sister chromatids can serve as an good example. It

seems that cohesin proteins have the ability to distinguish between

the chromatin strands of the sister chromatids. Therefore, in the

same way, condensins could have a principle after which they

distinguish between chromatin segments that are genomically close

and those that are genomically far away. For example the

chemical composition of different chromatin segments, e.g.

through histone modifications, could play a role at this.

In order to validate our model we compared the geometry and

especially the mechanical properties, i.e. flexibility and elasticity, of

the model chromatids to experimental findings. With our model

we obtained objects that matched the shape of mitotic chromo-

somes and flexibility of chromatids assembled from Xenopus laevis

egg extract [23]. In particular, we observed a much increased

bending stiffness compared to simple polymer models such as self-

avoiding walks, which can be explained by the entropic repulsion

between the chromatin loops that are formed by the cross-linking

of the fibre. Simulations of applied stretching forces revealed

changes in the loop structure with a reorganization for small

forces, followed by breakage of loops at large forces. We found that

the loop structure, the size and the average number of cross-links

Figure 8. Simulation of pulling of the model chromatids. A. Model chromatids at different pulling forces. For small elongations the chromatid
is stretched but the total number of cross-links does not change. For higher elongation the number of cross-links decreases rapidly and the
chromatid becomes inhomogeneous. B. Detailed look at the force elongation curve for the configuration N~650,C~50,kp~1:0. In the range of
extensions up to two times of the native length, a linear dependency can be observed, where the total number of cross-links remains nearly constant.
For higher extensions a force plateau is reached. Here the number of cross-links decreases and the chromatid is unfolded rapidly. This region
corresponds to a decondensation region. C. The slope of the force elongation curve in the linear part depends strongly on the mean loop
concentration. Here we show results for N~650,C~50 and three different values for kp . The force modulus for configurations with mean loop
concentration kp~1:1 is more than double than the modulus for configurations with kp~0:9. Hence we conclude that different elastic responses can
be explained by altered loop structures. The inset shows the relative change in chromatid thickness against the relative extension. Similar Poisson’s
ratios are obtained for the different configurations. The values are in the range n~0:04 and n~0:07 and therefore close to experimental findings.
D. Although the total number of loops is constant in the linear region, there are changes in the loop structure. Shown are results for
N~650,C~50,kp~1:0. The loop domains are reorganized due to the pulling force, with the proportion of small loops (sizeƒ15) increasing at the
expense of the number of large loops (sizew15). As the thickness is essentially determined by the size of the loops this finding indicates that
chromosome width decreases in this area which is consistent with experimental results.
doi:10.1371/journal.pone.0029225.g008

Table 2. Comparison for bending stiffness from direct
measurement and calculation using elastic response.

N C # loops/N
B measured
[kBT:l:u:]

B calculated
[kBT:l:u:]

650 50 0:9 17:4 2:7

1:0 19:4 3:4

1:1 20:7 5:9

30 1:0 14:8 1:4

1:2 17:2 2:0

doi:10.1371/journal.pone.0029225.t002
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within the chromatin fibre are essential for the mechanical

properties. Therefore we suggest that altered physical dimensions

and mechanical properties in different stages of mitosis and across

different species can be explained by different internal loop

structures.

At high looping probabilities, the cross-linking of the fibre

results in a condensation into a homogeneous, rod-like shape. The

lengths and widths of the model chromatids match observations of

chromosomes of numerous species, in particular those assembled

from Xenopus egg extract [23,45]. We found that the length and

the thickness of the model chromatids are governed by the size

restriction for chromatin loops and the number of loops within the

chromatin fibre. The linear dependency of the chromatid

thickness with the cutoff length is consistent with the simplified

assumption of a helical folding of the chromatin fibre, which was

in fact one of the earliest propositions for metaphase chromosome

structure [9,22]. However, the Dynamic Loop Model for mitotic

chromosomes is not a simple helix but rather resembles a

chromatin network with the tendency of the fibre to form rings

around the central axes. A chromatin network was considered as

the structure of mitotic chromosomes before [25,30].

In our coarse grained description we obtain lengthwise

compaction ratios between 10 and 30 fold of the native length,

depending on the upper restriction for the loop size. As the

compaction from the 30 nm fibre to the mitotic chromosomes is in

the range of 500-fold, this would suggest that our coarse-grained

chromatin fibre has a diameter much larger than 30 nm but still

well below 1 mm. Our model can therefore be seen in the context

of a hierarchical folding model for the mitotic chromosome

[17,46]. Here the dynamic formation of cross-links would account

for the compaction in one hierarchy level. On the other hand we

find that for fixed C-to-N values and fixed kp, the lengthwise

compaction ratio increases with the chain length as the loop

structure becomes finer. Therefore the Dynamic Loop Model is

able to produce high compactions when the chain length is large

enough. The network model that was put forward by Poirier and

Marko assumes the cross-linking of the 30 nm fibre [24]. However,

the simulation of such high compaction ratios requires the

equilibration of very long polymers that is computationally not

viable.

Experimental results suggest that the flexibility of chromosomes

is subject to the species and to the stage of mitosis [20]. In our

simulations we found ratios of persistence length to thickness of the

chromatids in the range of 1:5 to 4, depending of the choice of

parameters. This is consistent with the experimental findings of

Houchmandzadeh and Dimitrov [23] on Xenopus egg extract

who reported a ratio of approx. 3:4. Hence, the bending rigidity of

the chromatin structure in the egg extract can be explained by the

loop formation alone, without the assumption of a protein scaffold.

However, other experiments of in vitro and in vivo assembled

chromosomes from Xenopus cells, newt lung cells, the newt TVI

cell line and Drosophila cells found much higher bending rigidities

with persistence lengths that are many times of the actual

chromosome length [27,28]. Poirier et al [28] suggested that the

differences between the egg extract and in vivo assembled

chromosomes arise from different chromatin organization in both

systems. This could be connected to the different functions of egg

extract and somatic tissue culture cells or because egg extract

chromatids are not completely condensed. We observed for the

Dynamic Loop Model that increasing looping probabilities

resulted in much higher bending rigidities, thus supporting the

argument that not fully condensed chromosomes are more flexible.

Moreover, condensins, which are the main candidates for the

binding proteins, were found to be able to dimerize and also to

form heterodimers with other proteins [47,48]. When cross-links

can cluster in this way, it has to be assumed that the loop

concentrations in real chromosomes are much higher than it is

possible to model in our coarse grained approach. Therefore,

consideration of such protein-protein interactions in the model

could also account for an enhanced stiffness.

Furthermore, we have to point out that the entropic repulsion

between chromatin loops is not the only factor that determines the

flexibility of chromatids. Rather we suggest that these entropy

effects contribute to the bending rigidity, and in some cases, such

as for chromatids from Xenopus egg extract, are sufficient to

explain them. However, there are certainly other factors, such as

the surrounding solvent, that do also contribute to the mechanical

properties.

The stretching simulations revealed that the looping mechanism

results in a very elastic chromatid that can be stretched to many

times of its native length. For elongations of up to three times of

the native length, a linear relationship between stretching force

and relative extension was found. This is in agreement with

experimental findings where chromosomes as well as single

chromatids behave like a homogeneous elastic material [22,24].

Our results show clearly that the number of loops is of great

importance for the elastic response of the chromatid. For fixed

chain length N~650 and fixed cutoff length C~50 we observed

that the increase of the initial average loop concentration from

kp~0:9 to kp~1:1 is associated with a doubling of the Young

modulus. Experimental evidence for this dependency was given by

Almagro et al [7]. The authors measured the elastic response of

Xenopus egg extract chromatids after cleavage of SMCs with

trypsin. It was found that chromosomal domains containing SMC

proteins had a much higher stretching stiffness (up to four times)

than domains where parts of these SMC proteins were cleaved. As

SMCs are subunits of condensin proteins which are most likely to

be responsible for chromatin cross-linking, our results confirm this

experimental finding, as higher loop concentrations in the

Dynamic Loop Model are also associated with an increased

stretching stiffness.

Closer examination of the loop structure in this region of small

relative extensions showed that a reorganization takes place when

the chromatid is stretched. Such a behaviour was proposed before

in the network model of Poirier et al [26]. The loop size

distribution shows a shift from large loops to small loops and

therefore leads to a thinning of the chromatid. The measurement

of values of 0.045 to 0.065 for the Poisson’s ratio in our model is in

good agreement with experimental results from Poirier et al [24]

with a value of 0.069. We have to point out that our Monte Carlo

algorithm simulates chromosomes in thermal equilibrium and the

stress is introduced by a pulling potential representing the force.

However, it might be that this kind of approach does not match

experimental conditions as we do not impose a constant stretching

rate. Due to the thermal equilibrium situation, the forces in the

simulation were much lower than what one would get if the pulling

process was assumed to be a non-equilibrium process.

For extensions higher than E&2, a strong leveling off of the

force extension curve occurred, resulting in force plateaus. Force

plateaus were also observed in stretching experiments although

only for long extensions of Ew15 and more. The fact that in our

simulations the plateau regions started much earlier can be

explained by the coarse grained character of the polymer model.

In reality, the structure of the chromosomes are certainly much

finer. In addition, the loop concentrations in real chromosomes

are most probably also much higher, considering the effect of

SMC dimerization and heterodimerization as has been pointed

out before. However, at present, simulations of much finer systems
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are still computationally not feasible. Moreover, our model does

not include elasticity of the underlying coiling chromatin fibre

itself, which could also contribute to the total elasticity of the whole

chromatid [49].

Different chromosome states after retraction from extension into

the plateau region were reported for chromosomes from different

animals and different ways of assembling (in vivo or in vitro).

While Poirier et al [24] observed a swollen ghost state,

Houchmandzadeh et al [22,23] witnessed non homogeneous

chromatids with alternating thick and thin regions and which are

up to five times longer than originally. Such inhomogeneous

chromatids are obtained in the Dynamic Loop Model when the

number of loops are small and consequently cross-links are not

located homogeneously along the chain (see Figure 1A). A possible

reason for this is that binding sites are destroyed when the

elongation is too far. Therefore, in the retraction process the

looping probability might be much lower than in the original

chain which in turn results in the longer and inhomogeneous

chromosomes.

We have shown that the dynamic cross-linking mechanism leads

to the condensation of the chromatin fibre. The loops within the

fibre evoke an increased bending stiffness by entropic repulsive

forces. Our model is able to explain the shape of mitotic

chromosomes and the flexibility of mitotic chromosomes assem-

bled from Xenopus egg extract. Furthermore, simulations of

stretching forces showed good qualitative match of our results with

experimental findings. We therefore conclude that the structure

and mechanical properties of mitotic chromosomes are in a great

part invoked by internal formation of loops of the chromatin fibre.

Materials and Methods

Polymer Models
Due to the size and the high complexity of chromatin in the cell

nucleus, computer models have to make simplifications in order to

remain viable. Coarse grained polymer models have proved to be

a good tool to model the chromatin fibre. A polymer consists of N
monomers with positions r1, . . . ,rN . Each monomer is perma-

nently linked to its neighbours by bond vectors b1,b2, . . . ,bN{1.

The size of polymers can be described for example by the mean

squared end-to-end distance, which often obeys the scaling law

SR2
eT*N2n ð1Þ

where n is a model specific scaling exponent. For the ideal chain

and the Gaussian chain without excluded volume the exponent is

n~0:5. When excluded volume interaction is included, the

polymer has the scaling exponent of n~0:588.

Dynamic Loop Model
The main idea of the model is that the tight condensation of the

mitotic chromosome, which is presumably facilitated by condensin

proteins and Topoisomerase II, can be modeled by a dynamic

looping mechanism of the chromatin fibre. The model assumes,

that genomically distant sections of the chromatin fibre can cross-

link for a fixed amount of time when they come into physical

proximity of each other. This self-tethering mechanism mimics the

dynamics of binding proteins such as Topoisomerase II and

condensins that have been found to be significant for metaphase

chromosome structure. Although the exact role of Topoisomerase

II and condensins in mitotic chromosomes is still unclear, it is

ascertained that they are able to bind to chromatin and to cross-

link the fibre [31]. However, the important element in the model is

the probabilistic nature of the cross-linking mechanism. Rather

than being a fixed structure, the organization of the fibre is

dynamic. This accounts for the fact that proteins in the

surrounding solvent of the chromatin fibre are mobile. Therefore

also the binding sites are subject to fluctuations in space and time,

which mirrors the effect of protein concentration and binding

affinity.

Monte Carlo Simulations
The behaviour of the chromatin fibre is simulated using a lattice

Monte Carlo algorithm based on the well-established Bond

Fluctuation Model (BFM), which incorporates excluded volume

interactions and preservation of the topological state of the

polymer [50]. The Monte Carlo algorithm for the Dynamic Loop

Model consists of two main steps. In the first step, local moves for

the single monomers are proposed and accepted if the constraints

of the bond vectors are not violated. These local moves make sure

that the algorithm produces correct Rouse dynamics for the

polymer [51]. The key feature of the Dynamic Loop Model is the

ability of the fibre to cross-link with itself, which is comprised in

the second step. When two fibre segments come into the proximity

of each other by diffusion, there is a certain probability k that they

form an additional bond between each other and thus a loop in the

chromatin fibre. The size of the loops, i.e. the contour length

between the bound fibre segments, is restricted by a maximum

length C. The loop also has a restricted lifetime which is drawn

from a Poisson distribution with mean value t. After this lifetime,

the cross-link between the fibre segment dissolves.

Conformations were sampled from the equilibrium distribution

using the Monte Carlo algorithm described above. The algorithm

sweeps the space of possible conformations with equal probability.

Simulations were performed on a lattice with periodic boundary

conditions so there was no spatial confinement of the polymer. As

in all Metropolis Monte Carlo algorithms, subsequent conforma-

tions are highly correlated to each other. In order to obtain

uncorrelated conformations from the simulation, the autocorrela-

tion time has to be considered. Moreover a certain number of steps

are required to reach thermal equilibrium from the start

configuration. The integrated autocorrelation time tint was used

in this work to calculate the autocorrelation time. tint is

determined by the autocorrelation function C(t) and the

normalized autocorrelation function r(t) respectively. These

functions measure the correlation of a certain observable for

conformations which are separated by t Monte Carlo steps. Let

A(t) be an observable, then the unnormalized autocorrelation

function for A(t) is given by

C(t)~SA(szt):A(s)Ts{SA(s)Ts ð2Þ

and the normalized autocorrelation function is simply r(t)~
C(t)

C(0)
,

where S:Ts denotes the average over the thermal ensemble at step

s. For finite samples the average values can be estimated by mean

values. The windowing procedure described in [52] was used to

obtain an estimate of the integrated autocorrelation time

tint~
1

2

XM
t~1

r(t) ð3Þ

The integer M was chosen such that Mwc:tint. According to

Sokal [52], c can vary between 4 for exponential decaying r(t) to

10 for slower decay. In this study we used c~10 for all simulation

runs. Two subsequent conformations are considered to be
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uncorrelated when more than 5 tint steps are between them. In the

beginning of the simulation, 10 tint steps are considered to be

enough for equilibration of the starting configuration. In our

simulations, two such initialization stages were run. In the first

stage the looping mechanism was still turned off, the fibre thus

equilibrated from the start configuration to a self-avoiding walk. In

the second stage, which started after 10 tint, the looping

mechanism was switched on and the Dynamic Loop Model

simulation started. After again 10 tint the system was considered to

be in thermal equilibrium.

Polymer chains consisted of N monomers. Simulations with

various values for N between 400 and 800 were performed. To

properly investigate the influence of the cutoff length C and the

number of loops per chain length kp, we conducted runs with

varying parameters. C took values between 20 and 80 and for kp

values between 0.5 and 1.4 were considered. Typically, the

autocorrelation time for a self-avoiding walk scales with the square

of the number of statistical segments N. With the high densities in

our model chromosomes and consequently the high rejection

rates, this made it hard to model longer chains. The exact

autocorrelation times in the simulations were also depending on

the cutoff length and mean loop concentration. As an example, the

autocorrelation time for a configuration with N~650,C~30 and

kp~1:22 was about 1:7:108 MC steps. Around 5000 independent

conformations could be sampled in 96 hours by parallel

simulations running on 64 processors.

For the simulation of the stretching of model chromatids a force

F was included via a potential Upull . The direction of the force is

parallel to the end-to-end vector of the model chromatid, so the

fibre can move without spatial constraints. Upull is given by

Upull~F :jxN{x1j ð4Þ

The force F is a parameter in the simulations. The potential Upull

has then the effect that local moves of one of the end monomers,

which increase the end-to-end distance, are only accepted with

probability e{F :DRe . In the stretching simulations the polymers are

also in thermal equilibrium. The mean relative extension at force

F is given by

EF ~
SRF

e T{SR0
eT

SR0
eT

~
SDReT
SReT

ð5Þ

Here SR0
eT denotes the mean end-to-end distance without any

pulling force and SRF
e T is the mean end-to-end distance for a

configuration with forces F .

Bending rigidity and persistence length
Long polymers usually have bending rigidities that limit their

flexibility. While for simple models such as the ideal chain or the

Gaussian coil the mean correlation between the bond vectors is

Sbi
:bjT~0,i=j, for real polymers this correlation is non-zero. To

quantitatively describe the flexibility of polymers the directional

correlation of different segments of the polymer can be used. Let

u(s) be the direction of a chain segment at the contour length s.

Then the correlation function between two segments separated by

the contour length s’ is

Scosh(s’)T~Su(s):u(szs’)T ð6Þ

The averaging is done over both, all positions s within one

conformation and the ensemble of all conformations in thermal

equilibrium. A quantity that measures the stiffness of the chain

with respect to the orientational correlation is the persistence

length jp. It is defined as the integral width of the correlation

function [53]

jp~

ð?
0

Scosh(s’)Tds’ ð7Þ

It can be shown that the persistence length is proportional to the

bending modulus B [42]

B~kBTjp ð8Þ

The bending modulus can be described as the quantity which

determines how much force is necessary to bend a segment of the

chain to a certain curvature. In classical elsticity theory, the

bending modulus is connected to Young’s modulus Y which

determines the elastical behaviour of a material. In the case of a

homogeneous cylinder with radius R, the relationship is

B~
p

4
YR4 ð9Þ

Estimating backbones, directional correlation and radial
density

In this work the bending stiffness of the model chromatids were

estimated via the directional correlation of segments of the

chromatids. For this, for each conformation a backbone which

represents the alignment of the model chromatid was calculated.

The polymer chain which is given by the position vectors of the

monomers r1: . . . ,rN was divided into Nk segments of k monomers

each. The center of masses of these segments rk
1, . . . ,rk

Nk
then

represented a new, coarse-grained chain that approximated the

alignment of the coiled chromatin fibre (Figure 2).

With the imaginary backbone the mean directional correlation

between distant segments of the model chromatids were

determined. Let bk
1 : . . . ,bk

Nsec{1 denote the bond vectors of the

backbone, where bk
i ~rk

iz1{rk
i . Then the mean directional

correlation Scosh(s)Tconf between segments that are separated

by the arc length s for one single conformation is given by

Scosh(s)Tconf ~
1

k

XNsec{s

j~1

bk
j
:bk

jzs

jbk
j j:jbk

jzsj
ð10Þ

Let M be the sample size of the Monte-Carlo simulation, then the

thermal average was estimated by

Scosh(s)Tthermal~
1

M

XM
m~1

Scosh(s)Tconfm ð11Þ

The directional correlation was used to test if the coarse

graining level k for the calculation of the backbone was chosen

correctly. In this case the directional correlation showed a

exponential decaying behaviour, whereas for coarse graining

levels that were too low or too high, the behaviour would be non-

exponential.

The backbone that is determined using the method described

above is a coarse grained backbone and suitable to analyse the
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mean directional correlation between segments of the chromatid.

However, for the analysis of other properties such as the thickness

of the chromatid, a less coarse grained backbone is more

advantageous. Such a nearly smooth backbone is obtained using

a similar method. A coarse graining level k is selected again and

the backbone is build in the following way: the first point of the

backbone chain is the center of mass of monomers 1,2,:::,k, the

second point of the backbone is the center of mass of monomers

2,3,:::,kz1 et cetera. Thus, a chain is obtained where the beads

are spatially very close to each other and the backbone can be

considered as a smooth trajectory. These backbones were used to

estimate the length and the thickness of the chromatid by

calculating the mean radial density perpendicular to the backbone.

The chromosome radial thickness rd was estimated as the distance

for which 90 % of all monomers were aligned closer to the

backbone than this distance.

To estimate the thickness of model chromatids under an

external force, backbones were calculated using the same coarse

graining level as for the model chromatids without stretching

force. As the total number of loops in the linear elongation region

only changes marginally, it is justified to assume that the same

coarse graining level yields the correct backbone.
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