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Abstract

Both the probability of a mutation occurring and the ability of the mutant to persist will influence the distribution of
mutants that arise in a population. We studied the interaction of these factors for the in vitro selection of rifampicin (RIF)-
resistant mutants of Mycobacterium tuberculosis. We characterised two series of spontaneous RIF-resistant in vitro mutants
from isoniazid (INH)-sensitive and -resistant laboratory strains and clinical isolates, representing various M. tuberculosis
genotypes. The first series were selected from multiple parallel 1 ml cultures and the second from single 10 ml cultures. RIF-
resistant mutants were screened by Multiplex Ligation-dependent Probe Amplification (MLPA) or by sequencing the rpoB
gene. For all strains the mutation rate for RIF resistance was determined with a fluctuation assay. The most striking
observation was a shift towards rpoB-S531L (TCGRTTG) mutations in a panel of laboratory-generated INH-resistant mutants
selected from the 10-ml cultures (p,0.001). All tested strains showed similar mutation rates (1.3361028 to 2.4961027)
except one of the laboratory-generated INH mutants with a mutation rate measured at 5.7161027, more than 10 times
higher than that of the INH susceptible parental strain (5.46–7.4461028). No significant, systematic difference in the
spectrum of rpoB-mutations between strains of different genotypes was observed. The dramatic shift towards rpoB-S531L in
our INH-resistant laboratory mutants suggests that the relative fitness of resistant mutants can dramatically impact the
distribution of (subsequent) mutations that accumulate in a M. tuberculosis population, at least in vitro. We conclude that,
against specific genetic backgrounds, certain resistance mutations are particularly likely to spread. Molecular screening for
these (combinations of) mutations in clinical isolates could rapidly identify these particular pathogenic strains. We therefore
recommend that isolates are screened for the distribution of resistance mutations, especially in regions that are highly
endemic for (multi)drug resistant tuberculosis.
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Introduction

The emergence, spread and persistence of drug resistance

inhibits the successful treatment and control of tuberculosis (TB).

In contrast to many other bacterial pathogens, the etiological

agent of tuberculosis, Mycobacterium tuberculosis, does not acquire

antimicrobial resistance via horizontally transferred plasmids or

other mobile genetic elements, but almost exclusively via the

acquisition of point mutations or, occasionally, through genomic

deletions [1,2]. M. tuberculosis is thus a genetically isolated and

clonal organism [1,3] and recently acquired mutations are passed

on to the progeny, resulting in the accumulation of mutations in

the genome. Whether these mutations are sustained in the

bacterial population depends on chance, their relative fitness

and subsequent selective sweeps.

Genetic characterisation of drug-resistant clinical isolates indicates

that only a small range of mutations is responsible for the majority of

resistance in clinical isolates; screening for only 3 to 5 mutations in the

rpoB gene detects more than 80% of all clinical M. tuberculosis isolates

with resistance to rifampicin (RIF), a critical component of any

successful anti-TB treatment and a marker for multidrug resistance

[4,5,6,7]. The majority of these mutations are located within an 81-bp

region of rpoB, the gene that encodes the b-chain of RNA polymerase

[8]. This mutational hotspot is therefore often referred to as the

rifampicin resistance determining region. Virtually the same distribu-

tion of mutations conferring RIF resistance is seen in in vitro mutants

[9,10,11,12,13]. RIF resistance is therefore often used as a proxy to

study antibiotic resistance in the laboratory.

Not all rpoB mutations are equivalent; the implications for the

bacteria, such as the level of RIF resistance or the consequential
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fitness, can vary considerably. Some mutations, like rpoB-S531L

are found more often than others and detection of unusual or rare

mutations in clinical isolates may therefore be indicative of

distinctive circumstances.

In an earlier study, we found that acquisition of rifamycin

resistance by a RIF-resistant, but rifabutin-susceptible strain,

carrying an rpoB-S522L (TCGRTTG) mutation, was associated

with a shift in the mutational spectrum outside of the rifampicin

resistance determining region [9]. A possibly related effect was

observed by others in a strain that caused an outbreak in London,

which was resistant to isoniazid and became resistant to RIF via

unusual mutations such as rpoB-V176F [14]. Also, a preference

for specific drug resistance mutations in clinical isolates belonging

to certain M. tuberculosis genotypes or strains obtained from

specific geographical locations has been put forward [15,16,

17,18].

Together these data suggest that the genetic background of the

M. tuberculosis bacteria, such as the genotype or pre-existing drug

resistance, influence the optimal evolutionary route of the bacteria

[19,20,21]; certain combinations of mutations may be lethal or

lead to very unfit organisms, requiring adaptive mutations to

restore their fitness. Experiments performed in vitro suggest that

rpoB mutations S531L (TCGRTTG) and H526D (CACRGAC)

confer the lowest fitness deficit on the bacteria [8,10,11,19,22,23].

However, methods by which ‘‘fitness’’ is measured in different

studies, and even how fitness is defined, are not standardised

[23,24].

The predominance of certain rpoB mutations, in isolates of a

specific bacterial genotype, is thus presumably due to a

combination of the likelihood of each mutation occurring and its

subsequent ability to survive and disseminate. Here we attempt to

study the contribution and interaction of these two factors by

determining the spectrum of spontaneous mutations in a well-

characterised panel of laboratory and clinical strains using two

different selection strategies. This panel includes strains represent-

ing genotypes from different geographical locations as well as

several isoniazid-resistant isolates.

Spontaneous rifampicin-resistant mutants from genetically

characterised strains were selected from bacterial populations

obtained from two different culture strategies; Method 1 (Figure 1)

allowed us to observe the emergence of each targeted mutation

with minimal competition between mutants, and with Method 2

(Figure 2) we determined the frequency, and thereby the

‘‘success’’, of each mutation over time in a larger population.

Mutants were characterized by Multiplex Ligation-dependent

Probe Amplification (MLPA [25]), enabling detection of the RIF-

resistance conferring mutations in rpoB V176F (GTCRTTC),

S522L (TCGRTTG), H526Y (CACRTAC), H526D (CACR
GAC) and S531L (TCGRTTG). Resistant mutants obtained

without these mutations had two regions of their rpoB gene

sequenced using methods previously published [9,25].

Our results indicate that the (rapid) accumulation of drug

resistance mutations can significantly reduce the subsequent

spectrum of mutations. If so, these constrained pathways may

Figure 1. Graphic representation of the experimental procedures of method 1. For each strain 25 1-ml cultures were inoculated with
approximately 1000 bacteria from a 10-ml starting culture after which they were incubated at 36uC in a shaking incubator. When the bacteria reached
the mid-logarithmic phase (ca. three weeks), as determined by addition and colour development of the growth indicator resazurin, bacteria were
transferred to rifampicin-containing solid medium to select for resistant mutants; the total contents of all 1-ml cultures were each plated on a single
well of a 25-well plate, so that all 1-ml cultures from a single strain were plated on a single plate. The plates were then sealed and incubated at 36uC
until sufficient bacterial growth of the mutants was visible (ca. four weeks). From each well, a DNA extract was made, so that one DNA sample
contained DNA from any colonies that grew on the corresponding well. Finally, DNA samples were screened by MLPA [25] or sequencing of the
rifampicin resistance determining region in rpoB.
doi:10.1371/journal.pone.0029108.g001
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also be applicable in vivo, which could facilitate the rapid detection

of specific bacterial pathogens by molecular screening methods.

Results

We set out to study the influence of the genotype of M.

tuberculosis on the emergence and distribution of subsequent

adaptive, spontaneous resistance mutations. Besides the influence

of different genotypes, we also studied the influence of pre-existing

isoniazid resistance, by comparing the spectrum of mutations

acquired by isoniazid-resistant strains to the spectrum acquired by

their (pan)susceptible parental strains. We used two different

methods to map these de novo mutant distributions, which allowed

us to study two distinct factors of acquisition and accumulation of

mutations in vitro. In addition, we determined the mutation rate of

all strains selected for this study.

Recently acquired isoniazid resistance caused
constrained genetic pathways in vitro

Six isoniazid (INH)-resistant strains, carrying different drug-

resistance mutations, and their two parent strains were used for

these experiments; laboratory-generated mutant strains H15, H26,

H48, H71, H103 and their parent strain MTB72, and clinical

isolate 2001–2184 and its isogenic INH-resistant clinical isolate

2001–2185 (Table 1). The number and nature of rpoB-mutants

observed for each strain are depicted in Tables 2 (method 1) and 3

(method 2). No resistant mutants were obtained for strains H15,

H26, H48 and H71 using method 1.

It was assumed that no rpoB-mutants were present at the time of

inoculation and approximately 107 bacteria were present at the

time of plating, however, multiple mutational events occurred in

some of the 1-ml cultures (indicated by the presence of more than

one rpoB mutation identified by MLPA/sequencing). For prag-

matic reasons, these were scored as two separate ‘‘counts’’,

therefore the number (n) in Table 2 does not represent the number

of independent cultures where the specific mutation arose. In

stead, it indicates the number of times the mutation was found and

it should be noted that with our method it could not be determined

whether all mutants in one culture carrying the same mutation

were the result of one or more mutational events. We have shown

previously that mixtures of genotypes can be detected with MLPA,

to at least 1:10 ratios [2]

The (Pearson’s) X2 test was used to determine the probability of

two hypotheses:

h0a: the rate of each of the four most prevalent mutations

(S531L, H526D, H526Y and S522L) is equal

and

h0b: the distribution of rpoB mutations is unaffected by

the presence of INH-resistance.

The results of this test are reported in Tables 4 and 5.

Hypotheses were rejected at a p-value of 0.05 or lower.

With method 1 the proportions of the four targeted rpoB-

mutations were not significantly different and h0a was accepted for

Figure 2. Graphic representation of the experimental procedures of method 2. For method 2 the same non-selective starting cultures as
for method 1 were used to inoculate one 10-ml culture for each strain used in this study. These cultures were incubated at 36uC in a shaking
incubator until mid-logarithmic phase (ca. three weeks). Then four aliquots of 0.5 ml from each culture were plated on rifampicin-containing solid
medium to select for resistant mutants. The plates were sealed and incubated at 36uC until sufficient bacterial growth of the mutants was visible (ca.
four weeks) When mutant colonies were visible on the plates, DNA was extracted: one mutant colony corresponded to one DNA sample. Finally, DNA
samples were screened by MLPA [25] or sequencing of the rifampicin resistance determining region in rpoB.
doi:10.1371/journal.pone.0029108.g002
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Table 1. Description of M. tuberculosis strains used in this study.

strain DST (HR) Genotype origin

17583 SS Beijing ‘atypical’ sublineage RIVM [63]

2002-1640 SS Beijing ‘atypical’ sublineage RIVM

2002-1585 SS Beijing ‘typical’ sublineage (ogt-GGG12GGA, mutT2-GGA58CGA, mutT4-CGG48GGG) RIVM

9500592 SS Beijing ‘typical’ sublineage (ogt-GGG12GGA, mutT2-GGA58CGA, mutT4-CGG48GGG) RIVM [63]

2001–2184 SS T1 RIVM (patient X)

2001–2185 RS T1, katG-AGC315ACC RIVM (patient X, 320 days later)

9900098 SS LAM (Ag85C-GAG103GAA) RIVM

2001-1669 RS LAM (Ag85C-GAG103GAA), katG- AGC315ACC RIVM (patient Y)

2001-1670 RS LAM (Ag85C-GAG103GAA), katG- AGC315ACC RIVM (patient Y, 225 days later)

MTB72 SS Haarlem (ogt-ACC15AGC) Laboratory strain [9]

H15 RS Haarlem (ogt-ACC15AGC), katG-TGG321CGG Derived from MTB72, selected
with 20 mg/ml INH [2]

H26 RS Haarlem (ogt-ACC15AGC), DkatG(315+463) Derived from MTB72, selected
with 1 mg/ml INH (+H2O2) [2]

H48 RS Haarlem (ogt-ACC15AGC), DkatG(463) Derived from MTB72, selected
with 1 mg/ml INH [2]

H71 RS Haarlem (ogt-ACC15AGC), DkatG(315) Derived from MTB72, selected
with 20 mg/ml INH (+H2O2) [2]

H103 RS Haarlem (ogt-ACC15AGC), katG-ACT271ATT Derived from MTB72, selected
with 0.4 mg/ml INH [2]

Strains are identified by the name given by either the RIVM (numerical codes) or the KIT (letter+number). DST: drug susceptibility profile, H: isoniazid, R: rifampicin, S:
susceptible, R: resistant. The genotype of the strains indicated in the table is determined by spoligotyping, mutations in parentheses are characteristic genotypic mutations
identified by MLPA and confirmed by sequencing (ogt, mutT2, mutT4, Ag85C). Mutations in katG confer resistance to isoniazid; deletions were initially picked up by two
different PCR reactions, amplifying either the region that covers the drug resistance mutations at codon 315 or the genotypic mutation at codon 463. The notation in this table
indicates that the PCR fragment in question was absent and that therefore the region was deleted in the specific strain [2].
doi:10.1371/journal.pone.0029108.t001

Table 2. Spectrum of spontaneous rpoB-mutations obtained by method 1 (multiple parallel 1-ml cultures).

RIF -resistance conferring mutation (codon change) in rpoB

strain
V176F
n (%)

S522L
n (%)

H526D
n (%)

H526Y
n (%)

S531L
n (%)

other rpoB
n (%) total mutations in ‘other rpoB ’ (n)

no
mutation
found (n)

MTB72 0 (0) 6 (16) 6 (16) 9 (24) 13 (34) 4 (11) 38 526CGC (3), 526CCC (1) 2

MTB72 0 (0) 1 (4) 11 (44) 3 (12) 5 (20) 5 (20) 25 513GAA (1), ins (dup 514–515), 526CGC (2), 526CCC (1) 2

MTB72 0 (0) 3 (13) 6 (26) 5 (22) 5 (22) 4 (17) 23 526CGC (3), 531TGG (1) 0

H103 0 (0) 1 (5) 2 (11) 6 (32) 6 (32) 4 (21) 19 526CCC (2), 526CGC(1), 531TGG (1) 2

2001–2184 0 (0) 2 (11) 4 (22) 4 (22) 4 (22) 4 (22) 18 526CGC (4) 3

2001–2185 0 (0) 0 (0) 2 (9) 8 (36) 5 (23) 7 (32) 22 522TGG (1), 526CGC (4), 526CCC (1), D526–527 (1) 4

9900098 0 (0) 6 (33) 2 (11) 1 (6) 2 (11) 7 (39) 18 513GAA (1), 526CGC (4), 527CAG (1), 526CCC (1) 7

2001-1669 0 (0) 3 (14) 2 (10) 6 (29) 1 (5) 9 (43) 21 526CGC (5), D524–527 (1), 533CCG (3) 8

2001-1670 1 (20) 1 (20) 0 (0) 1 (20) 1 (20) 1 (20) 5 533CCG (1) 20

9500592 0 (0) 4 (25) 2 (13) 8 (50) 0 (0) 2 (13) 16 526CGC (2) 0

2002-1640 3 (25) 0 (0) 2 (17) 2 (17) 4 (33) 1 (8) 12 526CGC (1) 0

2002-1585 0 (0) 3 (15) 1 (5) 7 (35) 5 (25) 4 (20) 20 513GAA (2), 516GTC (1), 531TGG (1) 0

17583 0 (0) 5 (21) 4 (17) 8 (33) 4 (17) 3 (13) 24 516 GTC (1), 519AAA (1), 526CGC (1) 0

Total 4 35 44 68 55 55 261

For strains H15, H26, H48 and H71 no mutants were obtained. Results for MTB72 (first row) and strains H103, 2001–2184 and 2001–2185 are obtained in the first experiment,
where we assessed the influence of pre-existing INH resistance on the spectrum of mutations. Results for MTB72 (second row) and 9900098, 2001-1669 and 2001-1670 were
obtained in the second experiment, where we determined the role of the LAM genotype on the spectrum of rpoB-mutations. Results for MTB72 (third row) and 9500592, 2002-
1640, 2002-1585 and 17583 were obtained in the third experiment, where we determined the role of the Beijing genotype on the spectrum of rpoB-mutations.
ins: insertion, dup: duplication, D: deletion.
doi:10.1371/journal.pone.0029108.t002
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strains MTB72, H103 and 2001–2184 (pa-values 0.30-0.20, 0.15-

0.10 and 0.90-0.80 respectively, Table 4). However, for strain

2001–2185 the h0a null-hypothesis was rejected (pa,0.05, Table 4),

indicating that the proportions of the four rpoB-mutants were not

equal in this strain.

The results obtained by method 2 are depicted in Table 3. The

S522L mutation was not observed in any of the strains, except for

MTB72 (2/65 (3%)), while this mutation was found in 6/38 (16%,

MTB72), 1/19 (5%, H103) and 2/18 (11%, 2001–2184) samples

tested with method 1 (Table 2). Instead, most of the RIF-resistant

mutants carried the rpoB-S531L mutation when method 2 was

used; for all strains, except 2001–2185, which had acquired an

equal number of H526Y mutants (7/17 (41%)), this was the

category with the highest number of representatives (Table 3). For

strains MTB72, H48, H71, H103 and 2001–2185 this shift in the

mutational spectrum was significant; the h0a was rejected for these

strains, but not for H26, H15 and 2001–2184.

We also compared the mutant distributions obtained for the

INH-resistant strains to the distributions obtained for the wildtype

parent strains (Table 5). In comparison to their susceptible parent

strains MTB72 and 2001–2184, strains H103 and 2001–2185 did

not show a significantly different spectrum using method 1; pb-

values were 0.60-0.50 for H103 and 0.09-0.08 for 2001–2185

(Table 5) and therefore h0b was accepted. However, with method 2

the distribution of laboratory-generated mutants from H71 and

H103 were dramatically different than that of parent strain

MTB72; this difference was significant and h0b was rejected

(Table 3, pb,0.001 Table 5).

Although the null hypotheses, h0a and h0b, were accepted or

rejected on the basis of the p-values, none of the strains, except

MTB72 with method 1 (Table 2), met the criteria needed to

ensure sufficient statistical power to the X2 test, possibly leading to

a type II error (incorrectly accepting the null hypothesis). To

investigate whether the shift in the spectrum of rpoB-mutations

towards rpoB-S531L mutations was detectable with method 2 in

both INH sensitive and all resistant strains, we decided to group

the results obtained for all INH-susceptible strains (MTB72 and

2001–2184) and all INH-resistant strains (H15, H26, H48, H71,

H103 and 2001–2185). We then compared the spectrum of

mutations obtained by each of these two groups (mutants vs

wildtype) between method 1 and method 2. Because we were only

interested in the shift of the proportion of rpoB-S531L mutations,

we reduced the groups of observed mutations to two: ‘‘rpoB-

S531L’’ and ‘‘others’’. The X2 test was then performed to test the

similarity between these four mutant distributions obtained. Since

there was only one degree of freedom (there are only 2 categories),

Yates’ correction factor was used (26). These results are depicted in

Figure 3.

With method 1 30% (n = 17) of the mutants derived from the

INH-susceptible parent strains had acquired an rpoB-S531L

mutation. For the INH-resistant strains this was 26% (n = 11) of

the total number of mutants. These proportions were almost the

Table 3. Spectrum of spontaneous rpoB-mutations obtained by method 2 (single colonies from 10-ml cultures).

RIF -resistance conferring mutation (codon change) in rpoB

strain
V176F
n (%)

S522L
n (%)

H526D
n (%)

H526Y
n (%)

S531L
n (%)

other rpoB
n (%) total mutations in ‘other rpoB’ (n)

no mutation
found (n)

MTB72 0 (0) 2 (3) 10 (15) 20 (31) 27 (42) 6 (9) 65 526CGC (3), 526CCC (1), 531TGG (1), 513GAA (1), 1

MTB72 0 (0) 11 (39) 8 (29) 2 (7) 4 (14) 3 (11) 28 513GAA (2), 526CGC (1) 2

MTB72 0 (0) 2 (7) 5 (18) 4 (14) 4 (14) 13 (46) 28 513GAA (2), 526CGC (3), 526CCC (1),
529CTA (2), 531TGG (5)

0

H15 0 (0) 0 (0) 0 (0) 0 (0) 2 (100) 0 (0) 2 - 1

H26 0 (0) 0 (0) 1 (33) 0 (0) 2 (67) 0 (0) 3 - 1

H48 0 (0) 0 (0) 1 (20) 0 (0) 4 (80) 0 (0) 5 - 0

H71 0 (0) 0 (0) 0 (0) 0 (0) 19 (86) 3 (14) 22 D515–517 (1), 526CGC (1), 531CAG (1), 0

H103 0 (0) 0 (0) 2 (4) 7 (14) 34 (69) 6 (12) 49 513GAA (1), 522TGG (1), 526CCC (1), 526CGC (2),
531TGG (1)

0

2001–2184 0 (0) 0 (0) 0 (0) 3 (27) 4 (36) 4 (36) 11 522TGG (1), 526CCC (1), 526CGC (2) 1

2001–2185 0 (0) 0 (0) 3 (18) 7 (41) 7 (41) 0 (0) 17 - 1

9900098 3 (14) 1 (5) 6 (29) 7 (33) 1 (5) 3 (14) 21 513GAA (1), 526CGC (2) 1

2001-1669 0 (0) 5 (22) 3 (13) 8 (35) 2 (9) 5 (22) 23 513GAA (2), 519AAA (1), 529CTA (1), 533CCG (1) 0

2001-1670 6 (38) 0 (0) 2 (13) 2 (13) 4 (25) 2 (13) 16 526 CGC (2) 7

9500592 0 (0) 0 (0) 0 (0) 0 (0) 2 (29) 5 (71) 7 522TGG (2), 526CGC (3) 0

2002-1640 1 (3) 4 (13) 1 (3) 7 (23) 5 (16) 13 (42) 31 indel D512–519 ins ATC (1), ins 514–515
AAATTC (2), D517 (2), 513CTA (1),
526CCC (1), 526CGC (5), 531TGG (1)

0

2002-1585 0 (0) 2 (11) 5 (26) 1 (5) 4 (21) 7 (37) 19 513GAA (1), 522TGG (1), 526CGC (4), 531TGG (1) 0

17583 0 (0) 0 (0) 1 (20) 0 (0) 1 (20) 3 (60) 5 513GAA (1), 526CGC (1), 531TGG (1) 0

Total 10 27 48 68 126 73 352

Results for MTB72 (first row) and strains H103, 2001–2184 and 2001–2185 were obtained in the first experiment, where we assessed the influence of pre-existing INH resistance
on the spectrum of mutations. Results for MTB72 (second row) and 9900098, 2001-1669 and 2001-1670 were obtained in the second experiment, where we determined the role
of the LAM genotype on the spectrum of rpoB-mutations. Results for MTB72 (third row) and 9500592, 2002-1640, 2002-1585 and 17583 were obtained in the third experiment,
where we determined the role of the Beijing genotype on the spectrum of rpoB-mutations. ins: insertion, indel: combined insertion/deletion, D: deletion.
doi:10.1371/journal.pone.0029108.t003
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same and the difference between the wildtype and the INH-

resistant strains was therefore not significant (p.0.60, Figure 3). In

contrast, the spectrum of mutations obtained with method 2

resulted in 41% (n = 31) of rpoB-S531L mutants for the wildtype

and 69% (n = 68) for the INH-resistant strains, which was a

significant shift towards rpoB-S531L after acquisition of INH

resistance (p,0.001, Figure 3).

We then compared the proportion of rpoB-S531L mutations

acquired by INH-resistant strains via method 1 and method 2

(26% vs 69% respectively, Figure 3) and also found that the

increased contribution of rpoB-S531L mutations was significant

between the two methods (p,0.001, Figure 3). The mutation

distribution of the wildtype pools had also significantly shifted

towards rpoB-S531L (0.03,p,0.04), but to a lesser extent: 30%

(n = 17) with method 1 and 41% (n = 31) with method 2, Figure 3).

These results suggest that pre-existing INH-resistance can

considerably influence the spectrum of subsequent rpoB mutations,

with a preference for rpoB-S531L mutations in the 10-ml cultures,

but not in the 1-ml cultures.

Two of the Latin-American Mediterranean (LAM) strains, the

paired isolates 2001-1669 and 2001-1670, carried an INH-

resistance conferring mutation in the katG gene; S315T (AG-

CRACC, Table 1). Resistance was, however, not acquired in the

patient, since the mutation was already present at the moment of

diagnosis (primary resistance). Both strains were already resistant

to INH, therefore we could not determine the influence of the

katG-S315T mutation on the spectrum of rpoB-mutations. In stead,

we compared the spectrum of these two INH-resistant strains to

the spectrum obtained by strain 9900098, the susceptible LAM

strain in our test-panel. This strain showed a propensity for rpoB-

S522L with method 1 (6/18 (33%), Table 2) and a preference for

rpoB-H526D/Y with method 2 (13/21 (62%), Table 3). The

spectrum obtained by strain 2001-1669 was significantly different

from this spectrum, by both methods (p,0.001 in both cases,

Table 5), but the spectrum obtained by 2001-1670 was only

significantly different when method 2 was used (p,0.001, Table 3).

The observed in vitro spectrum of mutations was not
significantly correlated with the genotype of the strain

In addition to the influence of pre-existing INH-resistance we

also assessed the spectrum of RIF-resistance conferring mutations

of representative genotypes. We selected four strains with the

Beijing genotype, two ‘‘atypical’’ Beijing strains (17583 and 2002-

1640) and two ‘‘typical’’ Beijing strains (2002-1585 and 9500592)

[27,28,29], and three LAM strains (9900098, 2001-1669 and

2001-1670), of which two were INH-resistant (Table 1). The same

two methods, 1 and 2, for culture and selection of mutants were

used as described earlier. Results are depicted in Tables 2 (method

1) and 3 (method 2). Although the rpoB-V176F was not included in

the analyses with the X2 test, a separate column was included in

the tables to indicate the proportion of this mutation that is only

seldom identified in clinical isolates [23,30]. The rpoB-V176F

mutation is located outside of the 81-bp hotspot, where up to 96%

of RIF-resistance conferring mutations appear in resistant strains,

both in vivo as in vitro [4,5,8]. A higher prevalence of this mutation

may indicate extraordinary circumstances [9].

Strain 2002-1640 had acquired the rpoB-V176F mutation at

least three times independently with method 1, making it the

second most frequent mutation in this strain (3/12 (25%), Table 2).

Although the frequency of rpoB-V176F was lower, it was still

observed in 2002-1640 with method 2 (1/31 (3%), Table 3). This

rare mutation was also found in LAM-strain 2001-1670 (1/5

(20%), Table 2) with method 1 and with method 2 (6/16 (38%),

Table 3) and in LAM-strain 9900098 (3/21 (14%), Table 3) with

method 2 but not with method 1.

The rpoB-V176F was not observed in any of the RIF-resistant

mutants derived from the other strains.

Table 4. Probability of an equal distribution of the four
targeted rpoB mutations in various M. tuberculosis strains.

strain Probability

method 1 (1-ml) method 2 (10-ml)

MTB72 0.30-0.20 ,0.001

MTB72 0.02-0.01 0.06-0.05

MTB72 0.90-0.80 0.80-0.70

H15 NA 0.15-0.10

H26 NA 0.30-0.20

H48 NA 0.04-0.03

H71 NA ,0.001

H103 0.15-0.10 ,0.001

2001–2184 0.90-0.80 0.07-0.06

2001–2185 0.03-0.02 0.05-0.04

9900098 0.15-0.10 0.05-0.04

2001-1669 0.20-0.15 0.30-0.20

2001-1670 0.90-0.80 0.20-0.15

9500592 0.02-0.01 0.15-0.10

2002-1640 0.30-0.20 0.30-0.20

2002-1585 0.20-0.15 0.40-0.30

17583 0.60-0.50 0.60-0.50

The probability (pa) of hypothesis h0a (the targeted rpoB-mutations (S531L, H526D,
H526Y and S522L) have an equal chance of occurring) was determined by X2 for
each strain for both method 1 and method 2. For all tested strains, except in the
first experiment with MTB72, the statistical power of the X2 test was reduced due to
one or more mutations occurring less than five times. NA: not available, mutants
were not obtained for these strains. Bold: pa,0.05, therefore hypothesis is rejected.
doi:10.1371/journal.pone.0029108.t004

Table 5. Probability of the spectrum of rpoB mutations in the
INH-resistant mutant and the wildtype parent being identical.

Probability

strain method 1 (1-ml) method 2 (10-ml)

H26 NA 0.60-0.50

H15 NA 0.5

H48 NA 0.40-0.30

H71 NA ,0.001

H103 0.60-0.50 ,0.001

2001–2185 0.09-0.08 0.90-0.80

2001-1669 ,0.001* 0.01-0.001*

2001-1670 0.40-0.30* ,0.001*

The probability of hypothesis h0b (the spectrum of rpoB-mutations of the INH-
resistant mutant is not different than that of the wildtype parent) determined by X2

for all INH-resistant strains for both methods. For all of the tested strains the
statistical power of the X2 test was reduced due to one or more mutations
occurring less than five times. NA: not available, mutants were not obtained for
these strains.
*: since both 2001-1669 and 2001-1670 are resistant to INH (via katG-S315T), the
spectrum was compared to the only susceptible LAM strain, 9900098. Bold:
pa,0.05, therefore hypothesis is rejected.
doi:10.1371/journal.pone.0029108.t005
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Another striking observation was that none of the 16 mutants

derived from strain 9500592 obtained with method 1 had acquired

an rpoB-S531L mutation, which is generally associated with the

least fitness deficit and is most often seen in RIF-resistant clinical

isolates. However, with method 2, 2/7 (29%, Table 3) mutants

carried this mutation; the five other mutants carried uncommon

mutations (Table 3). This shift away from rpoB-S531L observed

with method 1 was significantly different from an equal

distribution (p,0.02, Table 4) between the four most common

rpoB-mutations, but the spectrum obtained with method 2 was not

(0.10,p,0.15, Table 2).

As can be seen, there was a considerate amount of variation in

the mutant distribution within as well as between the genotypes

(Tables 2 and 3). Replication of the experiment with MTB72, a

susceptible Haarlem strain, included in every experiment as a

control, showed that the results between experiments were already

quite different for a single strain (Tables 2 and 3), both with

method 1 and method 2. Therefore, it was not possible to compare

the mutant distributions between the different genotypes; com-

bining the data per genotype would not have resulted in a

representative distribution.

Furthermore, our data do not seem to show a clear systematic

relationship between the amount (proportion), nature and

spectrum of uncommon mutations in rpoB (‘‘other rpoB’’, Tables 2

and 3) and the genotype; any shift towards or inclusion of atypical

rpoB mutations of a strain, appeared to be strain specific rather

than genotype specific, as was the case for strains 2001-1669,

9900098 (method 1, Table 2), MTB72, H103, 95000592 and

2002-1640 (method 2, Table 3).

In our study no reproducible correlation between genotype and

a specific mutation spectrum was observed.

Clinical INH resistance did not lead to a significantly
higher rifampicin mutation rate

A fluctuation assay was performed to estimate the mutation rate

to rifampicin resistance in the strains included in this study. Two

independent experiments were performed for each strain, but, due

to contamination and technical problems, duplicate results were

only obtained for MTB72 and 2002-1585. Results are depicted in

Figure 4.

Most of the mutation rates were measured at around 1028,

which is comparable to data we obtained previously [2] and to

data published by others [13,30]. Strains 17583 and 2002-1585

showed a moderately increased mutation rate (1.2161027 and

2.4961027, respectively; Figure 4), however, well within the range

of natural or experimental variation; Werngren and Hoffner [13]

have seen comparable variation when testing multiple strains and

upon repetition of the experiment with strain 2002-1585 we

observed a lower mutation rate (4.5061028, Figure 4). Although

still within the limits, the isogenic strains 2001–2184 and 2001–

2185, which represent the T1 spoligotype-family, have a

somewhat lower mutation rate (2.8561028 and 1.3361028,

Figure 4). However, strain H66, which obtained INH-resistance

by a partial deletion of the katG gene, showed an increased

mutation rate, when compared to its wildtype parent strain

MTB72; under the same experimental conditions the increase was

10.5 times (5.7161027 versus 5.4661028, Figure 4). In contrast,

for the strains which had acquired INH resistance in the patient,

via katG-S315T (2001–2185, 2001-1669 and 2001-1670, Figure 4),

we did not find an increased mutation rate.

Discussion

The predominance of a mutation is the product of the

probability of the mutation occurring in the genome and the

probability of the altered microorganism surviving in a given

environment. Thus, what ultimately matters for the generation of

drug resistance is not the mutation rate, but the substitution rate;

the rate at which a bacterial strain can produce viable, adequately

adapted offspring. In this study we have shown that the in vitro

mutation rate was within the same range for all but one M.

tuberculosis strain tested and that there were no consistent significant

differences in the spectrum of rpoB-mutations between the various

M. tuberculosis genotypes we tested. However, the substitution rate

may be different for the different strains; under more rigorous

selective conditions, for example in the host, the type of resistance

Figure 3. Proportion of rpoB-S531L and other mutations in rpoB acquired by INH-resistant M. tuberculosis strains compared to
their susceptible parent strains. Results for all INH-resistant strains are grouped, as well as the results for are wildtype strains. Mutation
distribution obtained for the INH-resistant group and the wildtype group and rpoB mutation distribution obtained for the two different experimental
methods are compared. The red bars depict the proportion of rpoB-S531L mutations that were detected. The blue bars represent all other rpoB-
mutations, whereas for the X2 test depicted in tables 4 and 5 only the four most prevalent mutations were taken into account. Numbers in the bar
graphs represent the number of samples carrying the specific mutation as a percentage of the total amount of rpoB mutants and as absolute
numbers (in brackets). The p-values above the bar graphs represent the probability that the distributions compared are similar.
doi:10.1371/journal.pone.0029108.g003
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mutation in combination with the genetic background of a strain

may have a more dramatic impact on which and how many

mutants will survive and be transmitted to new hosts [21,31,32].

Previously, researchers have shown that drug resistance

mutations can have varying consequences on the fitness of the

bacteria carrying them [19,20,22,23,33,34,35]. This partly

depends on the magnitude of the fitness deficit of each de novo

resistance mutation, but can also be influenced by the genetic

background of the bacterial strain and by the ability/opportunity

to acquire compensatory mutations [19,20,36]. Most studies have

shown that the S531L mutation in rpoB is the most prevalent

rifampicin-resistance conferring mutation found in vitro and in vivo,

presumably because it confers the least fitness deficit [8,10,11,

19,22,23], at least before transmission or adaptive mutation has

occurred [37].

However, other studies have reported an altered distribution of

mutations in rpoB among RIF-resistant isolates [9,11,15,16,17,18],

indicating that other resistance mechanisms can also be successful

under certain circumstances.

In this study we hypothesized that the genetic background does

not only influence the fitness of the bacteria, but also impacts the

probability of specific mutations accumulating in a population. In

addition, we hypothesized that an altered spectrum of mutations

may also lead to a changed mutation rate due to a changed

adaptation strategy [9].

We tested these hypotheses by selecting spontaneous RIF-

resistant mutants using two distinct selection strategies which

allowed us to investigate the likelihood of specific mutations in rpoB

occurring (method 1) versus the likelihood of surviving in the

population (the in vitro fitness, method 2). We made use of well-

characterised M. tuberculosis strains with different genetic back-

grounds. Mutations were identified by MLPA [25] or by

sequencing of two regions in rpoB [9,38]. To assess the effect of

genetic background on the mutation rate we performed a

fluctuation assay, using the same concentration of RIF (8 mg/ml)

to select for resistant mutants [2].

Comparison of the rpoB mutant distribution obtained from the

wildtype parent strains to the rpoB mutant distribution obtained

from the INH-resistant daughter strains, showed that acquisition

of INH-resistance resulted in a dramatic shift toward rpoB-S531L

mutations (Figure 3). This effect was most evident when method 2

was used to select for RIF-resistant mutants. The mutant

distribution of this group was significantly shifted compared to

the wildtype INH-susceptible pool with method 2 and to the INH-

resistant pool with method 1 (Figure 3). The laboratory-generated

INH-resistant mutants (H15, H26, H48, H71, H103) contributed

mostly to this shift; of 81 rpoB-mutants selected with method 2, 61

(75%) carried the rpoB-S531L mutation. In contrast, the clinical

INH-mutants (2001–2185, 2001-1669 and 2001-1670) did not

show this dramatic shift; they acquired an rpoB-S531L mutation in

7/17 (41%), 2/23 (9%) and 4/16 (25%) RIF-resistant mutants,

respectively. As a reference, from the RIF-resistant mutants

derived from the INH susceptible parent strains, MTB72 and

2001–2184, 27/65 (42%) and 4/11 (36%) mutants had acquired

the rpoB-S531L mutation, respectively (Table 3).

This difference in rpoB mutant spectrum may find its origin in

the different INH-resistance conferring mutations carried by the

two populations; the laboratory-generated rpoB-mutants carry

INH-resistance-conferring mutations that have rarely or even

never been observed in clinical isolates [2], whereas the clinical

strains in our study (2001–2185, 2001-1669 and 2001-1670) all

carry the most prevalent mutation seen in INH-resistant patient

isolates, katG-S315T [4,5]. This mutation is thought to confer only

a very small fitness deficit [20,34,37,39,40] and the strains carrying

this mutation therefore would have a higher ‘‘baseline fitness’’

than the strains carrying uncommon INH-resistance mutations. It

is assumed that strains with mutations that confer little fitness costs

are not in need of restoration of fitness and therefore not likely to

acquire adaptive mutations [41]. As a consequence of the higher

‘‘baseline fitness’’, katG-S315T mutants will be more able to

withstand or overcome the deleterious effects associated with

certain rpoB-mutations, allowing for a wider spectrum of RIF-

resistance conferring mutations. Strains that already have a low

‘‘baseline fitness’’, such as potentially our in vitro INH-mutants, can

probably only survive acquisition of ‘‘fit’’ rpoB-mutations, such as

rpoB-S531L. Thus, in our model the relative fitness cost of the

different rpoB mutations is probably more apparent in strains that

are already quite unfit.

The higher baseline fitness of the clinical INH-resistant mutants

could, in part, also be a result of adaptive or compensatory

Figure 4. Mutation rates (61028/cell division), determined with 8 mg/ml rifampicin, for the M. tuberculosis strains used in this study.
Description of the strains can be found in Table 1. Red bars indicate replicates from a second, independent experiment.
doi:10.1371/journal.pone.0029108.g004
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mutations, acquired within the patient. A higher baseline fitness

could have also allowed for the many rare mutations in rpoB,

including deletions and insertions, we observed for almost all

strains with both methods (Tables 2 and 3); most of these

mutations are rarely or never found in RIF-resistant strains

isolated from (immunocompetent) patients, where severe (sequen-

tial) bottlenecks have probably selected against most of these

mutations.

Since multiple mutants are present with method 2 there is more

competition between mutants than with method 1 [11], we

therefore would have expected a reduced spectrum of rpoB-

mutations. In addition, other researchers have reported rpoB-

S531L to be the most frequently observed mutation in similar

experiments [12]. In those experiments 5-ml cultures were used

and there was no opportunity to identify multiple mutations in a

whole culture, as we did; in stead one or sometimes 10 colonies per

plate were analysed, perhaps biasing towards ‘‘fitter’’ and therefore

bigger colonies to be picked.

Our results indicate that probably more severe bottlenecks or

strong selective sweeps have to be applied in vitro to mimic the

selection processes bacteria are constantly subjected to when living

inside the host [36]. However, prolonged incubation of bacteria

can already lead to a decreased spectrum of mutations [11],

suggesting that despite an initial burst of multiple rpoB-mutations,

even in vitro conditions can induce rather constrained evolutionary

pathways [21].

We have shown that, regardless of genotype, many more drug

resistance mutations occur than would be expected on the basis of

clinical screening. Particularly codon 526 can be highly variable,

as was observed by others [4,5,12,22], and we detected many

uncommon mutations (Tables 2 and 3). We also found a relatively

high degree of insertions and deletions, which did not seem to be

specific for any strain or method and there were some inclinations

towards certain mutations, in particular for the rare mutation

V176F. However, we did not detect a difference in the spectrum of

mutations between the various genotypes. We did not detect a

specific M. tuberculosis genotype-related in vitro effect that

determines which mutations predominate.

Others have performed similar studies, albeit on a smaller scale

and with more focus on Beijing/non-Beijing [10,13,24], and also

did not find a genotype-related effect. We observed that the

mutational spectrum can vary substantially between experiments.

Researchers have previously reported that the spectrum of RIF-

resistance conferring mutations in rpoB can be dependent on the

growth conditions of the bacteria, such as the pH of the growth

medium or even the age of a bacterial culture [11]. Genotype-

related characteristics have been observed in vivo [15,16,17,18] but

to our knowledge structural differences between M. tuberculosis

genotypes have yet to be demonstrated in vitro.

We have focused here on differences in evolutionary pathways

of the bacteria, but are aware that differences observed in vivo to a

certain extent may be attributable to host characteristics; reports of

‘‘favoured mutations’’ have often been restricted to a single

geographical location, where it is likely that hosts share genotypic

characteristics [42,43]. It has furthermore been discovered that

host factors, such as the Toll-like receptor 2 allele, can partly

influence the manifestation of disease and the susceptibility of

humans to certain bacterial genotypes [44].

In a recent study sequential, increasingly drug-resistant isolates

were obtained from a single patient and it was shown that the first

(susceptible) and the last (multidrug resistant) isolate only differed

by the two drug resistance-conferring mutations, as determined by

whole genome sequencing [32]. This homogeneity for INH and

RIF resistance conferring mutations in sequential isolates from a

single patient was corroborated by others [45]. These reports

imply that the selection pressure exerted by antibiotic usage can

significantly reduce the spectrum of viable mutants and evolu-

tionary pathways are probably restricted as a result [21,46].

However, host-to-host transmission probably has an even more

severe selective and thus constraining effect [47,48]. In addition,

Schürch et al [49] have retrospectively followed a chain of

transmission of TB in the Netherlands over a period of more than

a decade; the strain in question only acquired six mutations, of

which five had been acquired within one patient.

In areas where transmission is rapid, successful strains [50,51]

may have very different characteristics to strains which are

successful in more slowly evolving epidemics [48]. These two

forms of transmission could lead to very different evolutionary

routes; in areas with a high transmission rate it is likely that clusters

of drug-resistant strains will be clonal and acquisition of drug

resistance happened only once (before the spread – secondary

resistance). On the contrary, in regions where the epidemic moves

more slowly, drug-resistant strains are, at least initially, not

expected to be highly clustered since drug resistance is more likely

to be established within the patient (primary resistance) and

adaptive evolution appears to continue even during latent

infection [52].

If bacteria with specific mutations have a significant advantage

in a disseminating population, the same drug resistance mutations

will have a higher chance of occurring repeatedly, such as rpoB-

S531L in our katG mutants. Thus, such a cluster of primary

resistant strains would be indistinguishable from a truly clonal

cluster of secondary resistant strains by current genotyping

methods.

This situation is analogous to the high prevalence of rpoB-S531L

mutants in our 1-ml experiments (method 1) which are not clonal,

whereas rpoB-S531L mutants from the 10-ml experiment (method

2) may (or may not) represent clonal expansion of a singe

mutational event. Misinterpretation of these two scenarios may

result in incorrect measures being taken and failure to control the

spread of resistance.

It has been suggested that sequencing of complete bacterial

genomes should be used for the standard screening of clinical

isolates [53]. Whole genome sequencing of seemingly clonal drug

resistance clusters could reveal additional (‘‘piggy-back’’) muta-

tions, indicating if drug resistance was indeed spread or acquired

within the host.

A recent article [6] reports that the sensitivity of a molecular

drug resistance test depended on the resistance profile of the

bacteria tested, varying from close to 91% for MDR-TB to only

56%/70% for strains with monoresistance to INH or RIF. These

results are supported by Van Rie et al. who analysed multiple

strains from South Africa and concluded that by targeting just

three mutations it was possible to detect up to 90% of MDR-TB

[7].

As most molecular tests target only the most prevalent drug

resistance conferring mutations, the increased sensitivity for MDR

strains may be a direct result of a constrained pathway for the

bacteria: only a few combinations of drug resistance conferring

mutations can lead to a ‘‘fit’’ MDR strain, whereas a mono-

resistant strain can have a much wider spectrum of mutations.

Indeed, in a study performed by Iwamoto it was shown that as

strains accumulate multiple drug resistance mutations, the

spectrum of mutations is considerably reduced [54].

These reports, in addition to our data, indicate that sign

epistasis can play a significant role in the development of

multidrug resistance in M. tuberculosis, as was suggested by

Trindade et al. [55] and that the routes to a successful MDR or
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even XDR strain tend to become more restricted with each

mutation that is acquired [21].

We are entering an era in which we will recognise the

importance of certain mutations and we can use them to build

early warning systems or optimise treatment [31]. Although for a

genetically stable organism such as M. tuberculosis only a fraction of

the data generated will be informative, data acquired with whole

genome sequencing will be invaluable for the design of molecular

tests with a much higher discriminatory ability than current

methods, by targeting informative single nucleotide polymor-

phisms scattered throughout the genome [2,25,53,56,57,58,59].

Materials and Methods

M. tuberculosis strains used
Fifteen strains were used during the course of this study,

including clinical isolates with and without isoniazid (INH)

resistance, and a laboratory strain (MTB72) and its spontaneous

INH-resistant mutants. This collection of strains represents the M.

tuberculosis genotypes Haarlem [60], Beijing (‘typical’ and ‘atypical’

sublineage [28,29]), Latin-American Mediterranean (LAM) [61]

and T1 [62]. M. tuberculosis strains 2001–2184, 2001–2185, 2002-

1585, 2002-1640, 9900098, 2001-1669, 2001-1670, 17583 and

9500592 were acquired as pure cultures on slope from the RIVM

in Bilthoven, the Netherlands. The M. tuberculosis strains 17583

and 9500592 were presented previously as reference Beijing strains

by Kremer et al. [63]. Strains 2001–2184 and 2001–2185 are

sequential isolates from the same patient (see Table 1); for this

reason they are assumed to have the same clonal origin. The same

is true for strains 2001-1669 and 2001-1670.

Strain MTB72 (ATCC 35801) is a pansusceptible laboratory

strain belonging to the Haarlem genotype. Strains with a HXX

code are spontaneous INH-resistant mutants, derived from strain

MTB72 in our laboratory as described previously [2].

The characteristics of the strains and their origins are described

in Table 1.

Bacterial culture
Bacteria were cultured in Middlebrook 7H9 medium (Difco,

BD, Sparks, MD, USA), supplemented with oleic acid/albumin/

dextrose/catalase (OADC Enrichment, BD, Sparks, MD, USA),

in a shaking incubator at 37uC. For all strains, a liquid starting

culture was made by inoculating pure colonies from Löwenstein–

Jensen or Coletsos slopes into 10 mL of liquid culture medium.

When these cultures reached the logarithmic growth phase (circa 3

weeks) they were mixed vigorously to homogenize the bacterial

suspension. Clumped cells were allowed to settle for 3 min and

aliquots of the cell suspension were then transferred to fresh

nonselective liquid medium to make multiple parallel cultures of

1 mL (method 1) or a final culture of 10 mL (method 2) as

described below.

Method 1 (Figure 1). For each strain 25 1-ml cultures were

inoculated from the 10-ml non-selective liquid starting culture by

transferring 1 uL of this cell suspension (,1000 bacteria) to a

2 mL screwcap tube containing 1 mL of MB7H9 medium +
OADC with a sterile inoculation needle. Two to three sterile glass

beads were added to each culture to ensure mixing. The 1 mL

cultures were incubated in a shaking incubator at 36uC for

approximately three weeks. Bacterial growth was monitored each

week by adding 30 mL of a 0.02% (wt/vol) resazurin solution

(Sigma), a growth indicator, to additional 1-ml cultures incubated

simultaneously. These additional cultures were used only to

monitor growth and resazurin was not added to the cultures from

which the RIF-resistant mutants were analysed. After addition of

the resazurin, all cultures were wrapped in aluminum foil and

after 24 hours incubation at 36uC the color development was

determined. After sufficient growth, when the reference cultures

turned a bright pink, the target cultures were centrifuged at 5000 g

for 8 min and 850 mL of the supernatant was discarded. For each

culture the remaining 150 mL was resuspended and plated in one

well of a square 25-well replica plate (Greiner, Germany)

containing 3 mL of MB7H11 + OADC supplemented with

8 mg/L rifampicin (Sigma–Aldrich Chemie) to select for RIF-

resistant mutants.

The 25-well square plates were allowed to dry in a biosafety

laminar flow cabinet, until all liquid was absorbed into the solid

medium. The plates were then sealed in plastic bags and incubated

at 36uC. After growth was clearly visible in all or most wells, total

populations of mutants were isolated from each well and analysed

for mutations in rpoB (see below).

Method 2 (Figure 2). For each strain a single 10-ml culture

was made with a 0.5 ml inoculum from the 10-ml, non-selective

liquid starting culture described above. Bacterial growth was

monitored by determining the turbidity of the cultures at regular

intervals. When sufficient growth was established, from each strain

four 0.5 ml aliquots were taken from each strain and plated on

four separate 8 mg/L RIF-containing plates to select for resistant

mutants. Plates were wrapped and sealed separately in plastic bags

to minimise cross-contamination and incubated at 36uC for 3–4

weeks, until clear mutant colonies could be observed. DNA was

then isolated from single colonies by the method described below

and samples were further analysed to screen for mutations in rpoB.

Screening/characterisation of mutants
Isolation of DNA. For method 1 200 mL lysis buffer (10 mM

Tris-HCl/1 mM EDTA pH 8.0 containing 1% Triton X-100

(BDH Laboratory Supplies, Poole, England)) was placed in each

well of the 25-well square plates. Resuspension of the mutant

colonies was ensured by pipetting the buffer up and down with a

micropipette. With a clean pipette filtertip the suspension

containing the total mutant population from a single well, was

transferred to a microcentrifuge tube and then heated at 95uC in a

heat block for 30 minutes. After lysis, cells were centrifuged at

5000 g for 3 minutes and 130 mL of the supernatant was collected.

For method 2 individual mutant colonies were picked from the

RIF-containing plate and each suspended in 150 mL lysis buffer

after which the same procedure as described above for method 1

was followed to extract the DNA.

Multiplex Ligation-dependent Probe Amplification. Crude

DNA samples were analysed by Multiplex Ligation-dependent Probe

Amplification (MLPA), enabling detection of the RIF-resistance

conferring mutations in rpoB V176F, (GTCRTTC), S522L

(TCGRTTG), H526D (CACRGAC), H526Y (CACRTAC) and

S531L (TCGRTTG). M. tuberculosis-specific MLPA was performed as

previously published [25], except in the present study only mutations

in rpoB are reported.

Sequence analysis rpoB. For all RIF-resistant mutants for

whom no mutation in rpoB was identified by MLPA, two fragments

of the rpoB gene were sequenced. The same DNA extracts used for

MLPA were used for PCR and subsequent sequencing analysis.

PCR of rpoB clusters I and III was carried out as previously

described [9], using primer pairs rpoB-2F/2R and rpoB-7F/7R

respectively [25]. The PCR products were sequenced in both

directions using the dideoxy chain termination method with the

Big Dye Terminator cycle sequencing Kit (Applied Biosystems).

Sequence analysis was performed on a 310 Genetic Analyzer

(Applied Biosystems). All rpoB codon numbers, except V176, are

reported using the E. coli numbering system.
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Fluctuation assay
The mutation rates (i.e. the chance of a mutation occurring per

generation) for rifampicin resistance were estimated with a

fluctuation assay. Our method has been previously published [2]

and was based on the p0-method described by Luria and Delbrück

[64].

Statistical analysis
For all analyses our null hypothesis (h0a) was that under each

condition tested each mutation in rpoB was equally likely to occur

and secondly (h0b) that the distribution of specific mutations would

be unaffected by the presence of INH resistance. To test this

hypothesis Pearson’s X2 test was used. Hypotheses were rejected at

a p-value of 0.05 or lower. We used the X2 test to determine if the

frequency of each of the four most prevalent mutations (S531L,

H526D, H526Y and S522L) was equal when using each selection

method and secondly, to determine whether the distribution of

rpoB mutations in each of the INH-resistant mutants was equal

to that of the INH susceptible parent. The p-values of the

distributions of the individual strains are depicted in Tables 4 and

5. In most of the cases the statistical power of the X2 test was

reduced, since not all of the criteria for the X2-test were met (i.e. in

all the observed categories the minimum sample size should be five

and none of the observed frequencies should be zero). Therefore

we grouped all strains which were INH-resistant and all strains

which were INH-susceptible and reduced the categories to ‘‘rpoB-

S531L’’ and ‘‘other mutations’’. To adjust for this reduction in

number of categories, we used Yates’ correction for continuity

[26].

GenBank accession numbers
The majority of the rifampicin resistance-conferring mutations

in rpoB we found in this study have been previously observed and

reported. Those mutations that were not deposited to GenBank

(http://www.ncbi.nlm.nih.gov/Genbank/) or uploaded to the M.

tuberculosis drug resistance mutations database TBDReaMDB

(http://www.tbdreamdb.com/) were regarded as novel and were

deposited to GenBank. Only mutations found in DNA samples

derived from single mutant colonies (method 2) and not from

mixed cultures (method 1) were considered. Mutations in rpoB

AAC519AAA (GenBank JN819066), CGA529CTA (GenBank

JN819067), indel D512–519 ins ATC (GenBank JN819068) and

ins 514–515 AAATTC (GenBank JN819069) were deposited to

the GenBank database. In addition, the isoniazid resistance-

conferring mutation katG ACT271ATT in strain H103 was

deposited to GenBank, under the accession number JN819065.
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