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Abstract

A major goal of large-scale genomics projects is to enable the use of data from high-throughput experimental methods to
predict complex phenotypes such as disease susceptibility. The DREAM5 Systems Genetics B Challenge solicited algorithms
to predict soybean plant resistance to the pathogen Phytophthora sojae from training sets including phenotype, genotype,
and gene expression data. The challenge test set was divided into three subcategories, one requiring prediction based on
only genotype data, another on only gene expression data, and the third on both genotype and gene expression data. Here
we present our approach, primarily using regularized regression, which received the best-performer award for subchallenge
B2 (gene expression only). We found that despite the availability of 941 genotype markers and 28,395 gene expression
features, optimal models determined by cross-validation experiments typically used fewer than ten predictors, underscoring
the importance of strong regularization in noisy datasets with far more features than samples. We also present substantial
analysis of the training and test setup of the challenge, identifying high variance in performance on the gold standard test
sets.
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Introduction

Predicting complex phenotypes from genotype or gene

expression data is a key step toward personalized medicine: the

use of genomic data to improve the health of individuals, for

instance by predicting susceptibility to disease or response to

treatment [1–4]. A pivotal early success in this field was the

discovery of gene expression profiles for the classification and

prognosis of breast cancer [5–7]. Improved technology and

declining costs have since enabled ever-larger genetic screens

and gene expression studies, allowing researchers to apply the

power of genetic analysis of genome-wide gene expression [8,9].

The difficulty has thus shifted to the algorithmic side: untangling

complex associations and identifying small numbers of influential

predictors of phenotypic effects amid a sea of largely unrelated

measurements [10,11]. One avenue of recent research has been

the integration of distinct types of genomic data to enhance

inference, including both linkage studies combining knowledge

from different organisms [12,13] and integrative analysis of

distinct data types for the same organism [14,15].

It is difficult to objectively measure progress on algorithmic

challenges without standard benchmarks; within this context, the

Dialogue for Reverse Engineering Assessments and Methods

(DREAM) initiative [16] aims to provide a fair comparison of

methods and a clear sense of the reliability of the models. The fifth

annual DREAM challenge held in 2010 included a Systems

Genetics component with the goal of predicting disease suscep-

tibility from (1) only genotype data, (2) only gene expression data,

and (3) genotype and gene expression data. Through the

challenge, the organizers hoped to identify the best predictive

modeling approaches and to evaluate the benefits of learning from

combined genotype and gene expression data [15].

As a top performer on the second part of the challenge, we were

invited to present our results at the DREAM5 conference and

contribute to the DREAM5 collection in PLoS ONE; this paper

describes our approach. We provide a comparison of several

regularized regression models and find comparable performance

of elastic net, lasso, and best subset selection. We also carefully

analyze the level of noise in the data and consequent variability in

performance and offer practical suggestions for similar data

analysis and data pre-processing.

Materials and Methods

Dataset and challenge setup
The data for this challenge were collected from a systems genetics

experiment conducted at the Virginia Bioinformatics Institute [17].

Two inbred lines of soybean plants that differed substantially in

susceptibility to a pathogen, Phytophthora sojae, were crossed and their

offspring were inbred for more than 12 generations to produce a

population of recombinant inbred lines (RILs). Individuals within

each RIL exhibited almost no genetic variation, whereas distinct

RILs displayed much genetic variation owing to their differing

mixtures of parental genes. Each RIL was screened for 941 genetic
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variants and gene-expression profiled for 28,395 genes; gene

expression was measured in uninfected plants because the goal of

the challenge was to predict disease susceptibility using only

information gathered under normal (healthy) conditions.

After infection with P. sojae, the plants were assayed for two

continuous phenotypes, each a measurement of the amount of

pathogen RNA in the infected tissue sample. The first phenotype

measured the fraction of pathogen probe sets that yielded a

detectable hybridization signal as determined by the MAS5

presence/absence call in the Affymetrix software used to analyze

the data. The second phenotype measured the ratio between the

sum of all background-subtracted soybean probe intensities and

the sum of all background-subtracted pathogen probe intensities.

We abbreviate the two phenotypes as P1 and P2.

The training data, from 200 RILs, thus consisted of a 200|941
boolean matrix of genotype values (denoting presence or absence

of genotype variants), a 200|28,395 real matrix of gene

expression values, and a 200|2 real matrix of phenotype values.

Three distinct test sets of 30 RILs each were used for evaluating

submissions; 30|941 genotype and/or 30|28,395 gene expres-

sion matrices were provided according to the respective sub-

challenge conditions, and predictions of the corresponding

(withheld) 30|2 phenotype matrices were solicited. At the end

of the submission period, predictions were scored according to

their Spearman (rank) correlations to the withheld ‘‘gold standard’’

phenotype data. All training and test data are available at the

DREAM5 challenge website (http://wiki.c2b2.columbia.edu/

dream/index.php/D5c3).

Preliminary ranking of predictors by correlation
We began our analysis for this challenge by computing

correlation coefficients of the genotype and gene expression

training features against the two phenotype variables. The

magnitudes of these correlations guided our choice of modeling

technique; we also later used correlation-sorted rank lists to limit

the scope of computationally intense calculations to those features

most likely to be relevant.

On first glance the highest correlations, above 0.3 for the

expression data (Table 1), appear promising. The significance of

these correlations needs to be considered with the numbers of

features in mind, however: 941 genotype and 28,395 gene

expression markers. As a rough sanity check, we generated

random matrices with sizes equal to those of the training predictor

matrices and computed the correlation coefficients of these

random features with the training phenotype data. This

experiment revealed that in fact the training features as a whole

are only very weakly correlated with the phenotypes: almost all

correlations from the real training data are within 0.03 of the

highest random correlations, and only one real correlation is

substantially larger (the 0.34 observed in expression vs. phenotype

2). From the point of view of Bonferroni-corrected p-values, this

largest correlation is significant with p-value 0.017; all other p-

values exceed 0.1 upon applying the Benjamini-Hochberg

multiple hypothesis correction [18].

These observations suggest that most features have little or no

predictive power, and hence proper regularization is crucial for

modeling this dataset. Additionally, the small difference between

training correlations and the random background distribution

indicate that the prediction task at hand is difficult; the amount of

signal in the data is likely quite small.

In light of the above considerations, we sought to keep our

modeling simple and chose regularized regression as our general

approach. Before fitting the data, however, we needed to ensure

that the relation between predictor and response variables was as

linear as possible, and so we considered data transformations and

basis expansions.

Rank transformation to reduce phenotype outliers
Upon plotting the phenotype training data, we discovered that

the variance in the distribution of phenotype 1 is dominated by

outliers. Among the 200 measurements of phenotype 1, the largest

outlier is 5.83 sample standard deviations from the mean.

Moreover, the seven most deviant samples account for more than

half of the total variance. For phenotype 2, the largest outlier is a

substantial 3.77 standard deviations above the mean but overall

the distribution does not have unusually long tails compared to a

normal distribution. A plot of the fractions of variance explained

by increasing subsets of largest outliers in phenotype 1, phenotype

2, and random data illustrates this behavior (Figure 1).

Motivated by the Spearman correlation-based scoring scheme

used in this challenge, which judges predictions based on ordering

rather than absolute accuracy, we applied a rank transformation to

phenotype 1 to remove the impact of outliers on regression models.

More precisely, we replaced the numerical values of phenotype 1

measurements with their ranks among the 200 sorted samples.

Because the approaches we applied minimized squared error (along

with regularization terms), asking our models to predict ranks rather

than actual values removed the heavy weight that outlier values

would otherwise have received. Absolute predictions could of course

be recovered by interpolation if desired.

Basis expansion to boolean combinations of genotype
variables

With only binary genotype data available for prediction in

subchallenge B1, we hypothesized that the true phenotypic

response for a genotyped sample would be far from linear. The

simplest possible example of a nonlinear effect is interaction

between genotype markers: for instance, if two genes act as

substitutes for one another, their function is only suppressed if both

are turned off. Similarly, if two genes are critical to different parts

of a pathway, turning off either one would impair its function.

Table 1. Highest absolute correlations of genotype and gene
expression data to phenotype, versus random background.

Top
correlations Genotype Expression

(absolute
values) Training Random Training Random

Phenotype 1 0.2155 0.2404 0.3034 0.2835

0.2122 0.2116 0.2976 0.2781

0.2061 0.1862 0.2975 0.2749

0.2054 0.1857 0.2963 0.2689

0.2041 0.1851 0.2909 0.2611

Phenotype 2 0.2433 0.2127 0.3441 0.2777

0.2261 0.2104 0.3084 0.2684

0.2198 0.2053 0.2990 0.2679

0.2181 0.1928 0.2824 0.2642

0.2180 0.1926 0.2754 0.2619

The top five correlations found in the training data are shown, as are the top
five correlations against a random 0–1 matrix with the same dimensions as the
genotype data and a random normal matrix replacing the gene expression
data.
doi:10.1371/journal.pone.0029095.t001
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With these examples in mind, we considered applying logic

regression [19] to expand the set of features available to our linear

models to include boolean combinations of each pair fA,Bg of

genotype features:

A ^ B,A ^ :B,:A ^ B,:A ^ :B:

Note that the complements of these relations are implicitly

included by a linear model as well, so together they cover all

nontrivial binary boolean relations.

To gauge the efficacy of these combined features, we compared

the largest fractions of variance explained by single boolean

combination features (using single-variable least-squares regres-

sion) to the best fits obtained by two-variable regression on pairs of

the original genotype features. Looking at the 20 best-performing

regressions from each group (Figure 2), we see that the top boolean

combinations outperform the best two-variable regressor pairs,

suggesting that basis expansion in this manner does indeed

improve our ability to fit the data.

An important caveat to keep in mind when interpreting these

measurements is that the number of feature combinations

considered is very large (nearly 2 million), thus allowing random

chance to inflate best performances as in the case of correlations

examined above. Nonetheless, we expect that the relative trends

are still informative.

Upon closer inspection of the best boolean combination markers,

we discovered that some were near-trivial due to linkage

disequilibrium (Figure 3): for instance, we observed cases of nearby

markers A and B having identical values for 198 out of 200 samples,

so that the boolean combination A ^ :B was nonzero for only two

samples. Such combinations are very noisy (and likely uninforma-

tive) predictors; we therefore limited the boolean features under

consideration to those containing at least 20 nonzeros.

Regularized regression modeling
Having taken steps to linearize the predictor-response relation-

ship, we applied regularized regression to model the data. Classical

linear regression on a predictor matrix X[RN|p and response

vector y[RN assumes a model y~Xbzw (where w represents

noise) and finds the coefficient vector b̂b[Rp minimizing the sum of

squared residuals jjy{X b̂bjj22. In the highly underconstrained case

(p&N), however, additional constraints must be imposed for there

to be any hope of approximating b; often one assumes that b is

sparse, in which case ‘1-minimization techniques may be applied

[20]. In the context of our experimental setup this assumption

means that most genetic markers and expression values are

unrelated to phenotype, which seems reasonable.

Our main approach of choice was elastic net regression [21],

which imposes constraints on model complexity by adding the

following penalization term to the squared residuals being

minimized:

l ajjbjj1z(1{a)
jjbjj22

2

 !
,

where 0ƒaƒ1 determines the weighting of the two terms and

lw0 is the strength of the regularization. Note that a~0 produces

the ridge regression penalty while a~1 gives the lasso; thus, in

some sense elastic nets interpolate between ‘2- and ‘1-regulariza-

tion. Elastic net regression can be computed efficiently; we used

the glmnet package available for Matlab [22].

For the purpose of comparison, we also tried fitting the data

with a simple best subset selection approach, which seeks to

minimize squared error using only a limited number of regressors.

(In the language of our above discussion, this constraint can

equivalently be viewed as imposing an ‘0 penalty ljjbjj0.) Because

best subset selection is a nonconvex combinatorial problem with

exponential complexity, however, finding best subsets exactly was

computationally intractable [23]; instead, we performed simulated

annealing on a subset of likely candidate features (chosen by

correlation-ranking within our cross-validation loop) to obtain a

reasonable approximation.

Figure 1. Large contribution of outliers to variance in
phenotype 1. The largest seven outliers in phenotype 1 account for
the bulk of the variance in the data; in contrast, the outlier distribution
for phenotype 2 is similar to that of a random normal variable.
doi:10.1371/journal.pone.0029095.g001

Figure 2. Single-variable, two-variable, and pairwise logic
regression for phenotype 2. The plot compares the best least
squares fits attainable under three model types: single-variable
regression using each genotype feature independently (blue), two-
variable regression using pairs of features at once (green), and single-
variable regression using pairs of features combined through a binary
boolean relation (red). The best single-variable fits using boolean
combination features outperform the best two-variable regressions.
doi:10.1371/journal.pone.0029095.g002

Phenotype Prediction Using Regularized Regression
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Implementation details are as follows. For elastic net regression,

we ran glmnet with a~0,0:1,0:2, . . . ,1 and uniformly log-spaced

regularization path and default values of all other parameters. The

best pair of (a,l) for the elastic net was then selected to achieve

optimal cross-validation performance. For the lasso, we ran glmnet

with a~1 and default values of all other parameters. In this case,

glmnet automatically calculated a regularization path and we

selected the least complex model achieving within one standard

deviation of the best cross-validation performance. We used this

value of l for our final regression fit.

For best subset selection, we first filtered to the top 30

features with strongest correlations to phenotype (recomputed for

each cross-validation training set). We then used simulated

annealing to compute subsets of size 1–20 features obtaining

approximately optimal linear fits to each training fold. The

annealing procedure consisted of 5 runs of initialization with a

random feature subset of the required size followed by 5000

iterations of attempted swaps, using a linear cooling sche-

dule. Explictly, the acceptance probability of a swap was

exp(5:(fractional improvement in fit)=(fraction of iterations left)),
capped at 1.

Results

Modest performance of all regression techniques on
training dataset

We evaluated our regression methods using 7-fold cross-

validation on the 200-sample training set, measuring goodness of

fit with Spearman correlation to match the DREAM evaluation

criterion. We chose to use 7 folds so that our cross-validation test

sets during development would have approximately the same size

as the 30-sample gold standard validation set, allowing us to also

estimate the performance variance to be expected on the

validation set. We applied each regression technique–elastic net,

lasso, and approximate best subset selection with simulated

annealing–to fit phenotype 1 (rank-transformed) and phenotype

2 individually, using sets of regressors corresponding to the three

subchallenges of DREAM5 Systems Genetics B: genotype only

(B1), gene expression only (B2), and both genotype and expression

(B3). Within subchallenge B1, we ran two sets of model fits, one

using only raw genotype markers as regressors and the other using

the boolean basis expansion described in Methods.

Because of the relatively small number of samples and large

number of predictors, the random assignment of samples to cross-

validation folds caused substantial fluctuation in performance,

even when averaging across folds. We overcame this difficulty by

running multiple cross-validation tests for each model fit using

different fold assignments in each run (20 replicates for elastic net

and lasso and 5 replicates for best subset selection), thus obtaining

both mean performances and estimates of uncertainty in each

mean. We chose regularization parameters for each method in

each situation to optimize mean performance; Figure 4 shows the

results using these parameters.

Overall, the three regularized regression techniques perform

quite comparably. Note that elastic net regression necessarily

always performs at least as well as lasso (because lasso corresponds

to the elastic net with parameter choice a~1); however, the

performance difference is very small in all cases. Best subset

selection appears to perform slightly better than the others in

predicting phenotype 1 and somewhat worse in predicting

phenotype 2.

Comparing the different regressor sets, subchallenge B1 with

genotype data only is clearly the most difficult. The availability of

gene expression data in subchallenges B2 and B3 dramatically

boosts average Spearman correlations to the 0.25–0.3 range for

phenotype 1 (though performance for phenotype 2 is largely

unchanged in the 0.15–0.2 range typical for all other cases).

Unfortunately, our regression models did not attain a performance

increase from B2 to B3 with the inclusion of genotype data along

with expression data, nor did boolean basis expansion appear to

help with performance on B1.

Figure 3. Correlation coefficients between genotype markers,
displaying linkage disequilibrium. The heat map shows Pearson
correlations between pairs of genotype markers; most pairs have only
slightly positive or negative correlations attributable to chance, but
groups of nearby markers exhibit distinctly positive correlations.
doi:10.1371/journal.pone.0029095.g003

Figure 4. Goodness of fit of regularized regression models on
training data using various regressor sets. We tested elastic net,
lasso, and approximate best subset selection on phenotypes 1 and 2
using regressor sets derived from the DREAM5 subchallenges B1, B2,
and B3. In each case the regularization parameter(s) were chosen to
optimize average Spearman correlation. We ran multiple cross-
validation tests with different random fold splits to reduce uncertainty
in mean performance and enable comparison between methods; error
bars show one standard deviation of confidence.
doi:10.1371/journal.pone.0029095.g004
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Effectiveness of rank transformation on phenotype 1
Surprisingly, the rank transformation we applied to phenotype 1

turned out to have the greatest impact of the pre-regression data

transformations we attempted. For the purpose of comparison, we

performed the same model-fitting as above using raw (untrans-

formed) values of phenotype 1. In all cases the rank transformation

increases average Spearman correlations considerably (Table 2).

For subchallenges B2 and B3, rank-transforming phenotype 1 more

than doubles the correlation that would otherwise be achieved,

though a look at scatter plots of predicted versus actual values

(Figure 5) shows that our predictive power is still marginal:

predictions are compressed toward the mean, as tends to occur

when trying to apply regression to data that is difficult to model. The

effectiveness of the rank transformation was unique to phenotype 1;

in contrast, rank-transforming phenotype 2 had no significant effect.

Strong regularization in best-fit models
Taking a closer look at the optimal regularization parameters

for elastic net, lasso, and approximate best subset selection, we

discovered strikingly low model complexity prescribed by cross-

validation in each case. As an example, the blue curves of Figure 6

plot average performance of lasso and best subset selection on

subchallenge B2 as a function of increasing model complexity.

(Note that unlike typical cross-validation curves with error to be

minimized on the vertical axis, our performance metric is

Spearman correlation so we seek maxima.) The regularization

parameter is particularly transparent for best subset selection

(shown in the bottom two plots): in this case, regularization is

explicitly manifested as the number of features to be used in the

subset chosen for regression.

With lasso, we likewise see that performance drops off quickly as

model complexity increases; here, the complexity parameter l is

less directly interpretable, but since the ‘1-minimization approach

of lasso also results in sparse models, the result in this case as well is

that lasso also recommends using only a handful of features. Even

with elastic net regression, which tends to fit denser models due to

the presence of an ‘2 ‘‘ridge’’ penalty, we find that optimal

regularization parameter choices de-emphasize the ridge term,

creating lasso-like model fits with a (the ‘‘lasso proportion’’)

typically in the range 0.8 to 1.

Table 2. Improvement in goodness of fit with rank transformation on phenotype 1.

Spearman corr. before and after transformation

Subchallenge (regressors) Elastic net Lasso Best subset

B1 (genotype) 0.058 0.107 0.054 0.095 0.092 0.167

B1 (genotype with basis expansion) 0.042 0.085 0.011 0.048 0.025 0.102

B2 (expression) 0.099 0.257 0.094 0.237 0.111 0.285

B3 (genotype and expression) 0.090 0.243 0.077 0.230 0.092 0.272

Applying the rank transform to phenotype 1 increases average cross-validated Spearman correlations for all regression approaches and regressor sets we tested. The
performance improvement is especially large for subchallenges B2 and B3, where gene expression data is available.
doi:10.1371/journal.pone.0029095.t002

Figure 5. Example elastic net predictions versus actual values with and without rank transformation for subchallenge B2P1. Each
scatter plot shows predictions from one cross-validation run on the training data (blue points) as well as predictions of the fitted model for the gold
standard test set (red points). For the elastic net modeling on rank-transformed data (right plot), predictions of phenotype 1 values on an absolute
scale were obtained by interpolation. The reported values of R are the Pearson correlation coefficients.
doi:10.1371/journal.pone.0029095.g005
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To better understand the strong regularization, we provide heat

maps displaying the feature weight distributions chosen by the

elastic net to predict phenotype 1 (rank-transformed) and

phenotype 2 for a set of cross-validation runs on subchallenge

B2 (Figure 7). As expected, the few features chosen from the

28,395 available are typically among those predicted to be most

informative according to correlation with phenotype (Table 1).

The features assigned greatest weight are quite stable from fold to

fold, while the choice of lower-weight features is noisier.

High variance in performance on individual cross-
validation folds and test set

As mentioned earlier, our cross-validation analysis also allows us

to estimate the accuracy to which algorithm performance can be

measured using a 30-sample test set. Unfortunately, we find that

this test size is insufficient for accurate evaluation: whereas the

greatest-weight features selected by our models are relatively stable

from fold to fold (Figure 7), the Spearman correlations obtained on

the held-out test folds vary markedly. The blue error bars in

Figure 6 display one standard deviation in the Spearman

correlation between predicted and actual phenotype values from

fold to fold; with 7-fold cross validation, each fold contains about

29 samples. These standard deviations mostly fall in the 0.15–0.2

range, in some cases exceeding the mean performance of even the

best parameter choice.

The red curves of Figure 6 illustrate the variance in

performance when models fit on the training data were applied

to the actual 30-sample gold standard test set (released after the

end of the DREAM5 challenge). As expected, test set performance

strays substantially from the mean.

Official DREAM5 challenge results
Notwithstanding the caveat just discussed regarding uncer-

tainty in results on a small test size, we include the final results

from the DREAM5 Systems Genetics B challenge for com-

pleteness (Figure 8). Our team, identified by ‘‘orangeballs’’ and

Team 754 in the published results, achieved the best

performance on the subchallenge B2 test set. The overall

distribution of Spearman correlations achieved by the various

teams is in line with what we would expect given our analysis of

our training results, with subchallenges B2 and B3 being more

tractable than B1.

Discussion

While the performance achieved by our methods–indeed, by

every team’s methods–is modest, our work does highlight a few

important lessons in statistical learning and in the setup of

algorithmic benchmarking challenges such as DREAM. Re-

garding the first, our analysis did not lead us to a radically new

and complex model for the genotype-phenotype relationship in

P. sojae; on the contrary, we found that given the limitations of

small sample size and noise in the training data, the best models

we discovered were among the simplest we tried. Regularized

Figure 6. Variation in cross-validation and test set performance with model complexity for subchallenge B2. Each plot follows the
performance of a regression model as complexity increases. For lasso (top plots), model complexity is determined by a regularization parameter l; for
best subset selection (bottom plots), complexity is defined as the number of features used. The blue curves show Spearman correlations averaged
over cross-validation folds, each fold having approximately the same size as the gold standard test set. Performance varies dramatically from fold to
fold; error bars show one standard deviation of the Spearman correlations achieved for different folds. The red curves follow performance of the
models on the actual gold standard.
doi:10.1371/journal.pone.0029095.g006
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least squares regression with careful cross-validation and

linearization (using the rank transform we applied to phenotype

1) proved to be as effective an approach as any other we are

aware of, and the noise-to-signal in the data was such that the

best linear fits needed only a few well-chosen regressors.

One might hope that the transparency of such simple models

can shed light on the underlying biological mechanism at work;

while this may be possible, we also should caution against trying to

glean more from the models than the data allow. Simplicity may

be due to the involvement of only relatively few genes or just to the

fact that heavy regularization makes models less prone to

overfitting. In light of the noisiness of the dataset, we suspect the

latter may be true. As a case in point, while we were disappointed

that modeling pairwise interactions through boolean basis

expansion did not improve fitting using the genotype data, we

still find it quite plausible that such effects are at work and may aid

modeling in situations when more data is available. With this

dataset, our techniques were likely unable to discern these effects

because the limited data size could not support the increased

complexity that modeling interactions would entail.

Overall, while this contest was perhaps too ambitious for the

data available, we feel it succeeded in stimulating research and

discussion in the field. The original motivation of developing

methodology for combining genotype and gene expression data to

improve phenotype prediction remains a worthy goal and

interesting open question.
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