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Abstract

Background: The forkhead box transcription factor, Foxp3, is master regulator of the development and function of
CD4+CD25+ T regulatory (Treg) cells that limit autoimmunity and maintain immune homeostasis. The carboxyl-terminal
forkhead (FKH) domain is required for the nuclear localization and DNA binding of Foxp3. We assessed how individual FKH
lysines contribute to the functions of Foxp3 in Treg cells.

Methodology/Principal Findings: We found that mutation of FKH lysines at position 382 (K17) and at position 393 (K18)
impaired Foxp3 DNA binding and inhibited Treg suppressive function in vivo and in vitro. These lysine mutations did not
affect the level of expression of Foxp3 but inhibited IL-2 promoter remodeling and had important and differing effects on
Treg-associated gene expression.

Conclusions/Significance: These data point to complex effects of post-translational modifications at individual lysines
within the Foxp3 FKH domain that affect Treg function. Modulation of these events using small molecule inhibitors may
allow regulation of Foxp3+ Treg function clinically.
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Introduction

CD4+CD25+ T-regulatory (Treg) cells are important to the

maintenance of immunological homeostasis and self-tolerance

[1,2]. The forkhead box transcription factor, Foxp3, is now

recognized as the master regulator of the development and

function of CD4+CD25+ Treg cells [3,4,5]. Deletion or mutations

of Foxp3 cause lethal autoimmunity in scurfy mice and profound

morbidity in patients suffering from IPEX (immune dysregulation,

polyendocrinopathy, enteropathy, X-linked) [5,6]. In contrast,

retroviral transduction of CD4+ T cells with Foxp3 induces a Treg

phenotype and the capacity to suppress lymphocyte proliferation

[3]. Murine and human Foxp3 protein share a high degree of

homology, with 429 and 431 amino acids, respectively. Both

proteins contain a repressor domain, a zinc finger domain, a

leucine zipper domain, and a conserved DNA binding C-terminal

forkhead domain (FKH) important for the nuclear translocation

and DNA binding of Foxp3 [7,8]. Mutations in the FKH and

leucine zipper domains are associated with clinical autoimmunity

[9,10,11,12], indicating the importance of these regions. For

example, mutations within the FKH domain that disrupt the

interaction of Foxp3 and NFAT result in loss of the ability of

Foxp3 to downregulate IL-2 expression and upregulate CTLA4

and CD25 expression [13]. Foxp3 also inhibits IL-2 expression by

interacting with AML1/Runx1, which is normally an activator of

IL-2 expression. Three amino acids located immediately N-

terminal to the FKH domain are important for this inhibition, and

their mutation (D329V, Y330H, and K332L) impaired Treg

suppressive function [14]. Similarly, a single glutamic acid

mutation (E251) or deletion of E250 in the leucine-zipper domain

inhibited Foxp3 dimerization and abrogated its repressor functions

[7,15].

Studies from mice and human demonstrated that the histone

acetyltransferases (HAT), Tat-interactive protein (Tip60) and

p300, increase lysine (K) e-acetylation of Foxp3, as does use of

histone/protein deacetylase inhibitors (HDACi) [16,17,18]. Inter-

estingly, Foxp3 acetylation promotes Treg function by increasing

DNA binding to several promoters, including that of IL-2 [16], as

well as by increasing the resistance of Foxp3 to polyubiquitination

and proteasomal degradation [18,19]. Cytokine-dependent signals

play central roles in promoting the DNA binding of Foxp3. Thus,

TGFb increases binding of acetylated human Foxp3 to the IL-2

promoter, whereas TGFb and IL-6 together decrease this binding,

and binding is restored by treatment with an HDACi [20]. While

the contributions of individual lysines have not been determined, it

is clear that acetylation of Foxp3 plays an important role in the

regulation of Foxp3 production and function in Treg cells.

In the current study, we found that mutations of single lysines in

the FKH domain of Foxp3, Lys17Arg (K17R) or Lys18Arg

(K18R), affected Foxp3 DNA binding, impaired Treg suppressive
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function in vitro and in vivo, and altered expression of Treg-

associated markers, cytokines, and levels of HAT and HDAC

enzymes. Our data suggest that point mutations in Foxp3 can have

different effects than the widely recognized mutations that lead to

the development of autoimmunity in scurfy mice and patients with

IPEX syndrome. The complex effects of these mutations point to

the importance of FKH lysine residues in control of Foxp3

function.

Results

C-terminal Foxp3 lysine mutations affect Treg
suppressive function and gene expression

Five FKH domain lysines (K17, 18, 19, 20, and K21) are

conserved between humans and mice (Fig. 1A). K17 and 18, but

not K20, are important for Treg suppressive function in vitro [16],

whereas K20 and K21 are important for Foxp3 localization within

the nucleus [7]. An additional lysine, K16, adjacent to the FKH

domain, is important for the interaction of Foxp3 with AML/

RunX1 [14]. We therefore focused on K16, 17, 18 and 19 and

investigated whether these residues were important for Foxp3

function. We used site-directed mutagenesis to substitute the 4

residues (K16-19) with arginine (R), so as to prevent acetylation

but conserve the positive charge, or with glutamine (Q), so as to

change the positive charge of lysine to neutral and possibly mimic

features of acetylation [21]. Wild-type mouse Foxp3 (WT-Foxp3)

or mouse Foxp3 constructs containing mutated K16-19R or K16-

19Q were cloned into a retroviral vector (MinR1) encoding

nonfunctional nerve growth factor receptor (NGFR), MinR1

constructs were transfected into packaging cell lines, and

supernatants from packaging cell lines were used to infect

activated mouse primary CD4+ T cells. Flow cytometric analysis

(Fig. 1B) indicated transduction efficiencies of .85% for mutant

and WT Foxp3, and comparable levels of Foxp3 expression,

indicating the mutations did not affect Foxp3 expression in Treg

cells.

We next examined whether these Foxp3 mutations affected

Treg suppressive function. Mouse primary CD4+ T cells

transduced with vectors encoding the WT-Foxp3 exhibited

comparable or better suppressive function than native

CD4+CD25+ Treg cells isolated from C57BL/6 mouse (B6-Treg),

whereas empty-vector (EV) transduction essentially lack any

suppressive function (Fig. 1C, left panel). However, compared

with transduction of CD4+ T cells with vectors encoding WT-

Foxp3, transduction of vectors containing lysine mutations (K16-

19R or K16-19Q) led to markedly impaired Treg suppressive

ability, with glutamine mutations (K16-19Q) displaying more

impaired function (Fig. 1C, right panel). These data indicated

these four lysines (K16-19) are important for Treg suppression

function, at least in vitro.

We used qPCR to examine the mRNA levels of several genes

of functional significance for Tregs [22,23,24,25,26,27]. Com-

pared with WT-Foxp3 transduced CD4+ T cells, CD4+ T cell

transduction with vectors containing Foxp3 K16-19R or K16-

19Q showed lower expression of cytotoxic T lymphocyte-

associated antigen 4 (CTLA-4), glucocorticoid-induced tumor

necrosis factor-receptor-related protein (GITR), and IL-10, with

K16-19Q mutations showing even lower mRNA expression than

K16-K19R mutations (Fig. 1D). Moreover, compared with WT-

Foxp3-transduced CD4+ T cells, CD4+ T cells transduced with

Foxp3-K16-19R or K16-19Q exhibited a higher level of IL-2

(Fig. 1D), indicating that these four lysines are likely involved in

regulating expression of key Treg genes. Since the mutation of

lysine to glutamine, which mimics acetylation in some systems but

not others [28], unexpectedly impaired Treg function to a greater

extent than arginine mutations, we focused our studies on the

arginine mutants that maintain the same polarity as lysine.

Single Foxp3 residues, K17 or K18, are important for Treg
suppressive function and gene expression

We tested the roles of individual lysines in Treg function by

transducing mouse primary CD4+ T cells with MinR-Foxp3

constructs containing K16R, K17R, K18R or K19R. Transduc-

tion efficiency in each case was .80% as indicated by Foxp3

expression (Fig. 2A), and there were no significant differences

between mutants. However, Treg suppression assays showed that

compared with CD4+ T cells transduced with WT-Foxp3, cells

transduced with Foxp3 K17R or K18R mutant exhibited

significantly impaired Treg suppression (Fig. 2B), whereas Foxp3

K16R increased Treg suppressive function at certain Treg to Teff

cell ratios, and K19R mutation did not impair Treg suppression.

Additionally, CD4+ T cells transduced with Foxp3 K17Q,

K18Q, K17E, or K18E mutant also resulted in impaired Treg

suppressive function to varying extents (data not shown). These

data thereby suggested that K17 and K18 of the Foxp3 FKH

domain were especially important for Treg suppressive function

in vitro. In addition, compared with CD4+ T cells transduced with

WT-Foxp3, CD4+ T cells transduced with Foxp3 K17R or

K18R mutant exhibited markedly decreased mRNA level of

CTLA-4 and slightly decreased levels of GITR, CD62L, and IL-

10 (Fig. 2C and data not shown). Foxp3 K17R or K18R mutants

showed significantly increased levels of IL-2, IL-4, IL-17, and IL-

21 upon stimulation of CD3/CD28 mAbs (Fig. 2C). These

observations demonstrated that the K17 and K18 residues

contribute to Foxp3-mediated control of cytokine expression

within Treg cells and to maintenance of Treg suppressive

function.

K17 and K18 mutants exhibit impaired Foxp3 DNA
binding ability

While p300 is known to acetylate Foxp3 [18], the single point

mutations (K17R, K18R) did not reduce overall Foxp3 protein

acetylation (data not shown). However, as the C-terminal FKH

domain mediates Foxp3 DNA binding [29,30], we next

compared the DNA binding of WT Foxp3 and mutants.

Biotin-labeled Foxp3 binding site nucleotide [30] was incubated

with cell lysates from 293T cells expressing WT or mutant Foxp3,

with or without p300. DNA-bound biotinylated Foxp3 nucleotide

was precipitated using streptavidin beads and detected by

immunoblotting with anti-Foxp3 mAb. Compared to WT Foxp3,

K18R had markedly decreased DNA binding ability, whereas

K17R binding was only modestly decreased (Fig. 3A and B).

Since transcription factor DNA binding ability is frequently

increased by acetylation [31], we further investigated Foxp3

DNA binding ability after acetylation by p300. After adding

p300, the DNA binding ability of both WT Foxp3 and mutants

was increased up to two-fold, with a greater effect on K17R than

K18R (Fig. 3A and C). Remarkably, the presence of p300

enhanced the differences between Foxp3 DNA binding of WT

and mutant Foxp3, revealing a more than two-fold decrease in

K18R mutant Foxp3 binding (Fig. 3B and D). We also assessed

the level of acetylated-Foxp3 bound to DNA level by immuno-

blotting with anti-acetyl-lysine antibody after nucleotide pull-

down of Foxp3, and found that K17R mutant had markedly

decreased acetylated-Foxp3 bound to DNA (Fig. 3A and E).

These data suggest that K17 and K18 contribute to regulation of

Foxp3 DNA binding.

Lysine Acetylation and Foxp3 Function
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Figure 1. Foxp3 lysine mutations affect Treg suppressive function and gene expression. (A) Comparison of amino acid sequences of the
C-terminal regions of mouse (m) and human (h) Foxp3, with FKH domains in gray. Lysine at position 332 is K16 and the FKH domain contains K17–
K21 (consecutive lysines numbered in green), with residues important for Runx1 (R), DNA (D) or NFAT (N) binding indicated in purple and non-
conserved residues shown in red; adapted from [16]. (B) CD4+CD252 T cells were transduced with retroviruses encoding WT Foxp3, Foxp16-19R,
Foxp16-19Q or EV; Foxp3 staining showed .85% transduction efficiency (%transduced cells shown in blue in each panel). (C) In vitro Treg
suppression assays in which 56105 CFSE-labeled Teff cells were stimulated for 72 h with CD3 mAb in the presence of 56105 irradiated APC and the
indicated ratios of Treg to Teff cells. Data are mean 6 SD of duplicate measurements of the percentages of dividing Teff cells, and results are
representative of 3 independent experiments; *p value,0.05, **p,0.01 compared to empty vector (EV) in left panel or compared to WT Foxp3 in
right panel. (D) RNA derived from CD4+CD252 T cells transduced with WT Foxp3, Foxp3 K16-19R, K16-19Q or EV were analyzed for CTLA4, GITR, IL-2,
and IL-10 gene expression by qPCR and data were normalized to 18S; *p value,0.05, **p,0.01 compared to WT Foxp3. Graphs show means 6 SD
and results are representative of 3 independent experiments.
doi:10.1371/journal.pone.0029035.g001
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Figure 2. Single Foxp3 lysine mutations affect Treg suppressive function and gene expression. (A) CD4+ CD252 T cells transduced with
retroviruses encoding WT Foxp3, K16R, K17R, K18R, K19R or EV; Foxp3 staining showed .80% transduction efficiency. (B) Effects of single lysine
mutations on Treg suppressive activity. (C) RNA derived from CD4+CD252 T cells transduced with WT Foxp3, K17R, K18R or EV were analyzed for
CTLA4 (in the absence of CD3/CD28 mAbs) and IL-2, IL-4, IL-17 and IL-21 (in the presence of CD3/CD28 mAbs) gene expression by qPCR. Data were
normalized to 18S; *p,0.05, **p,0.01 compared to WT Foxp3. Graphs show means 6 SD and results are representative of 3 independent
experiments.
doi:10.1371/journal.pone.0029035.g002
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FKH K17 and K18 residues regulate IL-2 promoter
acetylation and HDAC and HAT expression

Foxp3 can bind to the IL-2 promoter, in both natural Tregs and

CD4+ T cells transduced with Foxp3 [13], at a site adjacent to the

ARRE-2 NFAT/AP-1 response element [13,32,33]. Given the

reduced DNA binding of our Foxp3 mutants, we measured IL-2

protein levels in supernatants of T cells transduced with WT

Foxp3, K17R or K18R Foxp3, or EV. Both K17R and K18R

mutations resulted in greater production of IL-2 than cells

transduced with WT Foxp3 (Fig. 4A). In addition, since Foxp3

controls Treg function by competing with AP1 and cooperatively

binding with NFAT [13], we assessed if K17R and K18R

Figure 3. Foxp3 mutants impair Foxp3 DNA binding ability. 293T cells were transfected with EV, WT Foxp3, K17R or K18R without or with
p300 expression vectors, and 48 h later, cell lysates were harvested. (A) Equal amounts of cell lysates were incubated with biotin-labeled Foxp3
binding site nucleotide, and Foxp3 DNA binding was detected with anti-Foxp3 or anti-acetyl-lysine Abs. The protein expression levels of Foxp3 and
loading control b-actin were detected by western blotting; arrow indicates acetylated Foxp3 bound to DNA, and star indicates non-specific binding.
(B–D) The densities of Foxp3 DNA-binding bands were measured using Image-J software and normalized with Foxp3 input levels. (B) The relative
Foxp3 DNA binding ability in the absence of p300 is shown. (C) Foxp3 and mutant DNA binding ability was increased in the presence of p300. (D)
Comparison of relative Foxp3 DNA binding between WT and mutants in the presence of p300 is shown. (E) Comparison of relative acetylated Foxp3
binding level between WT and mutants is shown. Results are representative of 2 independent experiments.
doi:10.1371/journal.pone.0029035.g003

Lysine Acetylation and Foxp3 Function
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mutations affected Foxp3 targeting of the NFAT:AP1 complex.

We transfected 293T cells with 3x NFAT:AP1-IL-2-Luc reporter,

plus expression vectors for NFAT and WT or mutant Foxp3

(K17R, K18R). WT Foxp3 significantly inhibited NFAT tran-

scriptional activity, consistent with previous studies [13]. Both

K17R and K18R Foxp3 mutants showed similar impairment of

NFAT-mediated transactivation, suggesting that Foxp3 K17 and

K18 are not involved in Foxp3-NFAT-DNA formation (Figure
S1). Foxp3-mediated transcriptional activation and repression are

associated with specific histone modifications [33,34]; e.g. Foxp3

binding to the IL-2 promoter leads to histone H3 deacetylation

and repressive chromatin remodeling. Accordingly, we assessed

acetylated histone 3 (Ac-H3) at the IL-2 promoter using CD4+ T

cells transduced with WT or mutant Foxp3 (Fig. 4B). A significant

amount of Ac-H3 remained at the IL-2 promoter of CD4+ T cells

transduced with empty vector. However, transduction with WT

Foxp3 markedly reduced Ac-H3 binding to the IL-2 promoter,

whereas cells transduced with mutant Foxp3 (K17R and K18R)

exhibited increased Ac-H3 binding to the IL-2 promoter (Fig. 4B).

These data indicate that K17 and K18 are involved in Foxp3-

mediated remodeling of IL-2 chromatin structure in CD4+ T cells.

In addition to recruiting HDAC and HAT enzymes to target genes

such as IL-2, Foxp3 could conceivably regulate the expression of

these enzymes in Treg cells. Consistent with this concept, we

found that transduction with WT versus Foxp3 mutants led to

differential expression of HDAC and HAT genes. Compared to

EV control, transduction of WT Foxp3 led to significant

suppression of HDAC 1, 2, 5, 6, and 7 mRNA. In contrast,

mutant Foxp3 transduction resulted in less suppression of HDAC

expression (Fig. 4C), and considerably greater HAT expression

(Fig. 4D). Collectively, these data indicate that K17 and K18

contribute to Foxp3-dependent chromatin remodeling and

modulation of HDAC and HAT expression.

K17 and K18 are important for Foxp3 suppressive
function in vivo

Since Treg cells play an important role in the control of

homeostatic proliferation [27,35,36,37], we evaluated the effects of

FKH lysine mutations on this process. We adoptively transferred

into immunodeficient C57BL/6 Rag12/2 mice one million

Thy1.1+ CD4+CD252 cells alone, or along with one million

Thy1.2+ CD4+ T cells transduced with EV, WT Foxp3, Foxp3

Figure 4. Foxp3 mutations affect chromatin remodeling and HDAC and HAT expression. CD4+ T cells transduced with WT Foxp3, K17R,
K18R or EV were cultured in medium with CD3/CD28 mAb for 20 h. (A) IL-2 levels were detected by ELISA. (B) Chromatin extracts were precipitated
with anti-AcH3 Ab or control IgG, and probed for the promoter regions of IL-2 and genes levels were determined by qPCR. Results (mean 6 SD) in
panels A and B are representative of 3 independent experiments, and *p,0.05, **p,0.01 compared to WT Foxp3. Heat maps indicating distinct
expression profiles of genes encoding (C) HDAC and (D) HAT enzymes. Microarray experiments were performed using whole-mouse-genome
oligoarrays (Mouse430a; Affymetrix), and array data were analyzed using MAYDAY 2.12 software [45]. Array data were subjected to robust multiarray
average normalization. Normalized data were used for calculating fold changes of up- and downregulated genes using Student’s test, and data with
.2x differential expression (p,0.05 with Storey’s FDR,0.1) were included in the analysis. Data underwent z-score transformation for display.
doi:10.1371/journal.pone.0029035.g004
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K16-19R, Foxp3 K17R or K18R, or along with one million native

Treg cells isolated from C57BL/6 mice. On day 7 post-transfer, we

enumerated cells from the lymph nodes (LN) and spleen of each

mouse. The co-transfer of CD4+ T cells transduced with WT

Foxp3, or native Tregs, led to substantially decreased homeostatic T

cell proliferation of Thy1.1+ CD4+CD252 cells compared with the

results of transfer of Thy1.1+ CD4+CD252 alone, or cotransfer of

Thy1.1 CD4+CD252 cells transduced with EV (Fig. 5A).

However, adoptive transfer of Thy1.1+ CD4+CD252 cells, plus

CD4+ T cells transduced with mutant Foxp3 K17R or Foxp3

K18R, led to impaired suppression of homeostatic T cell

proliferation as compared with cotransfer of Thy1.1+
CD4+CD252 cells plus CD4+ T cells transduced with WT Foxp3

(Fig. 5A). We also evaluated the percentage of Thy1.1+
CD4+CD252 cells among these groups (Fig. 5B). Transfer of

Thy1.1+ CD4+CD252 alone exhibited the highest percentage of

Thy1.1+ cells, followed by cotransfer with EV, and then Foxp3

K18R. However, there was no statistically significant difference

between the other groups, including cotransfer with WT Foxp3, B6

Treg, Foxp3 K16-19R or Foxp K17R. Thy1.1+ CD4+ T cells

cotransfered with CD4+ T cells transduced with Foxp3 K18R

displayed significantly higher cell numbers than those of Foxp3-

K17R, consistent with our finding that Foxp3 K18R has lower

DNA binding ability (Fig. 3). These data showed that the 2 lysine

residues are important for Treg in vivo suppression of lymphopenia-

induced expansion of CD4+ T cells. They also suggest that there are

differences between the 2 Foxp3 mutants that might be reflected by

differences in gene expression in corresponding Treg cells.

FKH lysine mutations affect Treg gene expression profiles
To assess the possible effects of Foxp3 K17 and K18 mutations

on Treg gene expression, global gene expression profiling was

performed using Affymetrix 430 2.0 mouse oligonucleotide gene

expression arrays. Normalized gene expression values of the CD4+
T cells transduced with EV were used as the reference for

comparison with data from CD4+ T cells transduced with WT,

K17R or K18R Foxp3. Compared with EV transduced CD4+ T

cells, CD4+ T cells transduced with WT Foxp3 had 147 up-

regulated genes, whereas CD4+ T cells transduced with Foxp3

K17R or K18R had only 14 or 33 up-regulated genes, respectively

(Log2 .1). Among the up-regulated genes, 7 or 16, respectively,

overlapped with WT Foxp3 (Fig. 6A). Conversely, CD4+ T cells

transduced with WT Foxp3 had 293 down-regulated genes, Foxp3

K17R had 101 down-regulated genes, and Foxp3 K18R had 103

down-regulated genes (Log2,21). Among the down-regulated

genes, 70 or 73, respectively, were shared with WT Foxp3

(Fig. 6A). These data showed that a single lysine mutation (K17R

or K18R) within the Foxp3 FKH domain markedly affects Foxp3-

dependent gene expression, suggesting an important role of each

lysine in controlling Foxp3+ Treg functions.

Figure 5. Foxp3 mutants impair Treg function in vivo. (A) 16106 Thy1.1+ CD4+CD252 T cells were co-transferred with 16106 Thy1.2+ CD4+ T
cells transduced with WT Foxp3, K16-19R, K17R, K18R or EV, or with purified normal B6 Treg cells, into Rag12/2 mice. At 7 d post-transfer, single-cell
suspensions from lymph node or spleen samples were stained for FACS analyses; the numbers (A) or percentages (B) of CD4+ Thy1.1+ cells are
shown. Results are representative of 2 independent experiments, and *p,0.05 compared to WT Foxp3.
doi:10.1371/journal.pone.0029035.g005

Lysine Acetylation and Foxp3 Function
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Further examination of the dataset resulted in several findings.

First, compared with CD4+ T cells transduced with WT Foxp3,

CD4+ T cells transduced with the 2 mutants had altered

expression of multiple Treg ‘signature’ genes. WT Foxp3

transduction led to marked down-regulation of Igfbp4, Pole2,

Enc1, Tgfbr3 and Arhgap29, whereas expression of these genes was

only modestly downregulated or increased in CD4+ T cells

transduced with Foxp3 K17R and K18R (Fig. 6B). Conversely,

Nrp1, Gpr83, Rgs16, Tnfrsf4, Tnfrsf9, Klrg1, Mdfic, CTLA-4, Tiam1,

Tnfrf18, and Pdcd1Ig2 were up-regulated in CD4+ T cells

transduced with WT Foxp3 but were decreased in CD4+ T cells

transduced with Foxp3 K17R and K18R (Fig. 6B). Second, we

compared expression across the groups of known or putative

suppressor genes found in Treg cells, including Nrp1, Lag3, CTLA-

4, IL-10, Epstein-Barr virus-induced gene 3 (Ebi3), Tgfb1, ICOS, Crem,

Fgl2, Mmp9, Gzmk, and Gpr83 (Fig. 6C). Except for Grp83, and in

contrast to data from WT Foxp3, the expression of each of these

genes was decreased in CD4+ T cells transduced with Foxp3

K17R or 18R. These data are consistent with the impaired

suppressive function of CD4+ T cells transduced with either

mutant as compared with that of CD4+ T cells transduced with

WT Foxp3. Third, recent studies demonstrated that Foxp3 is able

to directly bind to the promoters of a number of genes and up- or

down-regulate their expression in Treg cells [34,38]. Foxp3-

dependent genes downregulated in CD4+ T cells transduced with

Foxp3 K17R or K18R compared with WT Foxp3 included cell

surface molecules: Nrp-1, Abcb1a, CTLA-4 and ICOS; transcrip-

tional factors: Prdm1, Irf6 and Crem; and a vesicular trafficking

gene: Snx9 (Fig. 6D). Fourth, with respect to effects on cytokine

gene expression, CD4+ T cells transduced with Foxp3 K17R or

K18R exhibited higher levels of IL-4 and IL-13 and a lower level

of IL-18 compared with CD4+ T cells transduced with WT Foxp3

(Fig. 6E). These data suggest that each lysine residue may directly

mediate Foxp3 binding to the binding sites on a range of target

promoters. To validate the microarray results, we used quantita-

tive PCR analysis to determine selected genes, including Igfbp4,

Nrp1, Lag3 and Mmp9 (Fig. 6F); the results were consistent with

the microarray results. Lastly, we compared the gene expression

profile of CD4+ T cells transduced with Foxp3 K17R versus

K18R (Fig. 7). In addition to the differences in expression of Treg

Figure 6. Comparison of gene expression profiles of CD4+ T cells transduced with WT Foxp3, K17R, K18R or EV. (A) Venn diagrams
summarizing overlapping upregulated (left) or downregulated (right) gene expression profiles of CD4+ T cells transduced with WT Foxp3 (blue), K17R
(purple) or K18R (yellow) compared with CD4+ T cells transduced with EV (cutoff was set as Log2 fold .1). (B–E) Heat maps showing gene expression
profiles of CD4+ T cells transduced with EV, WT Foxp3, K17R or K18R. (B) Heat maps showing distinct Treg ‘signature’ gene expression profiles. (C)
Heat maps indicating the change in gene expression profiles of Treg cell identified and putative suppressive genes. (D) Heat maps indicating the
distinct gene expression profiles of Foxp3 directly bound genes. (E) Heat maps indicating distinct gene expression profiles of Treg-related cytokine
genes. (F) qPCR assays of Treg-specific genes selected from microarray analyses; results are representative of 3 independent experiments, and
*p,0.05, **p,0.01 compared to WT Foxp3.
doi:10.1371/journal.pone.0029035.g006
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‘signature’ and suppressive genes, we found that CD4+ T cells

derived from transduction of Foxp3 K18R were enriched for genes

encoding cell division, cell cycle, and phosphoproteins (http://

david.abcc.ncifcrf.gov/). These findings are consistent with our

observations that CD4+ T cells transduced with K18R had weaker

DNA binding (Fig. 3), and greater CD4+ Thy1.1+ T cell

proliferation (Fig. 5), as compared with CD4+ T cells transduced

with Foxp3 K17R. These data suggest that K17 and K18 have

distinctive differences in the regulation of Foxp3+ Treg gene

expression.

Discussion

We previously demonstrated that dual substitutions of Foxp3

K17-18 with histidine residues led to impaired Treg suppressive

function and inhibited Foxp3 DNA binding to the IL-2 promoter

[16]. We have now extended our studies to the use of mutations

with greater structural similarity and focused on the effects of

individual lysines of interest on the Treg phenotype. Our studies

suggest that 2 lysine residues (K17 and K18) in the FKH domain

of Foxp3 are important for Treg function in vivo and in vitro.

Substituting these lysines with arginine impairs Treg suppressive

function, alters Foxp3-mediated gene expression, diminishes

Foxp3 DNA binding, and alters the chromatin remodeling state

of target genes (e.g. IL-2). Although the 2 mutants impaired Treg

function, they did not affect Foxp3 mRNA or protein level,

indicating detection of Foxp3 mRNA or protein level is insufficient

to indicate full functional capacity of Tregs. In addition, we

compared the different gene expression profiles of CD4+ T cells

transduced with WT, K17R or K18R Foxp3, and found

significant differences between CD4+ T cells transduced with

WT Foxp3 versus with mutant, as well as between the two mutants

themselves, suggesting that the different lysines may play distinct

roles in Foxp3 function.

Mutation of either K17R or K18R impaired the DNA binding of

both unmodified and acetylated Foxp3, with K18R exhibiting a

greater effect. There are at least 2 models of the interaction between

acetylation and transcription factor DNA binding. First, acetylation

can neutralize basic residues and promote transcription factor DNA

binding, as was demonstrated in the current studies. In the presence

of p300, the enhancement of DNA binding of K18R was lower than

that of WT and K17R, suggesting that acetyl group on Foxp3 lysine

residues may contribute to conformational changes during DNA

recognition and binding. Second, DNA-binding dependent acety-

lation can occur, such as was demonstrated for p53 [32], in which

transcription factor binding to DNA causes a conformation change

which then leads to HAT binding. In our case, p300 acetylation

may be an important post-DNA-binding event to stabilize the p300-

Foxp3-DNA complex into a very stable state. DNA-bound K17R

showed markedly reduced acetyl-bound Foxp3, suggesting that this

lysine mutation causes altered conformation, which could affect its

affinity for co-factors, including p300. Foxp3 is able to directly bind

the promoters of various genes and up- or down-regulate their

expression [38,39]. In the current study, the altered expression of

multiple Foxp3-dependent genes in CD4+ T cells transduced with

Foxp3 K17R or K18R (Fig. 6) could be explained, at least in part,

by different DNA binding caused by K17R or K18R.

The known association of permissive and repressive chromatin

structures at targets that are differentially regulated [33] was also

demonstrated in our studies (Fig. 4). Foxp3 may alter target gene

promoter chromatin remodeling by recruiting HAT/coactivator

or HDAC/corepressor complexes. The identification of a Foxp3

complex containing chromatin-remodeling factors, and data

showing a Foxp3-Tip60-HDAC7 complex inhibits IL-2 expres-

sion, support this idea [17]. Recent studies showed that the FKH

domain mediates Foxp3 association with HDAC1, and that Foxp3

enhances HIV or inhibits IL-2 gene expression in human T cells

by inhibiting HDAC1 activity [40]. Studies from our group and

from others have shown that various HDAC enzymes contribute

to regulation of Foxp3+ Treg production and function

[16,17,41,42], but little is known as to how Foxp3 regulates

HDAC production and function. The current study shows that

Foxp3 can regulate HDAC and HAT levels, and that specific

lysines within the FKH play key and distinct roles in this process,

pointing to a novel, but as yet unidentified, mechanism by which

Foxp3 functions in Treg.

While Foxp3 is known to be acetylated by p300 and Tip60

[16,17], no studies have yet mapped the precise lysine residue(s)

within Foxp3 that must be acetylated for optimal Treg function,

nor tested whether additional HAT enzymes also mediate Foxp3

acetylation. Our findings show that neither K17R nor K18R

Foxp3 mutant had impaired p300-dependent acetylation, al-

though both mutants led to impaired Treg suppression function.

However, conclusions concerning whether K17 and/or K18

mediate Foxp3 acetylation cannot yet be made with confidence for

at least 3 reasons. First, the lack of an anti-acetyl-Foxp3 Abs limits

our ability to accurately assess Foxp3 acetylation at individual

lysines. Second, intrinsic functional redundancy as a result of

acetylation on different lysine residues may conceal the impair-

ment caused by individual lysines. Third, we cannot exclude the

possibility that K17R or K18R is a target of additional HAT

enzymes.

In addition to acetylation, lysines are the targets of ubiquitina-

tion, sumoylation and methylation [43]. It is possible that

disruption of one post-translational modification may affect

additional post-translational modifications that thereby affect

Foxp3 function. For example, acetylation of Foxp3 can prevent

its ubiquitination and promote Foxp3 protein stability [18]. Since

in our studies, replacement of K residues (K17, 18) with R, Q or E

residues each impaired Treg suppressive function, a single

molecular mechanism of suppression is unlikely and functional

impairment may the result of multiple effects. As demonstrated in

the case of Foxo1, acetylation and phosphorylation can cooper-

atively regulate the function of a transcription factor. Acetylation

of Foxo1 at Lys-242, Lys-245, and Lys-262 alters its affinity for

binding to target DNA, and increases its sensitivity for phosphor-

ylation [43,44]. Hence, studies are warranted to investigate how

the various post-translational modifications, including phosphor-

ylation, methylation or sumoylation, may form a dynamic and

complex regulatory program to modulate Foxp3. Insights from

such studies may ultimately provide new targets for therapeutic

application of small molecules (HATi, HDACi or DNMTi) to

precisely control and amplify or dampen Treg functions in vivo.

Materials and Methods

Ethics statement
Studies were approved by the Institutional Animal Care and

Use Committee of The Children’s Hospital of Philadelphia

(approval numbers #2008-7-746 and #2010-6-561).

Figure 7. Comparison of gene expression profiles of CD4+ T cells transduced with Foxp3 K17R versus K18R. Heat maps showing
distinct gene expression profiles of CD4+ T cells transduced with WT Foxp3, K17R, K18R or EV.
doi:10.1371/journal.pone.0029035.g007
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Mice
We purchased Thy1.2+ C57BL/6 (B6) and B6/Thy1.1+ mice

(Jackson Laboratory), and B6/Rag12/2 mice (Taconic). Mice

were housed under pathogen-free conditions and used for

experiments at 6–12 weeks of age.

Antibodies and flow cytometry
Conjugated mAbs were purchased from eBioscience

(eBioscience), flow cytometry was performed using a Cyan ADP

Color flow cytometer (Beckman Coulter), and data were analyzed

by FlowJo 8 software (TreeStar).

Plasmids and mutagenesis
The indicated mouse Foxp3 cDNA lysines (K16, K17, K18, and

K19) were substituted by arginine (R) or glutamine (Q) with the

Quik-Change mutagenesis kit (Stratagene). After sequences were

confirmed, fragments were recloned into MinR1 vector for

retroviral expression. All plasmids used were sequenced (Napcore,

The Children’s Hospital of Philadelphia) to verify the correct

configurations; sequences were analyzed using Lasergene software

(DNASTAR).

Retroviral transduction of primary T cells
Retroviruses were generated by cotransfection of WT MinR1-

Foxp3 vector (WT-Foxp3), MinR1-Foxp3 vectors containing the

indicated mutants, or parental MinR1 vector (EV), plus pCLeco

(Invitrogen, CA) helper plasmid into the 293T-based Phoenix

ecotropic packaging cell line using Lipfectamine 2000 (11668-019,

Invitrogen). Virus containing supernatant was used to infect

purified CD4+ T cells that were isolated with CD4+ T cell

isolation kits (130-049-201, Miltenyi Biotec). Isolated CD4+ T cells

were stimulated for 20 h using phorbol 12-myristate 13-acetate

(PMA, 3 ng/mL), ionomycin (1 mM) and mouse IL-2 (10 U/mL,

Roche). Activated T cells were infected with 48 h and 72 h viral

supernatants harvested from transfected Phoenix cells, plus 10 U/

mL mouse IL-2 and 4 mg/mL Polybrene (Sigma), followed by

centrifugation for 90 min at 3,200 ramp. Cells cultured at 37u C

with 5% CO2 for 2–3 d were used in the suppression assays or for

RNA isolation.

Treg suppression assays
Purified CD4+CD252 T cells and CD4+CD25+ Treg cells

from wild-type C57BL/6 mice were isolated by CD4+CD25+
regulatory T cell isolation kit (130-091-041, Miltenyi Biotec).

CD4+CD252 T cells were labeled with CFSE as effector cells and

activated CD4+ T cells transduced with different Foxp3 constructs

were utilized as Treg cells. Accordingly, 56105 CFSE-labeled

effector T cells were stimulated with CD3 (5 mg/mL) in the

presence of an equal number of irradiated syngeneic APC, isolated

using kits from Miltenyi Biotec (130-049-101), and varying

numbers of Treg cells [16]. Suppression of effector T cell

proliferation was determined by flow cytometric analysis of CFSE

dilution after 72 h.

Homeostatic proliferation
Congenic Thy1.1+ CD4+CD252 T cells (16106), purified

using a Treg isolation kit (130-091-041, Miltenyi Biotec), were

mixed with 16106 Thy1.2+ CD4+ cells transduced with different

Foxp3 constructs, and adoptively transferred to Rag12/2 mice

[16]. Spleen and lymph nodes were isolated after 7 days and the

total number of Thy1.1+ CD4+ T cells determined by flow

cytometry.

Quantitative PCR (qPCR)
Total RNA was extracted using an RNeasy Kit (Qiagen), cDNA

was synthesized with TaqMan reverse transcription reagents

(N808-0234, Applied Biosystems), and real-time PCR was

performed using TaqMan Universal PCR Master Mix (4304437)

and specific primers from Applied Biosystems.

Transfection
293T cells were maintained (37 uC, 5% CO2) in RPMI-1640

plus 10% heat-inactivated FBS, penicillin and streptomycin. Cells

were grown to 80–90% confluence, transfected with Foxp3

(12 mg), HA-p300 (12 mg) or empty vector using Lipofectamine

2000 (Invitrogen), harvested 48 h later, and cell lysates were

prepared with using RIPA lysis and extraction buffer (Pierce).

Nucleotide pull-down assay
Cell lysates (100 mg) from 293T cells transfected with empty

vector, WT-Foxp3 or Foxp3 mutants in the absence or presence of

p300 expression vectors were diluted in buffer (20 mM HEPES,

1.5 mM MgCl2, 0.2 mM EDTA, 1 mM DTT, 0.1% NP-40), and

incubated overnight at 4 uC with 10 mg poly (deoxyinosinic-

deoxycytidylic acid) (Roche) and 50 ml of streptavidin-agarose

beads (Sigma) coated with biotinylated oligonucleotide containing

putative Foxp3 binding sites: 59-CAAGGTAAACAAGAGTAAA-

CAAAGTC-39 [30]. Beads were washed 5 times in dilution buffer,

resuspended in 60 ml SDS sample loading buffer (BioRad), heated

at 95 uC for 10 min, separated by SDS-PAGE, transferred to

PVDF membranes and proteins detected using rat anti-mouse

Foxp3 mAb or anti-acetyl-lysine Ab.

Microarrays
RNA was prepared from CD4+ T cells transduced with EV,

WT-Fopx3, Foxp3-K17R or Foxp3-K18R using an RNeasy Kit

(Qiagen) and hybridized to Affymetrix GeneChip Mouse Genome

430A 2.0 arrays at the Nucleic Acid and Protein Core of The

Children’s Hospital of Philadelphia. Microarray data were

analyzed by R/Bioconductor software (CBMi, The Children’s

Hospital of Philadelphia) and MAYDAY 2.12 software [45],

assembled and processed in compliance with MIAME standards.

Data were deposited in the NCBI Gene Expression Omnibus

(GEO) database and are accessible through GEO Series accession

number GSE27082 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE27082).

Statistical analysis
Data were analyzed by GraphPad Prism software and are

presented as mean 6 SD; using a standard t-test; p,0.05 was

considered significant and p,0.01 was considered highly significant.

Supporting Information

Figure S1 K17R and K18R did not inhibit the activity of

NFAT1 on NFAT:AP-1 site. 293T cells were transfected with

NFAP1-luciferase vector, NFAT1 and WT Foxp3 or K17R or

K18R. Forty hours later, cells were stimulated with 1 mM

ionomycin, 10 nM PMA, and 2 mM CaCl2 for 6 hours, dual

luciferase activity was measured and results normalized to renilla.

(PPT)
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