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Abstract

The cell intrinsic programming that regulates mammalian primordial germ cell (PGC) development in the pre-gonadal stage
is challenging to investigate. To overcome this we created a transgene-free method for generating PGCs in vitro (iPGCs)
from mouse embryonic stem cells (ESCs). Using labeling for SSEA1 and cKit, two cell surface molecules used previously to
isolate presumptive iPGCs, we show that not all SSEA1+/cKit+ double positive cells exhibit a PGC identity. Instead, we
determined that selecting for cKitbright cells within the SSEA1+ fraction significantly enriches for the putative iPGC
population. Single cell analysis comparing SSEA1+/cKitbright iPGCs to ESCs and embryonic PGCs demonstrates that 97% of
single iPGCs co-express PGC signature genes Blimp1, Stella, Dnd1, Prdm14 and Dazl at similar levels to e9.5–10.5 PGCs,
whereas 90% of single mouse ESC do not co-express PGC signature genes. For the 10% of ESCs that co-express PGC
signature genes, the levels are significantly lower than iPGCs. Microarray analysis shows that iPGCs are transcriptionally
distinct from ESCs and repress gene ontology groups associated with mesoderm and heart development. At the level of
chromatin, iPGCs contain 5-methyl cytosine bases in their DNA at imprinted and non-imprinted loci, and are enriched in
histone H3 lysine 27 trimethylation, yet do not have detectable levels of Mvh protein, consistent with a Blimp1-positive pre-
gonadal PGC identity. In order to determine whether iPGC formation is dependent upon Blimp1, we generated Blimp1 null
ESCs and found that loss of Blimp1 significantly depletes SSEA1/cKitbright iPGCs. Taken together, the generation of Blimp1-
positive iPGCs from ESCs constitutes a robust model for examining cell-intrinsic regulation of PGCs during the Blimp1-
positive stage of development.
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Introduction

The molecular events that regulate cell fate decisions in post-

implantation mammalian embryonic development are largely

uncharacterized due to the challenge in identifying and isolating

small populations of specific precursor cells that are develop-

mentally transient in the early embryo. In particular, precursors

of the germ cell lineage are initially set aside as four to six cells in

the murine embryonic epiblast, which proliferate and migrate

through the primitive streak to generate the initial founder

primordial germ cell (PGC) pool of approximately forty cells at

the base of the allantois at embryonic (e) day e7.5 [1,2]. The

PGCs migrate out of the allantois and into the embryonic hindgut

endoderm at e8.0–8.5 where they continue to proliferate and

begin to accumulate nuclear histone H3 lysine 27 trimethylation

(H3K27m3) [3]. By e10.5–e11.0 a single embryo has approx-

imately 1,000–2,000 PGCs, which exit the hindgut and begin

colonization of the indifferent gonad and express Mvh protein

[3,4,5].

The transcription factors that specify and sustain PGC identity

prior to gonadal colonization are not well understood. One of the

most characterized regulators of PGC fate is the transcriptional

repressor B-lymphocyte induced maturation protein 1 (Blimp1), the

transcriptional product of the PRD1-BF1 and RIZ (PR) domain 1

(Prdm1) gene. Blimp1 expression is detected in epiblast-derived

PGCs and persists until e11.5, when PGCs have colonized the

gonad [2,6]. Loss of one Prdm1 allele significantly reduces PGC

numbers in the allantois, with the loss of both causing almost a

complete loss of PGCs [2]. The major direct target of Blimp1 in

PGCs is hypothesized to be Hoxb1 [7]. However, direct binding of

Blimp1 at the Hoxb1 locus in PGCs has not been demonstrated.

The mechanism by which Blimp1 mediates gene repression is

hypothesized to involve recruitment of the chromatin-remodeling

enzyme Protein arginine methyltransferase 5 (Prmt5) to chromatin
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[6]. However, genome-wide analysis of PGC chromatin is

currently not feasible due to the challenge in performing

chromatin immunoprecipitation on small cell numbers, necessi-

tating the development of a scalable model to accurately capture

the Blimp1-positive phase of PGC development.

The differentiation of pluripotent stem cells, including embry-

onic stem cells (ESCs), has emerged as a novel technology for

generating sufficient numbers of embryonic progenitors at-scale to

evaluate embryonic lineage development. A number of methods

for identifying in vitro PGCs (iPGCs) have been described that

mostly involve use of integrated fluorescent reporters, including

Oct4-delta-PE-Gfp [8,9,10,11,12], Stella-Gfp [13,14,15], Dazl-Gfp

[16] and Mvh-LacZ/Rfp transgenes [10,17,18]. A small number of

studies have used Stage Specific Embryonic Antigen 1 (SSEA1) to

enrich for germ cells [19,20], but the identity of PGCs from ESCs

within the SSEA1+ fraction has not been interrogated at a single

cell level. Furthermore, the majority of PGC differentiation studies

have been designed to characterize the post-colonized Blimp1-

negative PGC. Therefore, the goal of the current study is to

generate a robust ESC differentiation system to acquire PGCs in

the Blimp1-positive stage of development for future in-depth

analysis of the pre-gonadal stage.

Results

cKitbright refines an Oct4+/SSEA1+ iPGC population in
embryoid bodies

To identify pre-gonadal iPGCs with differentiation, we first used

Oct4-Gfp ESCs [21] to generate hanging-drop embryoid bodies

(EBs) containing 300 cells per drop (Figure 1A). EBs could be

maintained for up to 8 days in this system (Figure S1A), but cell

viability decreased rapidly after day 6 from 69% to 19% by day 8

(Figure S1B). Using flow cytometry we show that Gfp is retained in

the majority of cells in the first four days of differentiation

(Figure 1B), reminiscent of sustained Oct4 expression in vivo in

both PGCs and embryonic somatic cells up to e8.5 [22,23]. On

day 5 of differentiation, we observed the emergence of a shoulder

of Gfpbright cells and the formation of a distinct Gfp+ peak by day

6 (Figure 1B, arrow).

To generate a transgene-free method of iPGC differentiation,

we correlated expression of Oct4 protein in day 6 EBs derived

from V6.5 ESCs with the cell surface marker SSEA1. In the

embryo, SSEA1 is highly expressed on Blimp1-positive stage

PGCs and PGC precursors derived from epiblast stem cells

[24,25]. We found that Oct4 is co-expressed with SSEA1 in small

cell clusters at day 6 of differentiation by immunofluorescence

(Figure 1C). Given that Oct4 and SSEA1 are also expressed by

undifferentiated ESCs, we used the membrane-localized tyrosine

kinase receptor cKit to assist in further defining the iPGC

population within either the SSEA1+ or Oct4+ fractions. cKit is

highly expressed by endogenous PGCs from e7.25 to e13.5

[7,22,26] and is not expressed by epiblast cells [22]. Indeed, flow

cytometry analysis of V6.5 ESC-derived EBs at day 6 of

differentiation revealed a discreet a side population of SSEA1+/

cKit+ cells (Figure 1D). A side population of Oct4-Gfp+/cKit+
cells was also identified beginning at day 6 of differentiation in EBs

derived from Oct4-gfp ESCs, and this was sustained to day 8

(Figure S1C).

To interrogate PGC identity in specific fractions of SSEA1+/

cKit+ cells when the population is first identified at day 6, we used

real time PCR to determine relative levels of PGC-expressed genes

in discreet cKit+ fractions. These fractions include SSEA1+/

cKitbright (green), SSEA1+/cKitmid (light blue), and SSEA1+/

cKitdim (dark blue), and SSEA1-/cKit- cells (red) as a negative

control (Figure 1E). cKitbright cells were selected based on

increased signal intensity above the main population. PGC genes

including cKit, Blimp1, Stella and Dazl were all enriched in the

SSEA1+/cKitbright fraction, with lower expression in the cKitmid

and cKitdim fractions of SSEA1+ cells (Figure 1F). Mvh was also

expressed in the SSEA1+/cKitbright fraction, but was not

specifically enriched in SSEA1+/cKitbright cells relative to cKitmid

and cKitdim. Furthermore, analysis of Mvh levels in SSEA1+/

cKitbright cells at day 8 of differentiation also did not show an

increase relative to day 6 (data not shown). In contrast,

transcription factors expressed in somatic cells such as Hoxa1

and Hoxb1 were highly expressed in SSEA1-/cKit- and SSEA1+/

cKitdim relative to SSEA1+/cKitbright cells. Together, we conclude

that not every SSEA1+/cKit+ cell in EBs at day 6 of

differentiation is a putative PGC, and that selecting for cKitbight

cells enriches for the iPGCs beginning at day 6 of differentiation

and persisting until day 8. We next determined if Oct4-gfp could

further sub-fractionate the putative SSEA1+/cKitbright putative

iPGC population, and found equal enrichment of Oct4-gfp in all

SSEA1+ cells regardless of cKit intensity (Figure S1D). Therefore

the use of the Oct4-Gfp reporter together with SSEA1 and cKit

does not further refine the isolation of putative iPGCs, but instead

shows that Oct4-Gfp and SSEA1 report the same population

when used with cKit.

We next evaluated the yield of SSEA1+/cKitbright or Oct4-

gfp+/cKitbright cells (called iPGCs) isolated at day 6 of differen-

tiation (Figure 1G). We determined that 1–4% of total live EB cells

exhibited an iPGC surface signature, and there was no statistical

difference between genetic backgrounds (Figure 1G). Furthermore,

gene expression profiling of Oct4-gfp+/cKitbright cells from the

Oct4-gfp line and SSEA1+/cKitbright cells from J1 EBs at day 6

revealed enriched expression of cKit, Stella, Blimp1, Dazl and Mvh

relative to the SSEA1-/cKit- somatic cell controls (Figure S1E).

Conversely, somatic gene expression as documented by Hoxa1 and

Hoxb1 were not enriched in the putative iPGCs relative to somatic

cells (Figure S1F).

To test identity of SSEA1+/cKitbright cells derived from V6.5

ESCs we sorted putative iPGCs and cultured them on mouse

embryonic fibroblasts (MEFs) supplemented with basic Fibroblast

Growth Factor 2 (FGF2), Stem Cell Factor (SCF), Leukemia

Inhibitory Factor (LIF) and retinoic acid (RA), a driver of PGC

proliferation (Figure 1H). This assay has been used previously to

confirm PGC identity relative to undifferentiated ESCs, which

respond to RA by undergoing differentiation and becoming

alkaline phosphatase (AP) negative [15,19,20]. AP+ colony

forming ability is almost exclusively associated with SSEA1+/

cKitbright population when compared to sorted undifferentiated

ESCs, SSEA1+/cKitmid or SSEA1+/cKitdim cells plated at

equivalent numbers (Figure 1I). The three non-iPGC populations

generate mostly mixed colonies or AP negative colonies.

Withdrawal of RA, FGF2 and SCF while retaining LIF in the

media of RA-treated SSEA1+/cKitbright sorted cells results in the

formation of self-renewing pluripotent embryonic germ cells

(EGCs), which could be maintained for at least 10 passages

(Figure 1J).

Day 6 iPGCs have a pre-gonadal, pre-reprogrammed PGC
identity

Day 6 EB-derived SSEA1+/cKitbright or Oct4-Gfp+/cKitbright

iPGCs consistently express Dazl and Mvh RNA in addition to

Blimp1 (Figure 1F & Figure S1E). Therefore we could hypothesize

that putative iPGCs correspond to newly colonized PGCs that

have expressed Mvh protein and have potentially undergone

whole genome reprogramming. To address this, we performed

Developmental Staging of In Vitro PGCs
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immunofluorescence for Mvh, which is first detectable in gonadal

PGCs at e11.5 [27,28,29]. We also evaluated DNA demethylation

at imprinted and non-imprinted genes, which is erased by e12.5

[30,31]. Immunofluorescence analysis of e10.5 embryos with

antibodies against Mvh and Oct4 confirms that e10.5 Oct4-

positive PGCs are negative for Mvh protein, whereas gonadal-

stage PGCs are Mvh positive (Figure 2A). Analysis of SSEA1+/

cKitbright sorted iPGCs derived from V6.5 ESCs reveals that Mvh

protein is not detectable above background (Figure 2B). We also

tested J1 ESC-derived iPGCs and were unable to detect Mvh

protein similar to V6.5 iPGCs (data not shown). Furthermore we

evaluated H3K27m3 in SSEA1+/cKitbright iPGCs, a histone

modification that is depleted from the PGC genome from e11.5–

e12.5 [4]. We found a high nuclear content of H3K27me3 in

iPGCs (Figure 2C). Together this data suggests that the SSEA1+/

cKitbright iPGCs are pre-reprogrammed and younger than e11.5.

Figure 1. Transgene-free method for isolating iPGCs from embryoid bodies. A: V6.5 embryoid bodies in hanging drops at days 4, 5, and 6
of differentiation. Scale bar = 500 microns. B: Oct4-Gfp expression (red) relative to V6.5 EBs (black) at days 4, 5 and 6 of differentiation. Arrows indicate
shoulder of Oct4-Gfpbright cells at day 5 and an Oct4-Gfpbright peak at day 6. C: Immunofluorescence of EBs at day 6 for Oct4 (red) and SSEA1 (green).
Double positive cells localize in discreet clusters (arrow). Scale bar = 20 microns. D: Flow cytometry plot of V6.5 day 6 EBs stained for SSEA1 and cKit.
Oval gate defines the SSEA1+/cKit+ side population. E: Flow plot day 6 EBs from V6.5 ESCs fractionated by expression of SSEA1 and cKit into SSEA1+/
cKitbright (green), SSEA1+/cKitmid (light blue), SSEA1+/cKitdim (dark blue), and SSEA1-/cKit- cells (red) populations. Quadrant gates are drawn to
demonstrate the criteria for selecting SSEA1+/cKitbright cells. The remaining cKit+ population was split into two equal fractions, mid and dim. F: Semi-
quantitative real-time PCR from the populations isolated in E, with levels normalized to Gapdh. SSEA1+/cKitbright cells are set at 1.0. Data is from two
biological replicates each performed in technical duplicate. Error bars represent s.e.m. G: Percentage of live iPGCs acquired from differentiation of
ESCs of different genetic backgrounds. Each line was tested at least seven independent times. H: Diagrammatic representation of iPGC replating
assay. I: Quantification of alkaline phosphatase (AP) staining of colonies derived from indicated cell populations after 5 days of culture. Right,
representative images of colony types. Scale bar = 500 microns. J: Self-renewing EGCs at passage 10 derived from RA/FGF2/LIF/SCF cultured iPGCs,
followed by routine passaging in the presence of LIF only. Error bars represent s.d.
doi:10.1371/journal.pone.0028960.g001
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To further confirm a pre-reprogrammed identity, we next

evaluated the methylation status of an imprinted gene (Snrpn) and

two non-imprinted loci, Xist and Intracisternal A Particle 1 (IAP), by

bisulfite sequencing (Figure 2D). Analysis of undifferentiated

ESCs shows that the differentially methylated region (DMR) of

Snrpn is 49.6% methylated, the Xist promoter is 66.3%

methylated, and IAP is 83.5% methylated. In the putative iPGCs,

methylation at the Snrpn DMR is modestly reduced to 38.7%,

while Xist and IAP methylation levels are the same as ESCs. To

determine if the DMR of Snrpn also exhibits partial demethylation

in endogenous PGCs, we performed bisulfite sequencing of sorted

PGCs from e9.5 and e10.5 Oct4-gfp embryos. Methylation at the

Snrpn DMR in e9.5 and e10.5 PGCs from the embryo were still

present (47.6% and 54.2% respectively) consistent with previously

published findings [31]. Furthermore, we observed evidence of

demethylation at the 59 and 39 ends of three clones in endogenous

PGCs at e9.5 and two sequences at e10.5 similar to what was

observed in iPGCs (Figure 2D, arrows). Taken together, using

real time PCR, immunofluorescence and bisulfite sequencing, our

data strongly argue that the Blimp1-positive PGCs isolated from

EBs at day 6 of differentiation correspond to a pre-e11.5 stage

germ cell in vitro.

Germ line signature genes including Blimp1 are co-
expressed in single SSEA1+/cKitbright cells

To determine whether the relative levels of PGC signature

genes in SSEA1+/cKitbright cells are comparable to the levels

found in PGCs sorted from the embryo prior to e11.5, we sorted

Gfp+ cells from Oct4-gfp embryos at 9.5 and e10.5 (Figure 3A–C,

shown is e9.5). A distinct Gfp+ population was detected from e9.5

to at least e13.5 (Figure 3C and data not shown). Sorted Oct4-gfp+
PGCs from the embryo are SSEA1+ and exhibit bright cKit+
staining (Figure 3C). We confirmed that the Gfp+ cells are PGCs

due to enriched expression of cKit, Blimp1, Stella, and Mvh relative

to the Gfp- somatic cells at a population level by real time PCR

(Figure 3D). Detection of cKit and Blimp1 RNA in the Gfp-

population was not unexpected as these genes are also expressed in

endothelial and hematopoietic cells during early embryogenesis

[32,33].

We next evaluated the transcriptional identity of undifferenti-

ated ESCs, iPGCs and embryonic PGCs at e9.5 and e10.5 at a

single cell level by examining expression of five signature PGC

markers (Blimp1, Stella, Prdm14, Dnd1 and Dazl) using the BioMark

Fluidigm Real Time PCR platform (Figure 3E–H). We evaluated

38 single undifferentiated ESCs (Figure 3E), 34 single embryonic

Oct4-Gfp+ PGCs at e9.5 (Figure 3F), 24 single Oct4-Gfp+ PGCs

at e10.5 (Figure 3G), and 30 iPGCs from day 6 EBs (Figure 3H).

In undifferentiated ESCs, 17 of the 38 cells (44%) expressed

Blimp1. Of the 17 Blimp1+ cells, 6 did not express Stella and 12 did

not express Dnd1. In contrast to ESCs where less than 50% of cells

expressed Blimp1, 100% of e9.5 and e10.5 PGCs from the embryo

and iPGCs expressed Blimp1 (Figure 3F–H). Heat maps of the

single cell analysis indicate that e9.5 PGCs are relatively

homogeneous when comparing individual cells to each other for

each gene, whereas at e10.5 and in iPGCs expression levels

between individual cells is more heterogeneous (Figure 3G,H).

Critically, only one cell in the iPGC cohort was not a germ cell

(Figure 3H, asterisk).

Figure 2. iPGCs have characteristics of pre-gonadal, pre-reprogrammed in vivo PGCs. A: Immunofluorescence of pre-gonadal e10.5 PGCs
stained for Oct4 (red) and Mvh (green). e13.5 male gonadal PGCs were stained as a positive control. Dotted circles mark the testis cords. B: Sorted
SSEA1+/cKitbright iPGCs stained for Mvh (green, left) or secondary antibody alone (right). C: iPGCs stained for H3K27m3 (red, left), and secondary
antibody alone (right). Arrows point to individual iPGCs. D: Bisulfite sequencing of ESCs, iPGCs, and endogenous e9.5 PGCs for Snrpn, the Xist
promoter, and IAP. Circles represent individual CG dinucleotides, black = methylated and white = unmethylated cytosines. Arrows indicate individual
alleles that display characteristic demethylation. N.D. = not determined.
doi:10.1371/journal.pone.0028960.g002
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Figure 3. Developmental staging of pre-gonadal iPGCs at single cell resolution. A: Bright field image of representative e9.5 Oct4-gfp
embryo. Dotted line indicates where the embryo was bisected at somite 13 for FACS. Scale bar = 1 mm. B: Whole mount confocal microscopy of live
embryos with migratory Oct4-gfp+ PGCs within the hindgut (arrows). C: Flow cytometry of the bisected lower half of e9.5 Oct4-gfp embryos. Oct4-

Developmental Staging of In Vitro PGCs

PLoS ONE | www.plosone.org 5 December 2011 | Volume 6 | Issue 12 | e28960



We next examined expression levels of each gene for all cells

that co-expressed Blimp1, Stella, Dnd1, and Prdm14 relative to levels

in SSEA1+/cKitbright iPGCs. We first compared ESCs to iPGCs

and found that of the 4 Blimp1+ ESCs that co-expressed Stella,

Prdm14 and Dnd1 (10.5%), the transcript levels were significantly

lower than those in iPGCs (Figure 3I–L). However, comparison of

iPGCs to embryonic e10.5 PGCs revealed no significant difference

with regard to Blimp1, Prdm14, and Dnd1 expression levels

(Figure 3I,K–L). In single cells that also co-expressed Dazl, ESCs

displayed significantly diminished Dazl levels, but no significant

difference was found between iPGCs and e10.5 endogenous PGCs

(Figure 3M). Stella levels were statistically different between all

groups, with SSEA1+/cKitbright iPGCs on average expressing

intermediate levels between e9.5 and e10.5 embryonic PGCs

(Figure 3J). We propose that the intermediate levels of Stella in

iPGCs between e9.5 and e10.5 PGCs may indicate that iPGCs are

developmentally equivalent to a period of germ cell differentiation

between e9.5 and e10.5.

Gene expression profiling by microarray reveals iPGCs
repress a mesoderm transcriptional program and
identifies a novel marker of in vitro PGC formation from
ESCs

Although analysis of five critical PGC-expressed genes at a

single cell level was informative for ensuring that .96% of

SSEA1+/cKitbright iPGCs have a Blimp1+ PGC identity, our next

goal was to obtain a more comprehensive transcriptional portrait

of iPGCs derived from day 6 EBs by performing microarray

analysis using Affymetrix Mouse Genome chips followed by D-

Chip analysis and examine expression of ESC-expressed genes and

somatic genes (Figure 4A,B). We profiled the SSEA1+/cKitbright

gfp+ PGCs (circled gate) are also positive for SSEA1 and cKit. D: Real-time RT-PCR of Gfp+ and Gfp- cells. Error bar denotes s.d. E–H: Gene expression
analysis at single cell resolution for ESCs (E), e9.5 PGCs (F), e10.5 PGCs (G), and iPGCs (H) represented as a heat map of CT values with expression
ranging from not detected (black) to high (yellow). A cell titration was performed as a control to ensure linear amplification of each primer set. Each
cell was evaluated for the expression of each gene in technical triplicate. I–M: Semi-quantitative analysis of single cell real time PCR in E–H of cells
that co-express Blimp1, Stella, Prdm14, and Dnd1 expressed relative to the average delta CT expression level for each gene in single iPGCs. *p,1e-03,
**p,1 e-04, ***p,1 e-06, NS = not significant.
doi:10.1371/journal.pone.0028960.g003

Figure 4. Transcriptional profiling demonstrates a PGC program and identifies novel markers for bona fide iPGCs from ESCs. A:
Microarray analysis comparing iPGCs (A,B,C,D), V6.5 ESCs (E and F), and the somatic cells of the EB (G through J). Genes differentially expressed by
threefold between undifferentiated ESCs and iPGCs are shown (p,0.01). Red indicates significant up-regulation, green repression and black no
change. B: Semi-quantitative RT-PCR validation of microarray in Oct4-Gfp/cKitbright iPGCs versus Gfp-/cKit- somatic cells. ND = no transcript detected.
C: Real time RT-PCR of Id4 in V6.5 ESCs (set to 1.0) compared to iPGCs. D: Immunohistochemistry of day 6 V6.5 EBs for SSEA1 (blue) and Id4 (brown,
arrows). Dotted black line denotes SSEA1+ cluster within the EB. Scale bar = 10 microns. E: Immunohistochemistry of e10.5 embryos. Id4 is expressed
in SSEA1+ PGCs (arrows) and somatic cells. Scale bar = 20 microns. Negative controls were performed with secondary antibodies alone.
doi:10.1371/journal.pone.0028960.g004
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fraction from V6.5 EBs at day 6 of differentiation (Samples A and

B), Oct4-Gfp+/cKitbright cells from day 6 Oct4-gfp EBs (Samples C

and D), undifferentiated V6.5 SSEA1+/cKit+ ESCs (Samples E

and F), and SSEA1-/cKit- and Oct4-/cKit- day 6 EB cells

(Samples G–J).

Cluster analysis of genes that are differentially expressed at

greater than three-fold between undifferentiated ESCs and iPGCs

(348 genes, p,0.01) generated four major transcriptional clusters

(Figure 4A & Table S1). Gene ontology (GO) analysis of Cluster I

(enriched in ESCs but not iPGCs or somatic cells) identified genes

associated with transcription factor activity and DNA binding.

Cluster II (enriched in iPGCs but not ESCs or somatic cells)

revealed enrichment in genes associated with hydrolyase activity,

cytoplasmic proteins and MAPK signaling pathways. Genes in

Cluster III (enriched in ESCs and somatic cells but not iPGCs)

were associated with GO terms for stress fibers and actin filament

bundle genes. Finally, GO analysis of Cluster IV (repressed in

iPGCs and ESCs but not somatic cells) revealed genes associated

with mesoderm formation including heart and blood development,

and morphogenesis. Together, these data suggest that iPGCs

repress genes associated with mesoderm differentiation, similar to

what has been proposed for endogenous PGC formation through

the activity of Blimp1 [2,7]. Expression of candidate PGC genes

from the microarray was validated by real time RT-PCR from

Oct4-Gfp+/cKitbright iPGCs (Figure 4B). Similarly, expression of

additional somatic genes (Hoxa2 and Hoxc5) which were not

evaluated earlier (Figure S1F) revealed undetectable expression in

iPGCs, whereas somatic cells were positive.

Next, we compared our microarray data between iPGCs and

undifferentiated ESCs to identify a marker that could distinguish

between these two cell types. We identified Inhibitor of DNA binding

4 (Id4) as being significantly higher in iPGCs relative to ESCs. We

confirmed the microarray data showing significant enrichment of

Id4 RNA in independently collected iPGC samples relative to

undifferentiated ESCs (Figure 4C). To determine if Id4 protein is

expressed in iPGCs, we performed immunohistochemistry of day 6

EBs with SSEA1 and Id4, and identified Id4 positive cells within

the clusters of SSEA1+ cells (Figure 4D). Likewise, immunohis-

tochemistry of e10.5 embryos shows that Id4 protein is expressed

in SSEA1+ PGCs (Figure 4E, arrow). However, Id4 was also

expressed in the surrounding embryonic somatic cells. Taken

together, Id4 is a new marker for distinguishing iPGCs from

undifferentiated ESCs, but does not distinguish PGCs from

somatic cells of the embryo.

Blimp1 is specifically required for iPGC differentiation
from EBs

Dosage of Blimp1 is essential for the specification of PGCs in vivo

[2,32]. To determine if the emergence of SSEA1+/cKitbright PGCs

in vitro is similarly dependent upon Blimp1 expression, we derived

Blimp1fl/fl ESCs from e3.5 blastocysts. We performed Y chromo-

some FISH to identify a male line (Figure 5A), and generated three

independent Blimp1 knockout sub-lines (Blimp1D/D) via transfection

of Cre recombinase fused to Gfp followed by re-plating of Gfp+
cells at limiting dilutions. Clones were screened by Southern blot

to verify Blimp1 deletion (Figure 5B). To compare overall self-

renewal and pluripotency in Blimp1D/D cells relative to the parental

line, we performed flow cytometry for SSEA1 under self-renewing

conditions in the presence of LIF (Figure 5C), and teratoma

analysis by injection of undifferentiated ESCs into the testicles of

SCID mice (Figure 5D). In both assays, all Blimp1D/D lines were

indistinguishable from parental Blimp1fl/fl cells, indicating that loss

of Blimp1 does not cause gross defects in overall ESC self-renewal

or differentiation.

Finally, to evaluate in vitro PGC formation, we performed paired

differentiation experiments with Blimp1fl/fl and Blimp1D/D lines and

evaluated iPGC differentiation by flow cytometry (Figure 5E).

Quantification of SSEA1+/cKitbright cells revealed that iPGCs

constitute approximately 3–4% of the live cell EB population in

the parental Blimp1fl/fl line at day 6 (Figure 5F). In contrast, all

Blimp1D/D sub-lines displayed between a 70–90% decrease in

SSEA1+/cKitbright iPGCs, with the average percentage constituting

less than 1% of the EB in all three sub-lines examined (Figure 5F,G).

Functionally, this demonstrates that sorting for SSEA1+/cKitbright

iPGCs captures a Blimp1-dependent PGC population in vitro, whereas

generation of SSEA1+/cKitmid and SSEA1+/cKitdim fractions of

EBs do not exhibit the same reliance on Blimp1 as in vivo PGCs.

Discussion

Emerging cell populations in the early embryo are challenging

to investigate. Therefore, we used mouse ESCs from multiple

genetic backgrounds to differentiate transgene-free, pre-gonadal

stage PGCs where 100% of the single iPGCs express Blimp1 in vitro.

Here we show that sorting for the cKitbright fraction of SSEA1+
cells at day 6 of differentiation when the population is first

discernable yields an iPGC population with an identity suggestive

of PGCs younger than e11.5.

One of the major challenges in the ESC and PGC fields has

been to distinguish early progenitor PGCs from undifferentiated

ESCs due to their similar expression patterns. Indeed, e11.5 PGCs

isolated from the genital ridge prior to sex determination cluster

very closely to undifferentiated ESCs in 2-dimensional principle

component analysis after microarray [11]. Therefore, it has been

proposed that ESCs originate from a progenitor germ cell

consistent with detectable expression of PGC-signature genes,

including Dazl and Tissue non specific alkaline phosphatase in the

undifferentiated state [34,35]. Although our studies do not address

the origin of ESCs, our data does indicate that a small nascent

PGC-like population corresponding to about 10% of cells can be

identified in an ESC culture in the self-renewing state, agreeing

strongly with previous work which demonstrated that Dazl null

ESCs exhibit reduced expression of PGC-signature genes [8].

However, our data also show that despite co-expression of germ

cell genes in these 10% of cells, the transcript levels are

significantly lower than the levels found in bona fide PGCs isolated

form the embryo between e9.5–e10.5 as well as the iPGCs. Taken

together, our data argues that the majority of undifferentiated

ESCs are not PGCs, and that a single cell analysis is critical to

uncouple differences between ESCs and progenitor PGCs.

In the current study, we identified Id4 as a new marker enriched

in iPGCs relative to undifferentiated ESCs. Id4 was recently found

to be a germ line marker expressed in gonocytes and spermato-

gonia of postnatal and adult murine gonads [36]. We extend these

findings to show that Id4 is expressed during the earliest stage of

germ line development, prior to gonadal colonization (Figure 4E).

Interestingly, Id4 similar to Stella constitutes a marker for defining

PGC identity yet has no functional role in specifying PGC fate

[13,36,37]. However, by combining Id4, SSEA1, and Oct4

expression in day 6 EBs, we propose a model for germ line

formation in vitro that involves the generation of multiple SSEA1+/

Oct4+ niches during EB formation, with Id4+ iPGCs emerging

from within these niches (Figure 6). We propose that similar to

PGC development in the allantois of the embryo, the tight

clustering of SSEA1+/Oct4+ cells creates a microenvironment in

the EB to protect the iPGCs against somatic cell differentiation

signals [38]. Given that Id4+ cells constitute only a subpopulation

of cells within SSEA1+ clusters, we hypothesize that the clusters

Developmental Staging of In Vitro PGCs

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e28960



are composed of a heterogeneous mixture of immature cells,

including epiblast-like cells (Stella negative, Blimp1 negative), PGC

precursors (Stella negative, Blimp1 positive) and definitive Id4-

positive cKitbright iPGCs (Figure 6). Whether the SSEA1+/

cKitbright PGCs emerge from a subpopulation of the SSEA1+/

cKitmid fraction of cells remains to be determined. However, our

data strongly argue that iPGCs do not differentiate from SSEA1+/

cKitdim cells, which have no colony forming potential, and express

high levels of Hoxa1 and Hoxb1, indicating commitment to a

somatic fate.

Although our data suggest that the iPGCs are younger than

e11.5 of development due to lack of Mvh protein expression, it is

conceivable that iPGCs at day 6 are more similar to e11.5 in some

aspects, but have not received the appropriate cues to express Mvh

protein. The signals that promote Mvh protein expression in

PGCs at e11.5 are not well understood, but one study has

indicated that gonadal somatic cells are involved in this process

[29]. Lack of Mvh protein expression in our model suggests that

the hanging drop EB system by day 6 of differentiation does not

provide the necessary signals to promote developmental progres-

sion to Mvh protein-positive iPGCs. This result implies that

progression of iPGCs in vitro may require a gonadal niche to

promote differentiation to the Mvh protein-positive stage. Indeed,

while this manuscript was under review, Hayashi and colleagues

demonstrated that a neonatal seminiferous tubule niche was

necessary to promote differentiation of ESC-derived PGCs, which

this group called PGC like cells (PGCLCs), into functional post-

meiotic male germ cells [39]. In these studies, PGCLCs were

isolated using SSEA1 and Integrin Beta 3 and were hypothesized

to be equivalent to e9.5 of development. Similar to this group,

iPGCs isolated at day 6 also express significantly high levels of

Integrin Beta 3 RNA (Figure S2).

In the current study, we successfully acquired PGCs in the

Blimp1-positive stage of development. Blimp1 is not expressed in

Figure 5. Blimp1 is required for the differentiation of iPGCs from ESCs. A: DNA-FISH for the Y chromosome in Blimp1fl/fl ESCs. B: Southern
blot for detection of wild type (WT), flox, and knock-out (KO) alleles of Blimp1. C: Flow cytometry for SSEA1 on undifferentiated ESCs. D:
Representative histological sections from Blimp1fl/fl and Blimp1D/D teratomas. All lines were capable of differentiation to ectoderm (Ecto), mesoderm
(Meso) and endoderm (Endo). Scale bar = 100 microns. E: Representative paired EB differentiations of Blimp1fl/fl and Blimp1D/D ESCs. Quadrant gates
indicate criteria for gating SSEA1+/cKitbright iPGCs, which are contained within the rectangular gate (black lines). F: Percentage iPGC yield in the
control Blimp1fl/fl line and Blimp1D/D sub-lines. Error bars represent s.e.m. G: Quantification of data from F, expressed as a percent of the Blimp1fl/fl

iPGC yield from each paired experiment. Error bars represent the standard error of the mean. *p,0.05, ** p,161027.
doi:10.1371/journal.pone.0028960.g005
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meiotic or post-meiotic cells and therefore our model is not useful

for evaluating meiotic progression; however, we propose that this

model can be used to successfully evaluate molecular events in PGC

formation prior to gonadal colonization, gonadal reprogramming

and sex determination. As an example of the utility of our model,

one hundred male e10.5 embryos would be required to obtain

approximately 100,000 PGCs via FACS, if we estimate that there

are ,1,000 PGCs per embryo at this developmental age [5]. In

contrast, generating iPGCs equivalent to e9.5–10.5 of development

using ESC differentiation required 50 plates of hanging drop EBs,

which takes 1 hour to set up from only two wells of undifferentiated

ESCs. This yields on average 150,000–175,000 Blimp1 positive

iPGCs at day 6 of differentiation, resulting in more than 100-fold

enrichment in cell numbers over embryonic dissections [40].

In conclusion, we propose that the ESC-to-PGC differentiation

model is an essential tool for examining molecular events in PGC

development. In this study we developed a model that specifically

captures the Blimp1-positive stage of male PGC formation prior to

the expression of Mvh protein. This period of germ cell

development (prior to e11.5) is uniquely regulated in mammals

and is not conserved with lower model organisms such as

Drosophila, C. elegans, frog, and chick (for example, the role of

Blimp1). Therefore, creating models that study the initial formation

of mammalian PGCs such as the one described here, as well as

extending this model to female ESC lines, will be critical to our

understanding of the mechanisms that govern fundamental

principles of inheritance via the germ line.

Materials and Methods

Ethics Statement
Mouse embryo dissection, breeding colony maintenance, and

animal surgery were all performed following Institutional Approval

for Appropriate Care and use of Laboratory animals by the UCLA

Institutional Animal Care and Use Committee (Chancellor’s

Animal Research Committee (ARC)), Animal Welfare assurance

number A3196-01.

Cell Culture and EB Differentiation
All ESC lines in this study were maintained as described

previously with lot-tested FBS (Hyclone Lot #ATJ33070) on

inactivated CF-1 mouse embryonic fibroblasts (MEFs) [41]. Cells

were passaged every three days at 5,300 cells/cm2. For EB

formation, ESCs were subjected to MEF depletion by plating a

single cell suspension on tissue culture dishes twice for five minutes

each. Cells were seeded in drops of 20 microliters each containing

300 cells on the lids of Petri dishes with 5 mL PBS in the plate

bottom and cultured in the absence of LIF for six days, with

addition of 3.5 mL PBS on day 3 of differentiation. For ESC

derivation, e3.5 blastocysts were isolated from homozygous

Blimp1flox/flox (C57BL6/J) crosses and cultured in ESC media

containing PD98059 (Cell Signaling) for four days. ESC lines were

then passaged and maintained routinely. To generate Blimp1 null

ESCs, Blimp1flox/flox cells were transfected with pCAG-Cre:Gfp

[42] and sorted to generate sublines.

Mice
Oct4-gfp embryos were dissected and dissociated with TrypLE

(Invitrogen) prior to flow cytometry or FACS. For teratoma

analysis, 100,000 ESCs were injected into the testicles of SCID

recipient mice and collected 6 weeks after transplant for histology

[40].

iPGC Colony Assay
iPGCs were sorted from EBs by FACS and re-plated on

inactivated CF-1 MEFs. iPGCs were cultured in ESC media

Figure 6. Model for iPGC emergence from SSEA1/Oct4+ clusters in EBs. In day 6 of EBs (pink circle) multiple discreet clusters of Oct4+ (red)
and SSEA1+ (green) cells are identified. SSEA1+ cells within these clusters exhibit a range of cKit signal intensities identified by flow cytometry
including cKitbright (iPGCs), cKitmid (iPGC precursors and epiblast stem cells) and cKitdim (somatic lineage primed epiblast) cells (black box). Definitive
iPGCs are enriched in the cKitbright fraction of SSEA1+ or Oct4+ cells, and the generation of this population in vitro is dependent upon Blimp1. Using a
differential colony forming assay in the presence FGF2, SCF, LIF and RA which promotes survival and proliferation of PGCs, we show that RA-iPGC
potential is highest in the cKitbright fraction and is absent in the cKitdim subpopulation of SSEA1+ cells. Furthermore, converting RA-iPGCs to media
containing LIF supports the generation of self-renewing EGCs in vitro.
doi:10.1371/journal.pone.0028960.g006
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supplemented with 15 ngml21 bFGF2 (R&D), 30 ngml21 SCF

(Peprotech), and 2 micromolar retinoic acid (Sigma), for five days

as described previously [15]. Cells were cultured for five days with

daily media changes followed by assaying for AP activity. EGCs

were derived from iPGCs by culture of iPGCs for five days with

LIF/SCF/bFGF2/RA, followed by passaging in LIF-only con-

taining media for subsequent passages.

Flow cytometry and FACS
Staining for SSEA1 (DSHB, 1:200) and cKit (BD, 1:200) was

performed on ice. Indirect labeling was performed with Cy5-

conjugated goat anti-mouse IgG and IgM (1:500) and PE-

conjugated goat anti-rat IgG (1:1000) (Jackson ImmunoResearch).

7AAD or DAPI were added prior to all acquisitions to examine

only live cells for downstream analyses with FlowJo software

(TreeStar).

Immunostaining
Embryoid bodies were fixed and embedded in paraffin

according to standard protocols. For iPGC stains, cells were

sorted by FACS and plated onto poly-lysine coated cover slips.

The following antibodies were used at the indicated dilutions:

SSEA1 (DSHB, 1:100), Oct4 (1:100, Santa Cruz), Mvh (1:100,

Abcam), and H3K27m3 (1:500, Millipore). All samples were

incubated with primary antibodies overnight at 4uC. Sections were

washed, incubated with FITC anti-mouse IgM, TRITC anti-goat

IgG, or FITC/TRITC conjugated anti-rabbit IgG antibodies

(Jackson Immunoresearch) for 30 minutes at room temperature. Y

chromosome FISH was performed on chromosome spreads.

SSEA1 and Id4 immunohistochemical detection was performed

using anti-Id4 (1:100, Novus Biologicals) and anti-SSEA1 (DSHB)

with standard protocols (Vector Labs).

Real-time PCR
RNA was extracted from sorted samples using the RNEasy

Micro Kit (Qiagen) and reverse-transcribed using Superscript RT

II (Invitrogen). All gene expression analysis was performed using

commercially available TaqMan Gene Expression Assays (Applied

Biosystems), with the exception of Id4, which as examined by

SYBR Green PCR (Roche). See Table S2 for additional primer

information. CT values were normalized to Gapdh expression and

expressed as fold change relative to a control cell type referenced

in each experiment.

Single-cell Real Time RT-PCR
Single cells were sorted by FACS and subjected to reverse

transcription and specific target amplification of relevant genes

using the Fluidigm BioMark 48.48 dynamic gene expression

system according to manufacturer’s instructions, with PCR

performed by the UCLA Genotyping and Sequencing core

facility. A dilution series of cells were used as detection controls

and also to establish primer correlation coefficients and ensure

linear amplification of amplicons. Heat map data was generated

using Fluidigm Real Time PCR Analysis software.

Microarray and Data Analysis
RNA extraction, labeling amplification and hybridization to

Affymetrix Mouse Genome 430 2.0 arrays were performed as

previously described [41]. Analysis was performed using model-

based expression and invariant set probe normalization using D-

Chip software [43]. Gene ontology (GO) terms were identified

using DAVID [44,45]. Microarray data is deposited under GEO

accession number GSE33121.

Bisulfite Sequencing
Genomic DNA was isolated from sorted samples (Zymo

Research). Bisulfite conversion was performed using the EZ

DNA Methylation Kit according to manufacturer’s instructions

(Zymo Research). PCR was performed on bisulfite converted

genomic DNA and cloned into pCR2.1-TOPO (Invitrogen).

Clones were sequenced and aligned using Lasergene software

(DNASTAR). See Table S2 for PCR primer information.

Southern Blot
Prdm1/Blimp1 deletion was verified with dUTP-digoxigenin-

labeled probe generated by PCR upstream of the deleted exons of

Blimp1 (fwd:59- CTCGTGGCTCTTGTGTGTGT -39, rev:59-

AACGCTGTACCCATGACTCC -39), after digestion with

EcoRI. Detection of wild type (15 kb), flox, (13.5 kb), and KO

(10 kb) alleles of Blimp1 have been described [46].

Supporting Information

Figure S1 Kinetics of EB formation and the transcrip-
tional identity of iPGCs. A: Oct4-gfp embryoid bodies at days

5–8 of differentiation. Scale bar = 500 microns. B: Quantification

of EB cell viability recorded as the percent of 7AAD- cells at each

time point by flow cytometry. C: Flow cytometry of the live cell EB

fraction for Oct4-gfp and cKit at the corresponding time point.

Blue oval indicates the Oct4-gfp+/cKit+ side population, which

first appears at day 6. Oct4-gfp+/cKitbright cells correspond to

iPGCs. D: Oct4-gfp EBs at day 6 were stained with SSEA1 and

cKit, and Oct4-gfp expression was examined in SSEA1+/

cKitbright, SSEA1+/cKitmid and SSEA1+/cKitdim populations. E:

PGC gene expression data for Oct4-gfp and J1-derived iPGCs and

somatic cells. F: Somatic gene expression data for Oct4-gfp and J1-

derived iPGCs and somatic cells.

(TIF)

Figure S2 Integrin Beta 3 is enriched in iPGCs. Normal-

ized signal intensity from probe sets for Integrin beta 3 (Itgb3) for

ESCs and iPGCs were determined from the microarray presented

in Figure 4A.

(TIF)

Table S1 DAVID Gene Ontology of transcriptional clusters

identified between ESCs and iPGCs. Gene ontology analysis of

genes corresponding to Affymetrix probe sets identified from each

transcriptional cluster in Figure 4A differentially expressed more

than 3-fold with p,0.01.

(DOC)

Table S2 Primers used in this study.

(DOCX)
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9. Hübner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, et al. (2003)
Derivation of oocytes from mouse embryonic stem cells. Science 300:

1251–1256.

10. Imamura M, Aoi T, Tokumasu A, Mise N, Abe K, et al. (2010) Induction of
primordial germ cells from mouse induced pluripotent stem cells derived from

adult hepatocytes. Mol Reprod Dev 77: 802–811.
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