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Abstract

Heat shock factor 1 (HSF1) regulates one of the major pathways of protein quality control and is essential for deterrence of
protein-folding disorders, particularly in neuronal cells. However, HSF1 activity declines with age, a change that may open
the door to progression of neurodegenerative disorders such as Huntington’s disease. We have investigated mechanisms of
HSF1 regulation that may become compromised with age. HSF1 binds stably to the catalytic domain of protein kinase A
(PKAca) and becomes phosphorylated on at least one regulatory serine residue (S320). We show here that PKA is essential
for effective transcription of HSP genes by HSF1. PKA triggers a cascade involving HSF1 binding to the histone acetylase
p300 and positive translation elongation factor 1 (p-TEFb) and phosphorylation of the c-terminal domain of RNA polymerase
II, a key mechanism in the downstream steps of HSF1-mediated transcription. This cascade appears to play a key role in
protein quality control in neuronal cells expressing aggregation-prone proteins with long poly-glutamine (poly-Q) tracts.
Such proteins formed inclusion bodies that could be resolved by HSF1 activation during heat shock. Resolution of the
inclusions was inhibited by knockdown of HSF1, PKAca, or the pTEFb component CDK9, indicating a key role for the HSF1-
PKA cascade in protein quality control.
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Introduction

HSF1 regulates the expression of molecular chaperones and

thereby controls one of the most essential arms of the protein

quality control network [1,2]. One of the contributing factors to

neurological disorders such as Huntington’s disease is the

expression of aggregation prone proteins containing long polyglu-

tamine (poly-Q) tracts. As age-dependent failure of the protein

quality control networks in neuronal cells plays a decisive role in

neurodegeneration, understanding the HSF1 transcriptional

pathway may thus be significant in identifying potential mecha-

nisms of neurodegeneration [3]. Although HSF1-related proteins

have been identified in many species, details of its regulation are

still incomplete. We have shown in a recent study that that HSF1

binds to the catalytic domain of protein kinase A (PKAca) and

becomes phosphorylated on a PKA consensus phosphorylation site

required for transcriptional activation of downstream gene

expression [4].

In the present investigation, we have examined molecular

mechanisms of HSF1 activation by PKA that may be important

for regulation of HSP genes on chromatin. As heat shock

transcription has been shown to be activated by histone

deacetylase inhibitors, we examined the possibility that stress-

induced, PKA-dependent HSF1 activation may involve interac-

tion with histone acetylases [5,6]. In addition, activation of the

hsp70 gene by stress in Drosophila requires HSF association with

positive translation elongation factor 1 p-P-TEFb and downstream

hyperphosphorylation of the C-terminal domain (CTD) of RNA

polymerase II [7]. The p-TEFb is activated by release from a

complex containing the regulatory 7SK snRNA [8] and controls a

major transcriptional checkpoint permitting elongation, processing

and transport of mRNA as well as synthesis [9,10,11,12].

Here we demonstrate that PKAca is required for coordinate

p300 binding and p-TEFb association with HSF1 on the

chromatin of heat shock-induced genes and for stress-induced

transcription. This cascade was required for phosphorylation at

the 2 position in the repeat sequences of the C-terminal tail of

RNA poll II on heat-inducible promoters. In addition, we found

that activation of HSF1 by protein stress depletes the levels of

intracellular protein inclusion bodies containing aggregation–

prone, poly-Q containing proteins in neuronal cells an effect

abrogated by targeting HSF1, PKAca or the component CDK9 of

p-TEFb.

Materials and Methods

Reagents and Antibodies
Rat monoclonal anti-HSF1 antibodies were from Assay designs

(Enzo Life Sciences). In addition we used rabbit polycolonal anti-

PKAca antibodies (Cell Signaling), anti-HSF1 (Stressgen), anti-p300

(Millipore), anti-RNA Pol II (Millipore), anti-pCDK9 (Abcam), anti-

phosphoserine-2-RNA Pol II (Abcam), anti-phosphoserine -5-RNA

Pol II (Abcam), anti-acetylated histone 4 and anti-total histone 4

(Millipore) antibodies.
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Plasmids
PC12 cells stably expressing Poly Q (103Q)-GFP were a gift

from Michael Sherman (Boston University, MA). Plasmids

encoding shRNA for PKAca and scrambled shRNA were from

Open Biosystems as in [4]. The CDK9 siRNA construct was from

Santa Cruz Antibodies and PKA siRNA from Cell Signaling. HSF1

siRNA was from Qiagen. The Htt94Q-CFP was purchased from

Addgene.

Cells and Culture
Lentivirus production and transduction was performed as

described [4]. PC12 cells were grown in DMEM with 10% horse

serum, penicillin-streptomycin (1000 u/ml) and 5% FBS [13].

PC12 cells stably expressing Poly-Q (103Q) GFP [13] were grown

in DMEM with 10% horse serum, penicillin-streptomycin

(1000 u/ml) and 5% FBS, G418 (200 mg/ml) (Sigma) and zeocin

(100 mg/ml). Ponasterone A (2.5 mM) was then incubated with the

cells 4 days for 103Q-GFP induction. HeLa cells (ATCC) were

grown in DMEM with 10% FBS and antibiotic mix. SKNSH cells

(ATCC) grew in DMEM with 10% FBS. FBS was replaced with

Tet-system-approved FBS (Clontech) and cells transfected with

Htt94Q-CFP and then treated with doxycyline (500 ng/ml)/24 hr

for poly-Q induction.

RNA isolation and quantitative Real-Time PCR (qRT-PCR)
Total RNA was isolated by RNeasy Mini kit (Qiagen) including on-

column DNase digestion to eliminate DNA (Rnase-Free DNase Set,

Qiagen). RNA quantification was then performed using the

QuantiTect Reverse Transcription –PCR Kit (QIAGEN) on the

ABI 7300 real time PCR system according to the manufacturer’s

protocol and the -fold increase in ChIP-PCR products by 22DDCT

compared with an internal control (b-actin) was plotted for the

expression of hsp70.1. All experiments were performed 3 times for each

sample and the primers were designed using Primer3 online software.

Chromatin Immunoprecipitation
ChIP assays for HSF1 were performed as described previously

[4]. ChIP was carried out by precipitating with anti-HSF1, p300,

RNA pol II, pCDK9, phospho-ser-2-RNA pol II, phospho-ser5-

RNA pol II, acetylated histone H4 or total histone H4 antibodies.

ChIP data were normalized to 1% of starting input of genomic

DNA as a positive control and pre-immune IgG mock ChIP as

negative control. Amplified PCR products were first analyzed by

size on agarose gel, then independently quantitated using the ABI

7300 real time PCR system and enrichment of ChIP-PCR

products by 22DDCT compared with the input was plotted for the

respective regions of hsp70.1. ChIP–qPCR experiments were

performed 3 times for each sample.

Immunoprecipitation and immunoblot
Procedures were performed as described [4].

Confocal Microscopy
GFP and fluorescently labeled secondary antibodies were

visualized using Zeiss 510 confocal microscopy using the right

wavelength and filter sets as described [4].

Results

(1) PKAca-dependent association of HSF1 with p300 and
p-TEFb after stress

We first examined the potential role of PKAca in HSF1 binding

to p-TEFb and p300. HSF1 has also been shown to associate with

nuclear stress bodies (nSB) after heat shock and regulate

transcription of multiple copies of satellite III DNAs which encode

non-coding RNA Pol II-dependent RNAs [14]. Associated HSF1

can thus be visualized by light microscopy in these regions. We

confirmed, using confocal immunofluorescence analysis that HSF1

localizes to bright-stained nuclear bodies resembling nSB after

heat shock (Fig. 1A) and was co-localized with p300 and the p-

TEFb subunit CDK9, in a PKAca-dependent manner. Co-

localization of the three factors in the nSB was abrogated by

PKAca knockdown with shRNA, using conditions described

previously (Fig. 1B). Previous studies have shown the enhancement

of histone acetylation in nSB after stress, consistent with of p300

association with the granules [15]. PKAca knockdown reduced the

levels of nuclear HSF1 and HSF1 was observed in the cytoplasm

of heat shocked cells with depleted PKAca (Figure S1). One of the

primary targets of p-TEFb in transcriptional elongation is the

CTD of RNA Pol II [9]. The CTD contains a series of heptad

repeats with amino acid consensus YSPTSPS, in which S2, S5 and

S7 are subject to modification according to transcriptional status of

the gene [8]. Transcriptional elongation and mRNA processing

are triggered by the phosphorylation of Pol II at the S2 site by p-

TEFb [8]. (We found no evidence in the literature for direct

phosphorylation of CDK9 by PKA). We observed marked

enrichment of RNA Pol II phospho-S2 in NsB after heat shock,

in association with p300 and HSF1 (Fig. 1C), an effect that was

reduced by PKAca knockdown (Fig. 1D). Relative levels of stress

granules containing HSF1, p300 and CDK9 in cells without and

with PKAca knockdown are quantitated in Fig. 1E. The relative

incidence of granules containing HSF1, p300 and RNA Pol II

phospho-S2 are shown in Fig. 1F.

We also detected complexes containing p300, CDK9 and HSF1

in nuclear extracts from heat shocked HeLa cells after immuno-

precipitation with anti-p300 antibodies indicating a direct

interaction (Fig. 1G). Association of the three factors in the

immunoprecipitates was inhibited by PKAca knockdown and

minimal in unstressed cells (Fig. 1G). As PKAca mediates the

function of HSF1 through a mechanism that involves phosphor-

ylation on serine 320 [4], we examined the ability of HSF1 in

which S320 was replaced by either aspartate (S320D) or alanine

(S320A) (Fig. 1H) to bind p300. Experiments were carried out in

cells co-transfected with HA-p300 and GFP-HSF1 constructs. The

electrophoretic mobility of GFP-HSF1 is indicated in the 7th lane.

The p300 was effectively co-precipitated with HSF1-S320D but

only minimally with HSF1-S320A – compare to WT, suggesting

involvement of negatively charged residues at S320 for complex

formation. In the immunoblots of HSF1-GFP precipitated from

cells we observed a lower band not observed in the rHSF1-GFP

control lane. This band was observed in control immunoprecip-

itations with IgG suggesting that it is not specific (Fig. 1H).

(2) Gene activation by stress involves PKAca, histone
acetylases and p-TEFb

To further study the role of PKAca, p300 and p-TEFb in HSF1

activation, we investigated the heat inducible hsp70.1 gene (Fig. 2).

Hsp70.1 is synthesized at basal levels in HeLa cells and is induced

by heat shock (42uC) as shown previously [16] (Fig. 2A). The

mRNA levels peaked at 45 min of heat shock and were not

increased by 60 min. Stress activation was partially inhibited by

the p-TEFb/CDK9 inhibitor flavopiridol (FP) suggesting a

functional role for p-TEFb in Hsp70.1 expression (Fig. 2B).

Transcriptional inhibitor 5, 6-dichloro-1-b-D-ribofuranosylbenz-

midazole (DRB) which inhibits TFII kinase and Pol II hyperpho-

sphorylation [17] completely blocked stress-induced mRNA

production (Fig. 1 B). To further probe the role of p-TEFb, we

HSP70 Transcription and Protein Aggregation
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Figure 1. HSF1 associates with p300 and p-TEFb after heat shock. (A and B) HeLa cells expressing pLKO.1 control (PKA scr) and PKAca shRNA
(PKA kd) were incubated at 42uC then stained for p300, HSF1 and CDK9 using anti-p300, anti-HSF1 and anti-CDK9 antibodies respectively. Confocal
microscopic analysis using secondary goat anti mouse alexa-488 (green), goat anti rat HSF1-Cy3 (red) and goat anti rabbit CDK9 (blue) was then
performed. (C and D) Heat shocked cell expressing PKA scr (C) or PKA kd (D) were then stained for p300, HSF1 and RNA-phospho-Pol II S2 as above (E
and F). Co-localization of HSF1, p300 and CDK9/RNA PolII S2 in NsB was quantitated by cell counting. Graphs represent mean +/2 SEM of 2
independent experiments. (G) Whole cell or nuclear lysates from control or heat shocked cells with or without an effective PKAca shRNA (PKA-kd-1)
were immunoprecipitated with anti p300 antibodies and blotted for CDK9. The nitrocellulose membrane was stripped and then blotted with anti
HSF1 antibodies. To control for off-target effects of PKAca shRNA, we used either a scrambled sequence (scr) or an shRNA determined to be
ineffective PKA-kd-2. (H) HeLa cells were co-transfected with p300-HA and S320A/S320D-GFP constructs, p300 immunoprecipitated with anti-HA
antibodies and HSF1 variants detected with anti-GFP Ab. Recombinant HSF1-GFP was used an electrophoretic mobility marker. Experiments were
repeated reproducibly at least 3 times.
doi:10.1371/journal.pone.0028950.g001
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utilized siRNA molecule targeting CDK9 (Fig. 1C). While heat

shock activated Hsp70.1 mRNA expression in cells exposed to

control RNA (lane 2), the CDK9-targeted siRNA markedly

reduced Hsp70.1 expression (lane 4) (Fig. 2C). As active HSF1 can

be found complexed with p300 and PKAca (Fig. 1) [4] we next

asked if hsp70.1 induction by stress requires PKAca expression and

involves HAT activity using PKAca shRNA and histone

deacetylase (HDAC) inhibitor TSA (Fig. 2D). Exposure to TSA

caused a mild increase in hsp70.1 expression while induction was

decreased by PKAca shRNA (Fig. 2D, lanes 2, 3). TSA exposure

was additive with heat shock and caused a strong induction of

hsp70.1 expression (Fig. 2D, lane 5). As shown previously PKAca
reduction by RNA interference reduces hsp70.1 expression (lane 7)

and this decrease was partially compensated by TSA exposure

(lane 8) (Fig. 2D). Fig. 2E shows relative levels of PKAca mRNA in

control cells and after PKAca shRNA. We were also interested in

the behavior of genes expressed in the NsB and examined

expression of a non-coding RNA transcribed at the pHuR98nc

locus (Fig. 2F). In humans, HSF1 granules have been previously

observed localizing to the 9q11–q12 heterochromatic region [18].

Within this locus, pHuR 98, a variant satellite 3 sequence,

specifically hybridizes to chromosome position 9qh. We have

performed both real time reverse transcription qPCR and ChIP-

qPCR to show that HSF1 directly binds and regulates pHuR 98

(Figure S2). Heat shock induced a large increase in expression of

pHuR98ncRNA (Fig. 2F). As with the hsp70.1 mRNA, stress-

induced induction of pHuR98ncRNA was inhibited by PKA

knockdown (Fig. 2F).

(3) PKAca is required for association of HSF1, p300 and p-
TEFb, histone H4 acetylation and RNA Pol II with hsp70.1
on chromatin

We next examined the role of PKAca in association of HSF1

and other factors with the hsp70.1 promoter and downstream

sequences on the gene, using the standard cell fixation/ChIP

approach. We carried out the experiments using 15 min 42uC as

Pol II was enriched on the gene at this time while levels returned

to baseline levels at 45 and 60 min when RNA ceased to

accumulate further (Data not shown). We scanned four regions of

the hsp70.1 gene by ChIP including an HSE-containing promoter

motif (2233), two promoter proximal zones including the 263

and +28 regions and a sequence in the open reading frame (+752)

(Fig. 3A). As shown previously, stress induces strong binding of

HSF1 to the hsp70.1 promoter but not the downstream regions of

hsp70.1 and PKAca knockdown inhibits HSF1 promoter associ-

ation (Fig. 3 B). The p300 was enriched on the downstream and

promoter regions of HSF1 after heat shock and this effect was

again strongly inhibited by PKAca knockdown (Fig. 3C). We next

examined acetylation of histones on the gene concentrating on

histone H4, a known p300 substrate [19] (Fig. 3D). The analysis

was complicated by the finding that total histone H4 levels were

depleted by 15 min of heat shock in accordance with earlier

findings in yeast and Drosophila showing rapid nucleosome

clearance after heat stress [20,21] (Fig. 3E). Levels of acetylated

histone H4 were increased in the +28 region but not elevated in

other parts of the gene.

RNA Pol II was bound to the hsp70.1 gene and these levels were

increased by heat shock in each region of the gene, particularly the

promoter proximal 263 region (Fig. 3F). PKAca depletion

markedly reduced Poll II association with the gene (Fig. 3F) in

keeping with its effects on Hsp70 mRNA synthesis (Fig. 2). RNA

Pol II phospho-S2 levels were also markedly increased on the gene

after heat shock, consistent with abundant transcriptional

elongation (Fig. 3G). As with total Pol II, decrease in PKAca
inhibited accumulation of Pol II phospho-S2 (Fig. 3G). Likewise

Pol II phospho-S5 levels increased in heat shocked cells although

PKAca knockdown had a minimal effect on the accumulation of

this phospho-form of RNA polymerase II on hsp70.1 (Fig. 3H). Pol

II S5 is phosphorylated by a kinase activity in TFIIH and is

involved with transcriptional initiation, the early stages of

elongation [22]. Interestingly, CDK9 levels were increased in

the one promoter proximal region, +28 (Fig. 3I) in which

acetylated histone H4 appears to accumulate, and this effect was

reduced by PKAca knockdown (Fig. 3C). The p-TEFb recruit-

ment to chromatin has been shown previously to be regulated by

histone H4 acetylation [23].

(4) Role of PKAca and HSF1-mediated transcription in
protein aggregation

We next examined the potential role of this cascade response in

cellular homeostasis using neuronal cells expressing an extended

polyglutamine repeat sequence fused to GFP (poly-Q103-GFP)

[24]. Forced expression of poly-103Q-GFP in PC-12 pheochro-

mocytoma cells led to formation of large intracellular GFP-

containing inclusion bodies, detectable by confocal microscopy, as

shown previously [24] (Fig. 4A). The number of these structures

was however markedly reduced after a heat shock of 42uC for 1 hr

that leads to HSF1 activation and HSP synthesis (Fig. 2) and we

observed a more even distribution of poly-Q-GFP within the

cytoplasm of such cells (Fig. 4B). Heat shock at 42uC may promote

resolution of protein inclusions, as HSP mRNAs are translated at

this temperature, while at higher temperatures translation is

profoundly inhibited and heat shock may exacerbate protein

insolubilization [25]. A more complete time course for the heat

treatments is shown in Figure S3 indicating that the number of

poly-103Q-GFP structures begins to decline in cells by 20 min.

This corresponds to the time at which Hsp70 begins to accumulate

in and co-localize with the poly-103Q-GFP containing structures

in some cells (Figure S3). Hsp70 has been shown to modulate

aggregation of poly-Q proteins in yeast [26]. Treatment with an

RNAi species targeting PKAca almost completely reversed the

effects of heat shock and poly-103Q-GFP inclusions were seen in

both un-heat shocked and heat shocked cells (Fig. 4C, D). Similar

results were seen with CDK9 knockdown which caused partial

inhibition of the effects of heat shock (Fig. 4F). Numbers of cells

containing inclusions/aggregate bodies in the different treatments

are quantitated in Fig. 4G. In addition, knockdown of HSF1 by

siRNA reduced the occurrence of inclusion bodies containing

Poly-103Q-GFP in PC12 cells to a similar degree compared to

PKAca knockdown (Fig. 4G). We next carried out similar

experiments in human neuronal cells (SKNSH) expressing a

different polyglutamate containing fusion protein (poly-94Q-CFP)

Figure 2. HSF1 regulation of hsp70.1 mRNA expression by p-TEFb, PKAca and histone acetylation. (A) Time-course of hsp70.1 mRNA
synthesis at 42uC. (B) Effects of p-TEFb inhibitor FP (500 nM/18 hr) and CTD kinase inhibitor DRB (100 mM/18 hr) on hsp70.1 mRNA synthesis at 42uC/
45 min. (C) Effects of CDK9 knockdown with siRNA on hsp70.1 mRNA synthesis at 42uC. (D) Effects of PKAca knockdown and TSA treatment at 37uC
for 18 hr on hsp70.1 mRNA synthesis at 37uC (no heat shock) or 42uC (heat shock) (E) PKAca mRNA expression in control and PKAca knock-down cells.
(F) Stress (42uC/1 hr) -induced induction of pHuR98ncRNA was inhibited by PKA kd as in D. Each experiment was repeated reproducibly at least 3
times and data are plotted as mean +/2 SEM.
doi:10.1371/journal.pone.0028950.g002
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(Figure S4E, F). Untreated cells contained abundant CFP-

containing granules/inclusions, which were reduced by heat shock

at 42uC for 30 min (Figure S4E). PKAca knockdown with siRNA

reduced the effects of heat shock and CFP-containing granules

were again apparent (Figure S4F). The findings that similar effects

are seen when using either GFP or CFP as a reporter suggest that

inclusion formation and resolution are properties of the aggrega-

tion–prone poly-Q tract rather than the fluorescent proteins

themselves (Fig. 4A–G, Figure S4E, F). The extent of PKAca
knockdown in SKNSH cells is indicated in the adjacent panel

showing lack of immunofluorescence staining for PKAca (Figure

S4F).

We next examined the effects of HSF1 perturbation on the

relative levels of soluble poly-Q-associated reporter proteins and

poly-Q-containing structures that sediment at 4006g in cell

extracts as described by Meriin et al. We showed first that in HeLa

cells expressing poly-94Q-CFP (Htt 94Q-CFP), most of the CFP is

detected in the pellet fraction (Fig. 4H) while after heat shock at

42uC most of the CFP was soluble and did not sediment at 4006g

(Fig. 4H). CFP fused to a shorter pol-Q tract (poly-25Q or Htt

94Q-CFP) was found largely in the soluble fraction of HeLa cells

(Fig. 4H). Likewise, in PC12 cells expressing poly-103Q-GFP,

GFP was enriched in the pellet fraction in non-heat shocked cells

expressing a scrambled RNA, while 42uC heat shock caused a shift

to the soluble fraction (Fig. 4H). However after PKAca
knockdown with siRNA, poly-103Q-GFP was found largely in

the pellet fraction (Fig. 4 H). Likewise with HSF1 knockdown,

poly-103Q-GFP was found largely in the pellet fraction of control

cells, compared to heat shocked cells expressing the scrambled

RNA in which it was more abundant in the soluble fraction

(Fig. 4H). HSF1 knockdown reversed this distribution and poly-

103Q-GFP was again enriched in the insoluble fraction (Fig. 4H).

Discussion

HSF1 activity in neurons is diminished compared to other

tissues and declines with aging through mechanisms not fully

elucidated [3]. Our studies indicate a pathway involving PKA-

dependent activation of HSF1 and recruitment of a p300/p-TEFB

complex that permits transcriptional activation (Figs. 1, 3). The

transcriptional activation mechanism involving HSF1 and PKAca
may be a general one in mammalian genes responding to heat

shock and we observed PKA-dependent co-localization of HSF1,

p300, CDK9 and RNA Pol II phospho-S2 in both mRNA

Figure 3. Role of PKAca in binding of HSF1, p300 Ac-histone H4, Pol II, phospho-S2-Pol II, phospho-S5-Pol II and CDK9 to the
hsp70.1 promoter at 426C. Cells were heat shocked at 42uC/15 min before ChIP. (A) Schematic diagram of hsp70.1 gene with 59 residue of each
real time PCR fragment shown underneath (approximately to scale). (B–I) Antibodies used for immunoprecipitation are indicated on each panel. The x
axes show each PCR fragment along hsp70.1 gene and the y-axes represent the percentage of input. (Mean value +/2 SEM of three experiments is
shown), except for D where arbitrary units are used for the ratio of ChIPed acetylated H4 against total H4.
doi:10.1371/journal.pone.0028950.g003
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encoding hsp70.1 and NsB-like foci containing large non-coding

RNAs after stress (Fig. 1, 4I). NsB, contain long tandem arrays of

Sat III repeats that bind HSF1 and give rise to non-protein coding

transcripts [15,14]. HSF1- PKAca interaction may thus have a

versatile role in governing expression both of the cohort of HSF1-

induced mRNAs and non-coding RNAs after stress.

This pathway appears to be involved in folding of poly-Q

containing, insoluble protein inclusion bodies during activation of

HSF1 and depletion of either PKA or CDK9 inhibits this effect,

presumably through reduction in HSP-mediated folding (Fig. 4).

Accumulation of protein inclusions is associated with neurode-

generative disorders such as Huntington’s disease that manifests

during aging and may result in triggering of death pathways and

decline in neuronal networks [3]. HSF1 is a potent factor in the

refolding of poly-Q containing protein aggregates [27], (Fig. 4).

Our delineation of a pathway for HSF1 activation and resolution

of protein aggregates, involving PKAca may thus suggest novel

avenues to investigate age-dependent decline in HSF1 activity. In

Figure 4. PKA and CDK9-dependent resolution of poly Q-GFP protein aggregates during heat shock. (A and B) Poly-103Q-GFP
expressing PC12 cells were grown at 37uC and subjected to sham heating (A) or 42uC for 1 hr (B) before staining for HSF1 and DAPI and analysis by
confocal microscopy. (C and D) Cells were transfected with PKAca siRNA for 72 hours then sham heated (C) or incubated at 42uC for 1 hr (D) and
analyzed by confocal microscopy for Poly-Q-GFP and PKAca. (red) (E and F). Cells were transfected with CDK9 siRNA for 72 hours, treated +/2 42uC
then stained for CDK9 using anti CDK9 antibodies. Poly-Q-GFP and CDK9 (red) are analyzed by confocal microscopy. Experiments were carried out 3
times, reproducibly. (G) Cells with aggregate bodies were counted in cells transfected with siRNA for HSF1 (image is not shown) and PKA (C and D),
each compared to scrambled control RNA and plotted. These data are the average of three independent experiments 6 SEM. (H) HeLa cells were
transfected with either Htt 94Q-CFP or Htt 25Q-CFP, for 24 hr and subjected to sham heating or 42uC for 1 hour. Cells were collected and then lysates
were diluted to equalize total protein concentration and subjected to centrifugation at 400 g for 10 min. (P, pellet and S, supernatant). PC12 cells
expressing 103Q-GFP were transfected with or without HSF1 siRNA, HSF1 scr, PKA siRNA, PKAscr for 72 hours and then subjected to sham heating or
42uC for 1 hr. Cell lysates were collected as for HeLa cells and centrifuged at 400 g for 10 mins. The pellet and supernatant fractions were run on 4–
15% gradient SDS-PAGE and immunoblotted with anti GFP Ab. (I) Schematic representation of PKAca-dependent transcription of hsp genes and
resolution of protein aggregates.
doi:10.1371/journal.pone.0028950.g004

HSP70 Transcription and Protein Aggregation
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cellular and mouse models of Huntington’s disease the cyclic

AMP-PKA signaling axis was decreased in the early stages of

illness [28]. This effect may involve trapping of factors such as

p300 and CBP in inclusions derived from aggregated poly-Q and

inhibition of transcription factor CREB [29]. HSF1 is regulated in

a comparable way to CREB, through stable PKA binding and, as

shown here recruitment of p300, and may be likewise a target in

the progression of Huntington’s disease (Fig. 2, 3). Indeed, in

Drosophila, expression of CREB and Hsp70 additively suppress

polyglutamine-mediated toxicity [30].

Supporting Information

Figure S1 HSF1 associates with p300 and pTEFb after
heat shock. This is a lower magnification image (63X) of cells

treated as in Fig. 1A–D in the main text. Experiments were carried

out in duplicate reproducibly.

(TIF)

Figure S2 ChIP analysis of HSF1, RNA Pol II and Pol II
phospho-S2 association with the pHuR98nc locus in non-
heat-shocked cells or after 45 min at 426C. Experiments

were carried out in duplicate reproducibly.

(TIF)

Figure S3 Heat shock time course (426C) in PC12 cells
expressing poly-103Q-GFP. GFP (green) and HSF1 (red) in

non-heated control (A) or after 1 hr 42uC (B). We also show poly-

103Q-GFP (green fluorescence) and Hsp70 (red immunofluores-

cence) after 7 min. 15 min and 20 min at 42uC. Experiments were

carried out in duplicate reproducibly.

(TIF)

Figure S4 PKA and CDK9-dependent resolution of poly-
103Q-GFP inclusion bodies during heat shock at 426C/
1 hr. These data are derived from a lower amplification image of

cells treated as in Fig. 4, main text. We have also examined poly-

103Q-GFP aggregates during 6 hr at 37uC recovery after heat

shock. In addition we have examined the role of PKAca
knockdown in resolution of Htt-94Q-CFP aggregates in SKNSH

cells.

(TIF)
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