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Abstract

Imprinting is an epigenetic phenomenon where the same alleles have unequal transcriptions and thus contribute differently
to a trait depending on their parent of origin. This mechanism has been found to affect a variety of human disorders.
Although various methods for testing parent-of-origin effects have been proposed in linkage analysis settings, only a few
are available for association analysis and they are usually restricted to small families and particular study designs. In this
study, we develop a powerful maximum likelihood test to evaluate the parent-of-origin effects of SNPs on quantitative
phenotypes in general family studies. Our method incorporates haplotype distribution to take advantage of inter-marker LD
information in genome-wide association studies (GWAS). Our method also accommodates missing genotypes that often
occur in genetic studies. Our simulation studies with various minor allele frequencies, LD structures, family sizes, and
missing schemes have uniformly shown that using the new method significantly improves the power of detecting
imprinted genes compared with the method using the SNP at the testing locus only. Our simulations suggest that the most
efficient strategy to investigate parent-of-origin effects is to recruit one parent and as many offspring as possible under
practical constraints. As a demonstration, we applied our method to a dataset from the Genetics of Lipid Lowering Drugs
and Diet Network (GOLDN) to test the parent-of-origin effects of the SNPs within the PPARGC1A, MTP and FABP2 genes on
diabetes-related phenotypes, and found that several SNPs in the MTP gene show parent-of-origin effects on insulin and
glucose levels.
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Introduction

Family data have been extensively collected and analyzed in the

early stage of gene mapping or linkage mapping studies and some

family-based studies have been updated with new genotype data to

meet recent interest in association mapping. Extra valuable LD

information has been obtained in addition to the traditional

linkage analysis. Family-based studies are exempt from population

stratification and can provide valuable prior knowledge for gene–

gene and gene–environment interactions [1]. Unique to family

data is that one can study parent-of-origin effect, and in this work

we introduce a new powerful method using haplotypes to test the

parent-of-origin effects of SNPs- on quantitative traits.

Imprinting is a crucial epigenetic phenomenon where the same

alleles have unequal transcriptions and thus different contributions

to a trait. The presence and magnitude of the effect of an allele

copy depend on whether it is inherited from the father or the

mother and thus the effect is often called parent-of-origin effect.

The parent-of-origin effects of imprinted genes have been

observed in various human diseases including cancer [2], type I

diabetes [3,4], and bipolar disorder [5,6]. Although many

associations between genetic variants and human traits have been

discovered through genome-wide associations, the impact of

parental origin has largely been ignored. In Kong et al. [7], at a

locus at 11p15 associated with type 2 diabetes, the same allele can

confer risk if paternally inherited and decrease risk if maternally

transmitted, providing solid evidence for the parent-of-origin effect

with sequence technique.

The key to investigate the parent-of-origin effect of a gene on a

trait is to distinguish maternally and paternally transmitted alleles;

therefore, family-based studies are necessary. Statistical methods

were developed to test the parent-of-origin effects on human

diseases more than a decade ago. Most of these methods are

extensions of linkage analysis methods intended for sparse

microsatellite markers. For binary traits, Strauch et al. [8]

introduced additional penetrance parameters to the classic

parametric linkage model to account for parent-of-origin effects,

and established the likelihood ratio test (LRT) under the

hypotheses of equal parental contributions vs. unequal contribu-

tions. However, without prior information, specification of a

disease model may be heuristic especially for genome-wide scans.

As maximizing the likelihoods over all possible disease allele

frequencies and penetrances could result in irregular distribution

of the LRT, the statistical asymptotic theory may be inapplicable

[9]. For quantitative traits, variance component (VC) methods

have been expanded to separate the genetic variance into two
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components, one due to maternal alleles and the other due to

paternal alleles. The specification of the variance structure

requires the estimate of the probability of parent-of-origin-specific

allele-sharing identical by descent (IBD) [10,11,12]. For sibling

pairs, the Haseman-Elston regression method [10] has been

modified to regress on separate parent-specific IBDs. For trios,

Whittaker et al. [13] used a linear model that can accommodate

maternal effects, offspring genotypic effect, and parent-of-origin

effect. Extensive evaluation and comparisons have been conducted

on both regression-based and VC methods in linkage analysis and

the VC methods are often favored for their higher power than

regression-based procedure, especially in extended pedigrees

[14,15,16,17,18,19,20]. Originally proposed for linkage analysis,

these methods often have low power due to the sparse coverage of

microsatellite markers and available family size. Most of the

methods are limited to siblings, relative pairs, or case-parent triads

[10,21,22,23,24]. Only a few, essentially VC and variants of VC,

can be applied on extended pedigrees, which contain more

inheritance information than small families [8,11,25]. The VC

method [11] using the extended pedigrees has been compared

with the parent-of-origin method for sibship data [10,12], with the

former used the family information more efficiently and thus has

higher power. However, the calculation of parent-specific IBD is

generally computationally intensive for extended pedigrees, which

have also prevented these methods from wider applications.

Using haplotype and phase information can increase the

accuracy of IBD estimation compared to using only genotype

information [26], but still the full IBD information cannot be

recovered completely. Haplotype frequency estimates can be

improved using pedigrees over using unrelated individuals only

and such improvement can often affect the disease association

findings [27,28,29,30,31]. Along the TDT line in triods, Cordell

et al. [32] contrasted the haplotypes of cases and pseudo-controls to

detect parent-of-origin effects. However, this method used only

those data where the parental haplotypes can be unambiguously

deduced without recombinants or all families in which the

haplotypes are ‘‘inferable’’ may discard many families and result

in loss of power.

Statistical methods for association can be more powerful than

linkage because of the use of specific alleles rather than IBD in

linkage [33] and abundant methods have been proposed for

association studies, but only a few can test parent-of-origin effects

in an association study setting. Weinberg [24] proposed a log-

linear model based on stratification on both the parental mating

type and the inherited number of alleles in case–parent trios. For

quantitative traits, Whittaker et al. [13] adopted a three-way

ANOVA model that classifies the parent–triads according to their

genotype combinations and includes an additional term with

transmitted paternal alleles to test parent-of-origin effects. These

methods are all single-locus models and do not make use of the

valuable intra-marker information contained in GWAS; they are

also based on small pedigrees and limited to certain designs. To

the best of our knowledge, no method is available to test parent-of-

origin effects in the most informative extended pedigrees.

In this work, we have developed a maximum likelihood method

to test parent-of-origin effects on a quantitative trait using all

phenotype and genotype information from all relatives in a

pedigree. In this approach, genotype data at adjacent markers and

the intra-marker LD information are used to infer the parent of

origin of nonfounders’ alleles and thus the power for testing

parent-of-origin effects is expected to improve over the method

using only the genotype at the testing locus. In essence, the single-

locus method is just a special case of the haplotype-based method

with the block length of one, which is the least informative. The

methods are illustrated for several nuclear family sizes, and

different haplotype structures in the simulation section.

In family studies, missing genotypes and phenotypes of founders

are common due to the late-onset of the disease, the geographical

limits, failed informed consent, single-parent families, etc. Even for

small families where all the data can be easily collected, missing

genotypes can still occur in a more random pattern due to the

genotyping techniques [34]. We extended our method to

accommodate missing data. If one person has missing genotypes,

his/her relatives’ genotypes are used to improve the estimate of

haplotype frequency and the inference of haplotype origins.

For large pedigrees, we developed a revised Elston-Stewart

algorithm, which starts with the bottom generation and peels the

likelihood of pedigrees into sequential conditional probabilities to

ease the computation. Pertinent to the model incorporating

parent-of-origin effect, both transmission and penetrance proba-

bility are determined by the haplotypes and their origins.

Our methods are developed and evaluated for quantitative

traits, but they can be easily extended to binary and ordinal traits

in the framework of generalized linear models.

Methods

1) Notation
At a testing SNP locus, we denote a minor allele by a with its

frequency r and a major allele by A. We use two adjacent letters,

AA, Aa, and aa for the possible genotypes at this locus and

comma-separated pairs, (A, A), (A,a), (a,A), and (a,a), for the

sourced genotypes with the first letters indicating the paternal

copies and the second indicating the maternal copies. For

convenience, we also use binary digits to code alleles, with 0 for

A and 1 for a, and thus (0,0), (0,1), (1,0), and (1,1) for the 4 coded

sourced genotypes, respectively. We assume that a haplotype block

containing the testing locus has a length L and a total of t possible

haplotypes h1,…, ht with population frequencies r~(r1,::::,rt).
We denote the pair of the unsourced haplotypes (so-called

‘‘diplotype’’) of an individual as h/h9, and the sourced haplotypes

as (h, h9). In every family, ni is the number of nonfounders and fi is

the number of founders, G0 is the genotype set of all nonfounders,

and Gf is the genotype set of all founders.

2) Model for Test of Parent-of-Origin Effects
We consider a quantitative trait Y . Let x be a vector of

covariates (including intercept). Given each individual’s coded

sourced genotype (gp, gm), the traits of all the nonfounders follow

Y i
j ~xi

jbzgi
p,jcpzgi

m,jcmzUi
rzei

j , for i~1,:::,n,j~1,:::,ni: ð1Þ

where n is the total number of pedigrees, i is the family index, j is

the individual nonfounder index within a family, ni is the number

of nonfounders in the ith family, b is a vector of parameters

reflecting the covariate effects on the trait, cp and cm are the

genetic effects corresponding to paternal and maternal alleles,

respectively, Ui
r is a random effect following the multivariate

normal distribution with the ni6ni scaled variance–covariance

kinship matrix s2
1Qi within the ith family (specifically, the element of

the jth row and lth column of Qi, Qi
jl where s2

1 is the polygenetic

variance and Qi
jl is the kinship coefficient between two non-

founders j and l in the ith family that is completely determined by

the their relationship without knowing any genetic marker), and

the random error ei
j is assumed to follow a normal distribution

with mean 0 and variance s2
2. The null hypothesis of interest is

Test of Parent-of-Origin Effects Using Haplotypes
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that the effects from paternal and maternal alleles are equal, i.e.,

cp~cm. Model (1) can be written as an equivalent model

Y i
j ~xi

jbz(gi
p,jzgi

m,j)c1z(gi
p,j{gi

m,j)c2zUi
rzei

j ,

for i~1,:::,n, j~1,:::,ni:
ð2Þ

Where c1~
cpzcm

2
can be regarded as the main genetic effect and

c2~
cp{cm

2
represents the parent-of-origin effect. Under the null

hypothesis of no parent-of-origin effect, c2~0, the model becomes

Y i
j ~xi

jbz(gi
p,jzgi

m,j)c1zUi
rzei

j , which is a general additive

model to test association. We will use model (2) so that the

hypothesis testing becomes straightforward. Analogous to the

interpretation of c1, the sign of c2 implies the direction of parent-

of-origin effect: a positive c2 means that the maternal allele a is

associated with larger phenotypic value and a negative c2 means

that the paternal a is more associated with larger phenotypic value.

In addition, the relative magnitude of c1 and c2 reveals how

balanced the maternal and paternal effects are. In the extreme

cases, c1~c2, (i.e., cm~0) implies complete silence of maternal

allele a that is functional otherwise, and on the other hand,

c1~{c2, or cp~0, implies complete silence of paternal allele a.

Our proposed model is similar to the models proposed by

Weinberg et al. (1999) for case-parent-triads design, which also

formed the contrast of transmitted paternal and maternal alleles,

but in cases only. Our model, however, can be applied to general

families. In addition, the genotype combination that leads to

ambiguous inference of parent of origin of child’s alleles was

treated as a separate class in Weinberg et al. (1999), while our

model considers all the possibilities including ambiguous states

even with missing data, and thus, uses the maximum information

in the likelihood calculation.

3) Likelihood
Given all individuals’ genotypes, the likelihood of family i is a

function of b, c1, c2, s2
1, s2

2 and haplotype frequencies and is given

by

li(b,c1,c2,s1,s2,r1,:::,rt)

~log
X

(hi
p ,hi

m )~GGi
o

(hi
1
=hi

2
)~GGi

f

W(Yi ; mi ,Qis2
1zIni

s2
2) P

ni

j~1
p (hi

p,j ,h
i
m,j )jhi

11=hi
21,:::,hi

1fi
=hi

2fi

� �
P
2fi

j~1
p(hi

1j=hi
2j )

2
666664

3
777775 ð3Þ

where j is the individual index within the family, W(:; mi,Qis2
1zIni

s2
2)

is the multivariate-normal probability density function with mean

vector mi~(mi
1, . . . ,mi

ni
), mi

j~xi
jbz(gi

p,jzgi
m,j)c1z(gi

p,j{gi
m,j)c2,

for j~1,2, . . . ,ni and variance Qis2
1zIni

s2
2, Qi is the kinship matrix,

Ini
is the ni6ni identity matrix, (gi

p,j ,g
i
m,j) at a testing locus is a subset

of the sourced haplotypes (hi
p,j ,h

i
m,j) and thus can be uniquely

determined. Under the assumption of Hardy–Weinberg Equilibrium

(HWE) for the haplotypes, we have p(hr=hs)~2ri
r
:ri

s if r=s

or ri
r

� �2
if r~s.Gi

oand Gi
f refer to the set of offspring and

founders’ genotypes at all loci within the haplotype block. Please

note that we aim to test the parent-of-origin effect at a testing locus

but not the parent-of-origin effect of any haplotype. Instead, we

borrow the haplotype information to help identify the parent of

origin of the allele at the testing locus. To better understand how

using haplotypes improves the power, we can consider a simple

example of a trio at two loci, with possible genotypes A/a and B/b.

If mother, father, and child’s genotypes are AaBB, AabB, and

AaBb, respectively, we would be unable to know the parental source

of alleles A and a of the child. But if we know that there are only

three possible haplotypes AB, Ab, or aB, i.e., p(ab) = 0 in the

population, we can then infer the sourced haplotypes of the child as

(Ab, aB) and thus the sources of A and a are determined.

The likelihood for all the data would be

l(b,cp,cm,s2
1,s2

2,r)~
PN
i~1

li(b,cp,cm,s2
1,s2

2,r) and maximizing it

yields the MLE of the parameter of interests, including covariate

and genetic effects, phenotypic variance, and minor allele

frequency or haplotype frequency.

Since direct calculation of the likelihood function is computa-

tionally intensive, a revised Elston-Stewart Algorithm [27] can be

used instead, which processes nuclear families from the latest

generation of the pedigree and then traces back to earlier

generations (see Appendix S2).

4) The EM Algorithm for Estimating Haplotype
Frequencies, Variances, and Genetic Effects

When the number of possible haplotypes t is large, maximizing

the likelihood (4) over a large number of parameters may present

daunting convergence problems and require too much effort. To

improve the computational efficiency, we develop an iterative EM

algorithm. Given a set of initial values of the parameters, the

algorithm estimates the parameters by repeating the following E-

step and M-step until convergence:

(i) At the kth iteration, calculate the conditional probabilities of all

haplotypes by counting all possible haplotype pairs of founders

that are compatible with observed family members’ genotypes

and update the estimates of haplotype frequencies by the

following equation, which aggregates the probabilities p(h/h9),

r̂rr,(k)~
1P

i

fi

X
(hi

1
=hi

2
)*Gi

f
jGi

o

j [ founders

I(hi
1,j~hr)zI(hi

2,j~hr)
h i

p(hi
1,j=hi

2,j jGi
f ,Gi

o)

p(Gi
f jGi

o)

2
66664

3
77775

for r~1, . . . ,t

where fi is the number of founders in family i, the denominator

can be decomposed as p(Gi
f jGi

o)~
P

(hi
1
=hi

2
)*Gi

f
jGi

o

j [ founders

p(hi
1,j=hi

2,j jGi
f ,Gi

o),

and under HWE, we have p(hr=hs)~2r̂ri
r,(k{1)

:r̂ri
s,(k{1)

if r=s or r̂ri
r,(k{1)

� �2

if r~s.

(ii) At the kth iteration given b̂b(k{1),ĉc1,(k{1), ĉc2,(k{1), r̂r(k),
ŝs1,(k{1), and ŝs2,(k{1), update the ŝs2

1 and ŝs2
2 by solving

ŝs2
1,(k)~

1

N

X
i

~uu’i(Qi){1~uuiz
X

i

Xni

j

1

di
j

ŝs2
2,(k{1)

z
1

ŝs2
1,(k{1)

0
BBBB@

1
CCCCA and

ŝs2
2,(k)~

1

N

X
i

Y i{xibk{~gg
� �’

Y i{xibk{~gg
� �

z

0
BB@

X
i

Xni

j

1
1

ŝs2
2,(k{1)

z 1

di
j
ŝs2

1,(k{1)

1
CA

ð3Þ
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where N~
P
i~1

ni , ~ggi~
P

(hi
p ,hi

m )*Gi
f

(gi
pzgi

m)c1,k{(gi
p{gi

m)c2,k

h i
p (hi

p,hi
m)jGi

f

� �
,

~uui~
1

~ss2
2,(k{1)

Ini
z

1

~ss2
1,(k{1)

(Qi){1

 !{1

1

~ss2
2,(k{1)

Yi, and di
j is

the jth diagonal element of the diagonal matrix from the singular

value decomposition of the kinship matrix Qi of family i

(Derivations in Appendix S1).

(iii) Maximize the likelihood function (4) with respect to

b,cp, and cmwhile fixing r(k) and s2
(k).

Step (1) is the E-step and steps (2) and (3) are the M-step. This EM

algorithm is relatively robust for departures from HWE and is easy

to implement [35]. A sensible ensemble of the initial parameters can

be the effect estimates from the association model using complete

data and frequency estimates based on founders’ genotypes.

5) Likelihood Ratio Test (LRT)
Our test statistic is a likelihood ratio statistic, i.e., twice of the

difference between the maximum log-likelihood under the null and

alternative hypotheses. The statistic follows thex2 distribution with

one degree of freedom and thus 100(1-a) percentile ofx2
1is the critical

value for rejecting the null at the significance level of a. Both the

Elston-Stewart and EM algorithms are similarly implemented

under the null hypothesis as under the alternative hypothesis except

that the parameter c2 does not appear under the null.

6) Missing Genotypes
In family studies, the information of founders or older generations

is more likely to be missing. For founders, it is impossible to tell the

parent of origin of their alleles and thus their genotype and

phenotypes are not particularly useful in estimating the parent-of-

origin effect. But their genotypes are useful for referring the parents

of origin of the alleles of their offspring. When a founder has missing

genotypes, we may lose some accuracy in inferring the parents of

origin of the alleles of their offspring. In this case, the parent of

origin of the offspring’s alleles may be inferred from one parent (the

founder’s spouse)’s genotypes. Sometimes the missing genotype

information can be completely recovered by using the offspring and

spouse’s information. Such recovery can be more efficient when

more neighboring loci information in the population can be

borrowed. Generally, the more relatives genotyped, the more

accurately we can infer haplotype phases and allele origin

information as the genotypes of other pedigree members can give

clues to determine missing genotypes.

If not all missing genotypes can be recovered, the likelihood

function in Eq. (5) remains the same except that the set of

haplotypes compatible with observed genotypes may increase to

account for more possibilities due to the missing genotypes. The

size increase of the compatible set applies to both single-locus and

haplotype-based methods, but when inter-marker information is

taken into account in the haplotype-based method, the increase

might be much smaller compared with using only genotypes at the

single testing locus. The likelihood with missing data is given by

li
m~log

X
(hi

p,hi
m)*Gi

o

(hi
1
=hi

2
)*Gi

f
\Gi

m

W(Yi; mi,Qis2
1zIni

s2
2)

(

P
ni
j~1p (hi

p,j ,h
i
m,j)jhi

11=hi
21,:::,hi

1fi
=hi

2fi

� �
P

2fi
j~1p(hi

1j=hi
2j)

)

where~is a notation for compatibility meaning that the haplotypes

on the left are compatible with the founder and offspring

genotypes and Mendelian inheritance, and ‘‘\Gm’’ means

excluding those missing genotypes. For example, 3 possible

haplotype pairs ‘‘100/100,’’ ‘‘100/110,’’ and ‘‘110/110’’ are

consistent with observed genotypes ‘‘2?0’’ of a founder, denoted by

‘‘100/100, 100/110, and 110/110,2?0,’’ where ‘‘?’’ denotes the

missing allele.

A note about the likelihood using only testing locus

This would be a special case of haplotype-based method and the

log-likelihood function for the ith family can be simplified as,

li(b,c1,c2,s,r)~log
X

(gi
p ,gi

m)*Gi
o

W(Yi; mi,Qis2
1zIni

s2
2) P

ni

j~1
p (gi

p,j ,g
i
m,j)jGi

f

� �2
64

3
75

zsi
alog(r)z(2fi{si

a)log(1{r)

ð4Þ

where (gi
p,gi

m)*Gi
o means the possible sourced alleles of all

nonfounders in the ith family compatible with their observed

genotypes Gi
o, Gi

f is the set of founders’ genotypes, and si
a is the

total numbers of allele a carried by all the founders in the ith

family. The conditional probability p (gi
p,j ,g

i
m,j)jGi

f

� �
is essentially

the inheritance probability. This likelihood is only concerned

about the genotypes at the testing locus and thus the effective

setGi
oand Gi

f is the genotype set at the testing locus.

7) Simulations
We conducted simulation studies to evaluate the performance of

our method using only alleles at the testing locus for various family

sizes, heritability, and minor allele frequencies, which serves as the

baseline for comparison with our haplotype-based methods. We

then investigated influence of the length of the haplotype block

and the LD between the testing locus and adjacent loci on the

power of the haplotype-based method. We also inspected our

approaches under different missing mechanisms and compared

efficiency across study designs.

In each simulation study, we simulated 200 nuclear families

with m (m = 1, …,4) offspring in each family. For the model using

the genotypes at the testing locus, the genotype of founders was

generated based on a SNP locus with a minor causal allele and

then the genotypes of their offspring were generated assuming

random mating and Mendelian inheritance. The quantitative

phenotypes of all the offspring were generated according to the

true model (1). Defining the additive genetic inheritance h as the

proportion of phenotypic variance explained by the causal SNP,

we let the maternal allele and the paternal allele at the causal SNP

locus explain 80h% ( = r(1-r)cm
2) and 20h% ( = r(1-r)cp

2) of the

phenotypic variation, respectively, and the residual genetic

variation equal 10%. The parent-of-origin effect ((cp{cm)=2)

was reflected in the unbalanced heritability due to the paternal

and maternal alleles, i.e., the difference in variances in Y explained

by the paternal and maternal alleles. Then we used our likelihood

ratio tests to test parent-of-origin effect. We let the frequency of the

causal allele be 0.1, 0.3, and 0.5 and let the additive inheritance h

change from 0.025, 0.05, 0.1, to 0.2, respectively. In the simulation

of parent-trios (m = 1), the polygenetic effect cannot be estimated

with only one offspring in each family and thus model (2)

degenerated to a fixed effect model without Ui
r .

To evaluate the haplotype-based method, we generated the

genotypes of 5 SNPs based on the haplotype structure in gene

GPX1, a well-known gene for encoding a member of glutathione

peroxidase, an important antioxidant enzyme in humans. For the

ð4Þ
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5 loci within the GPX1, there are 7 common haplotypes with their

frequencies and pair-wise LD shown in Table S2 [36]. Assuming

HWE, the founders’ haplotypes were generated based on the

GPX1 haplotype frequencies. In each family, the offspring’s

haplotypes were inherited following the Mendelian law and

assuming no recombination within the block. To allow some

variation in the LD between the testing SNP and neighboring

markers, we chose each of the 5 SNPs in turn to be the causal

SNP. The phenotype was generated similarly as before except that

we fixed the heritability to be 10% and let the maternal and

paternal alleles affect the phenotype in the same direction and

explain 8% and 2% of the total phenotypic variance, respectively.

We tested the parent-of-origin effect at the true causal locus using

only testing locus and the haplotypes within the different blocks.

To compare with existing methods, we also tested each locus for

parent-of-origin using the VC method [11], which has been

claimed to be the most powerful for pedigree data so far. To

maximize the information utilized in VC, parent-specific IBD

distribution was estimated based on the whole haplotype block and

was used in the variance structure of paternal and maternal

components respectively.

To assess the information loss at the presence of missing

genotypes, we further investigated the performance of our test

statistics under two common missing scenarios. First, we

considered the situation where one parent in each family was

not genotyped and thus his/her genotypes over the genome were

completely missing. So, the genotypes of the other parent and their

offspring can be useful to infer the phases and parent of origin of

their haplotypes. Second, we mimicked the sparse genotype

missing due to genotype calling algorithms or errors and let the

missing rate be a uniform 10% across all loci. Depending on the

LD between the loci with missing genotypes and neighboring

locus, the missing alleles and their origin can be partially or

completely inferred.

Last, to get a clue about the most efficient strategy for

genotyping in the context of testing parent-of-origin effect, we

examined the power for different family structures while keeping

the same total number of 1200 individuals. Specifically, we

checked families with both parents and 1 to 4 offspring, families

with a single parent and 1 to 5 offspring, assuming all parents have

phenotypes and 10% of offspring have missing phenotypes to

mimic the situation in real studies.

For each fixed set of parameters, each simulation experiment

was repeated 5000 times for the type I error assessment (h = 0) and

1000 times for the power (h.0).

8) Real Data Analysis
To demonstrate the capabilities of our method in studies

involving large pedigrees and the advantage of using the

haplotypes, we tested the parent-of-origin effects on diabetes-

related phenotypes, specifically the HOMA, insulin, and glucose

levels, using the Genetics of Lipid Lowering Drugs and Diet

Network (GOLDN) study data. The GOLDN study recruited 3-

generation families from two NHLBI Family Heart Study (FHS)

field centers in Minneapolis, Minnesota and Salt Lake City, Utah

that included 661 families with the highest risk scores and early

onset of CHD and 592 randomly sampled families. In addition,

GOLDN also recruited offspring of the original FHS probands’

siblings and relatives who were not included in the original FHS

sampling [37]. Most families have 2–3 generations with 5–20

individuals and 60% of those who were eligible to participate

completed the study protocol, which was approved by the

Institutional Review Boards at the University of Minnesota, the

University of Utah, and Tufts University.

The initial aim of GOLDN was to identify the common genetic

and environmental factors for the plasma triglyceride (TG)

response to a TG-raising diet and a lipid-lowering drug—

fenofibrate. Exclusion criteria included recent history of heart,

liver, kidney, pancreas, and gall bladder diseases; malabsorption of

nutrients; current use of insulin or warfarin; high fasting TGs; high

serum concentrations of aspartate aminotransferase; high serum

concentrations of alanine transaminase, or low glomerular

filtration rate; and pregnant or nursing women. See Lai et al.,

2007 for details. Written informed consent was obtained from

each participant.

Serial clinical measurements, including post-prandial lipemia

(PPL), fasting TG, NMR measures of particle size, RBC fatty

acids, insulin, glucose, and adiponectin were collected during the

visits before and after exposure to fenofibrate for 872 individuals in

176 Caucasian pedigrees. Weight, BMI, demographic and lifestyle

information, medical history, current prescription, and medication

use, were measured or collected for the participants.

Tag SNPs within candidate regions for various TG-related

phenotypes were genotyped with the Applied Biosystems TaqMan

SNP genotyping system. A total of 109 SNPs in 23 candidate genes

on 14 chromosomes were genotyped. Haplotype blocks within

each gene were identified using Haploview [38]. The assumption

of Hardy–Weinberg Equilibrium was checked for all SNPs to be

tested.

As an illustration of utility of our method, we picked

chromosome 4, which harbors 3 candidate genes, to investigate

the parent-of-origin effects of these SNPs on the Homeostatic

Model Assessment (HOMA, an insulin resistance index), insulin,

and glucose levels. We examined the distributions of the

phenotypes across different factors and their association with

continuous variables. We first fitted linear models for the

phenotypes with all possible demographic, clinical, and environ-

mental predictors known in the literature, including age, gender,

BMI, center, alcohol drinking, smoking, physical activities, and

computer-TV hours. Significant predictors were then retained in

the model for genetic analysis.

To reduce the computation time, we used MERLIN [39],

which used an efficient sparse gene flow trees algorithm to store

and evaluate the inheritance vectors. Merlin found all possible

combinations of phased haplotypes compatible with the pedigree

information, which we collapsed into unique sets of haplotypes

within each gene and then used in our haplotype-based model (2).

The probability for each combination was calculated based on the

likelihood function. The haplotype frequencies and effects for

covariates, genotype, and parent-of-origin were estimated based

on MLE. To check the power gain achieved by using the whole

haplotype block, we also tested parent-of-origin effects using the

single testing locus only after adjusting for confounders and

significant predictors in the model.

Results

1) Type I Error Rates
The type I error rates of the methods using the testing locus only

and haplotypes at the significance level of 0.05 for different family

sizes are summarized for results at locus 5 in Table 1. The results

were similar for different loci, haplotype block size, and family

sizes, and the type I error rates were consistent with the nominal

level for various scenarios. Because multiple loci are often tested

simultaneously and the significance level is often adjusted for

multiple testing, we also checked the type I errors at significance

levels of 0.01 (Table S1) and 0.001 (data not shown). All the

empirical type I errors were in accordance with the nominal rates,
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suggesting that both the single-locus and the haplotype-based

methods are valid.

2) Power
The power of our method using the testing locus only is shown

in Figure 1 for different heritability, family sizes, and missing

mechanisms. Clearly, the power to detect a significant parent-of-

origin effect increased with the increase of heritability at the testing

locus and the family size. Since heritability is determined by both

MAF and effect size and increased as either one does, given the

same heritability, there is a trade-off balance between the MAF

and the effect size. Inferring parent of origin of offspring’s alleles

can be affected by the MAF at the testing locus and thus we also

inspected the power at different MAF shown at the three panels in

Figure 1, which showed that the power was slightly lower at larger

MAF but it was not nearly as sensitive as to heritability.

Figure 2 compares the power of detecting the parent-of-origin

effect using various haplotype lengths, from 1 to 5. We only

presented the results for the last SNP as the causal SNP and the

results for other loci were similar (Figure S1, blue lines). The benefit

in using longer haplotype length is that with longer haplotype

blocks, there are more haplotypes giving the same genotypes and

thus it is easier to infer the parent of origins of those offspring’s

alleles, which would be ambiguous using the testing locus only or

shorter blocks. Figure 2 demonstrates that the method using the

haplotypes improved the power over the method using the testing

locus only and longer haplotype blocks led to more power gain.

Figure 2 also shows that it is not necessary to use a haplotype block

that is too long because when the number of compatible haplotypes

stops increasing the power will remain the same.

Compared with the variance component method (Figure 2, grey

line), our method shows great improvement of power, which is

Table 1. Type I errors of test of parent-of-origin effect in nuclear families with different family sizes and different missing
mechanisms, using different haplotyple block length, at a= 0.05.

Family size Missing Mechanism Using haplotypes with different block length L

L = 1 L = 2 L = 3 L = 4/5

1 offspring (i) no missing 0.050 0.047 0.054 0.050

(ii) 10% random missing 0.055 – – 0.051

(iii) one parent missing 0.050 – – 0.052

2 offspring (i) no missing 0.048 0.057 0.055 0.049

(ii) 10% random missing 0.055 – – 0.049

(iii) one parent missing 0.052 – – 0.050

3 offspring (i) no missing 0.049 0.053 0.050 0.052

(ii) 10% random missing 0.052 – – 0.052

(iii) one parent missing 0.057 – – 0.052

4 offspring (i) no missing 0.049 0.053 0.050 0.049

(ii) 10% random missing 0.055 – – 0.047

(iii) one parent missing 0.046 – – 0.048

doi:10.1371/journal.pone.0028909.t001

Figure 1. Power of detecting parent-of-origin effect in nuclear families using the testing locus only. Three causal minor allele
frequencies (MAFs) are considered and are shown is three separate pannels. Four family sizes are considered and the numbers of siblings 1–4 are
indicated by different colors red, green, brown, and blue. Solid lines are for no missing (complete) parental genotypes, and dotted lines are for one
parent’s genotype missing.
doi:10.1371/journal.pone.0028909.g001
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expected as our model for association analysis uses specific alleles

and variance component method uses the IBD shared between

individuals that is inferred from individual allelic information but

cannot recover all information contained in all alleles.

In our simulation study, the power increase was 11.0%, 16.6%,

15.1%, and 12.2% for the family size ranging from 3 to 6,

respectively. The pattern was consistent across all loci (Figure S1),

and we can interpret it as the following. When the family size is

small, it is not easy to infer parents of origin, even with the help of

haplotypes; and when the family size is large, it is already easy to

infer parents of origin from siblings even just considering single

locus. Figure 2 suggests that the haplotype-based method is most

advantageous for families having three or four children. None-

theless, the method using haplotypes gave at least 10% power gain

over the method using the testing locus only.

Since the information contributed by haplotypes depends on the

LD structure among the SNPs, there is no doubt that the LD

structure could influence the power gain when using our

haplotype-based method. We can look at two extreme circum-

stances to get an intuitive understanding of the consequence of LD

on the tests. When all neighbor marker loci are in complete LD

with the testing locus (R2 = 1), the method using the haplotypes

within the block is equivalent to the one using any single SNP

locus and doesn’t contribute additional information for inferring

the parent of origin of the alleles at the testing locus even though

two possible haplotypes can be easily inferred in this case. The

additional marker loci can be useful to infer the genotypes at the

testing locus when genotypes are missing at random, but such a

contribution to the test of parent-of-origin effect is minor. On the

other hand, when all other loci are in linkage equilibrium with the

testing locus (R2 = 0), they are not useful for inferring haplotypes

and thus cannot help inferring parent of origin either. So with other

conditions being identical such as heritability, MAF, haplotype

block length, and family structure, the largest power gain using

haplotypes vs. the single locus genotypes should be when the causal

locus’s LDs with others lie in the middle range between 0–1. In our

simulation, the largest power gain was at locus 5 (Figure 3 and

Figure S1) whose average R2 with other loci is 0.16 (out of 0.3, 0.16,

0.01, and 0.16). It is noticeable that for a family size of 4, the power

gain at locus 4 was larger than at locus 2, both of which had similar

MAFs (0.149 and 0.151) but the average R2 at locus 4 (0.271) was

slightly larger than that at locus 2 (0.198). In this case, a slightly

higher LD between the testing locus and adjacent markers seems to

have helped us recover the parent of origin information of the alleles

at the testing locus. However, because the interplay of pair-wise

LDs, marker MAF, haplotype frequencies, and block length is

complicated, it’s difficult to describe the exact relation between LDs

and power. In addition to the GPX1 gene, we also performed

simulation studies on gene IGF2 and gene ASAH1. IGF2 is a gene

well known for maternally imprinting that contains 6 SNPs in low

LD of each other (R2 from 0.008 to 0.806). ASAH1 is a long gene

that has been found associated with lung cancer and Farber’s

Disease [40], and there are 14 tagged SNPs in high LD and 9 of

them are in complete LD (majority of pair-wise R2.0.71). We

observed a similar scale of power gain using the haplotype-based

method over the single-locus method in both simulations.

Figure 2. Power of detecting parent-of-origin effect using different haplotype block lengths for different family sizes. The length of
haplotype blocks 1–5 are indicated by different colors blue, red, green, purple, and brown. They are compared with the power using the variance
components (vc) method, shown by grey color.
doi:10.1371/journal.pone.0028909.g002
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Figure 3 shows the power under two different missing scenarios

for different family sizes, (i) for missing one parent in each family,

(ii) for 10% random missing. While loss of power was inevitable

under both scenarios, the impact due to missing parents was more

substantial for the method using the testing locus only, as shown in

Fig. 1. The power loss was hard to recover even with the

haplotype-based method. But it can be recovered better using the

design with larger families. We also noticed that the type of power

loss was more dependent on the MAF (Figure S1), which was

smallest when the MAF at the testing locus is close to 0.15, and

largest when the MAF was close to 0.5. However, when only

occasional random genotypes are missing, the power of the

method using the haplotypes could reach almost the same level as

with complete data, suggesting that random missing caused by

genotype errors or different platforms is more recoverable from

neighboring SNPs. The same reasoning underlies genotype

imputation methods.

Summarizing Figures 1,2,3, we found that the power to detect

parent-of-origin effect increased almost linearly with increasing

family size, and using the haplotype-based method could

significantly improve the power under all the situations considered.

3) Optimal Family Size for Testing Parent-of-Origin Effects
We checked the power using different numbers of siblings (1–5)

and parents (1 or 2) in a family while keeping the total number of

individuals the same at 1200. Table 2 tabulates the results for

various combinations. Clearly, genotyping more family members

within families could lead to larger power given the same total

number of individuals and, interestingly, the power gain was most

efficient when we genotyped one more offspring in sacrifice of a

parent. This conclusion is the same as in the association analysis

(Chen et al., 2007). So, the most cost-effective strategy is to

genotype one parent and as many offspring (here maximum 5) per

family as possible. This choice of family members provided better

information about the phases for the haplotypes segregating in the

family, and allowed our haplotype-based method to take

advantage of adjacent SNP data to fill in the missing genotypes

for the missing parent. This was different from the most-effect

genotyping strategy for association analysis, which is to examine

one offspring and one parent (Chen et al., 2007). Without much

risk, one can generalize the conclusion to extended families that we

can gain the most power with large families. Most of the family

structures in the GOLDN data fall into this category, providing an

ideal case for test of parent-of-origin effects.

Also from the bottom half of Table 2, the power loss due to 10% of

missing phenotypes for the offspring using the haplotype-based

method was generally smaller than using the single-locus method.

This is because the offspring’s genotypes can still be useful to infer the

parents of origin of other siblings’ testing alleles even though they do

not contribute their phenotype probabilities to the likelihood.

4) Real Data Analysis Results
The 45 individuals that are not consanguineous with any

pedigree members were removed from the analysis. The

remaining data included 1709 individuals within 161 pedigrees.

The pedigree sizes range from 3 to 38. Three pedigrees have more

than 32 individuals and each was separated into 2 smaller families;

five pedigrees have a modest number of members ranging from 20

Figure 3. Power of detecting parent-of-origin effect with and without missing genotypes. Three scenarios are considered: no missing, (i)
missing one parent’s genotype in each family, (ii) for 10% random genotype missing, shown in blue, red, and green, respectively. Results connected
by solid lines are obtained by the method using haplotypes, and the results connected by dotted lines are obtained by the method using the testing
locus only.
doi:10.1371/journal.pone.0028909.g003
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to 30 and they were trimmed into smaller ones by removing one or

two individuals without informative phenotypes or the youngest

members. These preparations were theoretically not necessary and

would probably affect the power slightly. They were done due to

its memory constraint as we used MERLIN to infer possible

haplotypes for extended families, taking advantage of the available

and well-tested software. The inferred haplotypes would then be

fed into our haplotype-based method. The final dataset used in this

analysis included 1691 individuals in 164 separated pedigrees and

their summary statistics are provided in Table 3. On average,

about 10% of offspring have missing genotypes and 10–20% have

missing phenotypes of interest. As often is the case, the missing

rates of genotypes in founders are higher, ranging from 10.5% to

23.5% for different sized families and the majority of the founders

do not have phenotypes.

There are three haplotype blocks (Figure S2) on chromosome 4,

coinciding with the candidate genes. The MAF range from 0.069

to 0.416 and there is no significant departure from HWE based on

the x2 test.

Analyses of HOMA and insulin were adjusted for age, gender,

BMI, center, and physical activities and analysis of glucose was

adjusted for age, gender, BMI, and smoking status (current smoker

or not). The estimated parent-of-origin effect (c2) for the three

phenotypes and their p-values obtained from both models are

listed in Table 4. We have found a strong parent-of-origin effect

for glucose at the three loci of the microsomal triglyceride transfer

protein (MTP) gene using the haplotype-based method, while the

single-locus method is not powerful enough to raise the signal. Our

findings complement previous studies. MTP is located in the

lumen of the endoplasmic reticulum and is strictly necessary for

Table 2. Power of detecting parent-of-origin effect using 1200 individuals with different family structures and with/without
missing phenotypes.

Locus 1 Locus 5

Parent
No. of sibs
(no. of families)

Using testing
locus only

Using
haplotypes

Using testing
locus only

Using
haplotypes

Complete Phenotype both 1 (400) 490 560 489 543

2 (300) 667 730 636 718

3 (240) 771 826 710 800

4 (200) 788 848 772 841

single 1 (600) 603 675 545 589

2 (400) 748 820 664 740

3 (300) 823 865 738 831

4 (240) 846 888 780 857

5 (200) 856 911 788 884

10% Missing Phenotype both 1 (400) 483 528 439 499

2 (300) 639 693 580 644

3 (240) 721 770 652 742

4 (200) 756 803 709 785

single 1 (600) 568 662 502 560

2 (400) 701 783 625 725

3 (300) 775 828 706 775

4 (240) 795 837 713 824

5 (200) 818 879 754 854

doi:10.1371/journal.pone.0028909.t002

Table 3. Summary of GOLDN Family Data.

Family
Size

# of
families

Mean # of founders
(Males/Females)

Mean # of offspring
(Male/Female)

Mean # of being genotyped
(founder/offspring)

Mean # of members
having phenotypes

glucose insulin HOMA

3–6 54 2.30(1.17/1.13) 2.39(1.04/1.35) 2.78(0.54/2.24) 2.31 2.31 2.26

7–9 32 3.47(1.69/1.78) 4.69(2.22/2.47) 4.97(0.72/4.25) 4.25 4.22 4.19

10–12 30 4.43(2.23/2.20) 6.70(3.40/3.30) 6.33(0.60/5.73) 4.93 4.93 4.93

13–16 21 5.48(3.24/2.24) 8.86(4.24/4.62) 9.19(1.14/8.05) 7.81 7.81 7.81

17–20 19 6.47(3.47/3.00) 12.53(6.47/6.05) 12.32(0.95/11.37) 10.32 10.21 10.11

20+ 8 7.62(4.00/3.62) 15.00(7.50/7.50) 14.50(1.25/13.25) 13.12 13.12 13.00

doi:10.1371/journal.pone.0028909.t003
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the assembly and secretion of apolipoprotein B-containing

lipoproteins [41,42,43]. Cell culture studies have suggested that

MTP expression is positively regulated by glucose in primary

hepatocytes [44] and negatively regulated by insulin and glucose in

HepG2 cells [45].

For this candidate gene based exploratory study, the p-values

are significant even adjusting for a total of 11 tests. Please note that

for the genome-wise assessment, the significance threshold can be

much smaller after adjusting for the total number of SNP loci

being tested.

Table 5 gives the estimates of haplotype frequencies using our

haplotype-based method and HaploView. Our estimates from the

three distinctive models are consistent up to the 2nd decimal point,

but slightly differ from the estimates by HaploView. Considering

the estimates given by HaploView are based on founders only, we

believe our estimates should be more accurate by incorporating all

individuals’ genotype information.

Discussion

In this paper, we have developed a method for testing parent-

of-origin effect that can incorporate haplotype information to

infer the parents of origin of testing alleles. Our method can

accommodate large pedigree data, adjust for covariates, and allow

for missing genotypes and phenotypes. We have demonstrated

apparent power gains compared with the traditional single-locus

approach in many realistic scenarios and our estimates are

consistent and unbiased across all the experiments.

Our simulation studies also demonstrated that the method using

haplotypes is more capable of recovering missing data than the

method using the testing locus only. For modest random missing

around 10%, the haplotype-based method can almost recover all

the power if there are three or more siblings.

Most of our simulations were based on nuclear families. To

evaluate the performance of our method in large pedigrees, we

also conducted additional simulation based on the real families in

the GOLDN study and the simulation results are consistent with

what we have found based on nuclear families. The power was

greatly improved for large families compared with nuclear

families, using either single locus or haplotype method. The gain

using the haplotype-based method over the single-locus method

was more substantial at smaller heritability (h = 5%) than at larger

heritability (h = 10%), indicating the haplotype method might be

much more preferable than the single locus method in real studies,

where heritability with respect to a single SNP/gene is usually low.

Exploring different study designs for optimal power to detect

parent-of-origin given a fixed number of individuals, we have

found that the best strategy is to recruit one parent and as many

offspring as possible.

A more complicated model can have an additional term bd

I(gp?gm) where the dominant effect bd is reflected by the de-

parture of mean phenotype in those with heterozygous genotypes.

But the dominant effect can confound the parent-of-origin effect

because the heterozygous group contains those individuals with

ambiguous parents of origin. Instead of using a saturated model,

we would suggest others investigate these two effects separately.

Although we have developed the model for quantitative traits,

our method can be easily extended for binary and ordinal traits

within the framework of generalized linear models. Our model can

be easily incorporated into other software such as Merlin, which

already has implemented the Elston-Stewart method to infer

haplotypes.

Our model assumes random mating and HWE for haplotypes.

One should check the validity of the assumptions before applying

the method. Under the serious violation of the assumptions, the

parameter may be biased and type I error rates inflated. In case

HWE is violated, the diplotype frequencies instead of the

haplotype frequencies can be used in the likelihood to relax the

assumption.

We consider all compatible haplotype configurations with

minimum recombinants or without recombinants. This is only

applicable for tightly linked markers. For a set of sparsely spaced

markers, a haplotype configuration with recombinants is more

Table 4. Parent-of-origin effect estimates (p-values) in genes FABP2 and MTP on chromosome 4.

Testing
SNP (MAF) Glucose HOMA Insulin

Using a locus Using haplotype Using a locus Using haplotype Using a locus Using haplotype

MTP_M1498 (0.338) 1.242 (0.4801) 1.039 (0.0043*) 0.090 (0.6957) 0.083 (0.0749) 20.640 (0.4024) 20.600 (0.0144)

MTP_M493 (0.214) 1.529 (0.4364) 1.490 (0.0039*) 20.204 (0.4218) 0.014 (0.0584) 21.028 (0.2136) 20.953 (0.0091)

MTP_CYS174CYS (0.064) 20.259 (0.9362) 20.655 (0.0051*) 20.148 (0.7101) 0.421 (0.0399*) 20.745 (0.5860) 21.737 (0.0081)

FABP2_A55S (0.234) 0.535 (0.7925) 0.242 (0.9061) 0.214 (0.3474) 0.230 (0.3114) 20.983 (0.1990) 20.989 (0.1912)

FABP2_M193 (0.417) 0.611 (0.7036) 0.749 (0.6440) 0.068 (0.7155) 0.130 (0.4815) 20.532 (0.3943) 20.769 (0.2144)

FABP2_M767 (0.234) 0.535 (0.7925) 0.242 (0.9061) 0.214 (0.3474) 0.230 (0.3114) 20.983 (0.1990) 20.989 (0.1912)

doi:10.1371/journal.pone.0028909.t004

Table 5. Haplotype frequency estimates from Haploview and
our method.

Haplotypes Haploview
Model for
Glucose

Model for
HOMA

Model for
Insulin

1st Haplotype Block (MTP_M493, MTP_CYS174CYS, MTP_M1498)

121 0.677 0.662 0.661 0.661

311 0.203 0.186 0.185 0.185

321 0.044 0.089 0.089 0.089

313 0.042 0.028 0.028 0.028

323 0.033 0.036 0.036 0.036

2nd Haplotype Block (FABP2_A55S, FABP2_M193, FABP2_M767)

232 0.600 0.683 0.683 0.683

414 0.209 0.234 0.234 0.234

212 0.191 0.083 0.083 0.083

doi:10.1371/journal.pone.0028909.t005
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likely to occur, and in that case our method would need to be

revised to accommodate the recombination probability.

Our method is computationally intensive. The computational

complexity increases linearly with the size of pedigrees and linearly

with the number of haplotypes. Therefore, the method is good to

handle large pedigrees with a moderate number of haplotypes

within a selected block. The number of SNPs needed to reach

optimal power gain is region specific and data specific, as it

depends on the haplotype structure of the surrounding SNPs and

the pedigree structure. According to our simulations, in moderate

families, a haplotype block with 2–3 SNPs that have moderate R2

(between 0.3–0.7) with the testing SNP might be sufficient to be

utilized to improve the inference of the parent-of-origin of the

testing alleles and thus the power. The power gain is minimal

when the length of haplotype block increases more. For large-scale

GWAS, we would suggest a sliding window method with short

haplotype blocks to save the time in searching and determining the

haplotype blocks.
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