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Abstract

Parkinson’s disease (PD) occurs in both familial and sporadic forms, and both monogenic and complex genetic factors have
been identified. Early onset PD (EOPD) is particularly associated with autosomal recessive (AR) mutations, and three genes,
PARK2, PARK7 and PINK1, have been found to carry mutations leading to AR disease. Since mutations in these genes account
for less than 10% of EOPD patients, we hypothesized that further recessive genetic factors are involved in this disorder,
which may appear in extended runs of homozygosity. We carried out genome wide SNP genotyping to look for extended
runs of homozygosity (ROHs) in 1,445 EOPD cases and 6,987 controls. Logistic regression analyses showed an increased level
of genomic homozygosity in EOPD cases compared to controls. These differences are larger for ROH of 9 Mb and above,
where there is a more than three-fold increase in the proportion of cases carrying a ROH. These differences are not
explained by occult recessive mutations at existing loci. Controlling for genome wide homozygosity in logistic regression
analyses increased the differences between cases and controls, indicating that in EOPD cases ROHs do not simply relate to
genome wide measures of inbreeding. Homozygosity at a locus on chromosome19p13.3 was identified as being more
common in EOPD cases as compared to controls. Sequencing analysis of genes and predicted transcripts within this locus
failed to identify a novel mutation causing EOPD in our cohort. There is an increased rate of genome wide homozygosity
in EOPD, as measured by an increase in ROHs. These ROHs are a signature of inbreeding and do not necessarily harbour
disease-causing genetic variants. Although there might be other regions of interest apart from chromosome 19p13.3, we
lack the power to detect them with this analysis.
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Introduction

Parkinson’s disease (PD) is an age-related neurodegenerative

condition which causes a progressive L-DOPA responsive

hypokinetic movement disorder related to nigro-striatal dopami-

nergic cell loss [1]. There is heterogeneity in the extent of non-

motor symptoms and the presence of dystonia and L-DOPA

related treatment complications. Autosomal dominant, recessive,

common and rare variant genetic factors have been identified as

being relevant to the development of PD [2–7]. The identification

of these factors has informed clinical diagnosis, the study of disease

heterogeneity, neuropathology and the understanding of the

underlying pathogenic mechanisms. Furthermore, knowledge of

genetic factors contributing to PD might enable the development

of predictive testing and personalised treatments in the future. Age

is the most certain risk factor for PD with the majority of patients

developing disease after the age of 65 [8]. However, 3.6% of

patients develop early-onset PD (EOPD) before the age of 45 and

1% develop their disease before the age of 40 [9]. Presumably,

these outlying cases relate to the effects of exceptional genetic and/

or environmental risk factors. Segregation analysis in PD indicates

that there is an up to eight-fold increased risk of developing PD in

siblings of patients with EOPD, supporting the effect of autosomal

recessive genes [10,11].

PARK2 (parkin), PARK7 (DJ-1) and PINK1 (PARK6) have been

identified as loci/genes that contain mutations causing an

autosomal recessive form of the disease, based on mutation

discovery in consanguineous families following homozygosity

mapping and positional cloning [12–14]. Recently mutations in

ATP13A2, PLA2G6, FBXO7 and SPG11 which cause a similar

syndrome, pallido-pyramidal early onset parkinsonism, have also

been identified using homozygosity mapping [15]. Pathogenic

mutations in EOPD genes are not confined to familial or

consanguineous patients. Screening of outbred EOPD patients

has identified compound heterozygous and further homozygous

mutations [16,17]. Overall, 5% of EOPD cases have mutations in

known autosomal recessive genes, with approximately half being

homozygous and half being compound heterozygous [18].

Genome wide single nucleotide polymorphism (SNP) chips have

been used to identify common risk alleles for typical sporadic PD

[3–7]. However, they also provide the opportunity to identify

homozygous runs in the genome [19,20], shown to be abundant in

ostensibly outbred populations [21]. This suggests that large-scale

homozygosity mapping might be used to identify new genes in

apparently outbred individuals with autosomal recessive disease,

and to estimate the burden of recessive loci in a particular disease

population [22]. We hypothesise that there are further autosomal

recessive risk factors for EOPD and have performed genome wide

homozygosity analysis, to determine the presence and extent of

excess homozygosity in patients with early onset disease.

Methods

Participants and genotyping
DNA samples in this study were analysed as part of genome-

wide association studies (GWAS) included in the International PD

Genomics Consortium (IPDGC) meta-analysis published in the

Lancet in February 2011 [23]. The authors are members of the

consortium and consortium members are co-authors of this paper.

The study represents a re-analysis of a part of the GWAS meta-

analysis data (relating to early onset PD) and additional Cardiff

EOPD samples were genotyped and included in this study,

generated and analysed by our centre. Approval for this was given

by the UK Research Ethics Committee Approval (REC for Wales

09/MRE09/35). Part of the data was generated by the Wellcome

Trust Case Control Consortium 2 (WTCCC2). The authors have

the permission and approval of both IPDCG and WTCCC2 to

carry out this work and both IPDGC and WTCCC2 have

approved this manuscript for submission for publication.

DNA samples from PD patients meeting Queen Square Brain

Bank criteria with an age at onset (AAO) at or below 50 years

(n = 1557 – France 466, Netherlands 286, Germany 239, USA

280, UK 286) (table 1) were collected and genotyped with Illumina

HumanHap 550, Human660W-Quad, or Human1M-Duo bead-

chips (www.illumina.com), and had undergone some prior quality

control procedures (QC). Following two rounds of QC aiming to

unify the datasets (see supporting information S1 for details),

consensus genotypic information for 412,212 unique SNPs was

available for 1,445 EOPD cases and 6,987 controls (1958 British

Birth Cohort (n = 1225, http://www.b58cgene.sgul.ac.uk), the

British Blood Donor Service (n = 2510), US-American NINDS

spousal and population controls (n = 750), the Rotterdam Study

(n = 1559), and German controls from the KORA study and

POPGEN project (n = 943)) (table S1). Detailed sample informa-

tion is available elsewhere [3,5–7].

The mean AAO for EOPD cases was 41.36 years (n = 1427, range:

7–50, standard deviation (SD): 7.24), with 940 individuals AAO#45

years and 581 individuals AAO#40 years (see Figure S1 for

histogram of AAO distribution). Average chronological age of EOPD

cases was 59.54 as of 2010 (range: 27–95, SD: 9.59, n = 853), and the

average chronological age of controls was 53.95 (range: 21–101, SD:

8.67, n = 6973). 37.1% of cases and 52.4% of controls were female.

Runs of homozygosity
Initial identification of ROHs was performed using PLINK

v1.07 [24]. A window of 50 SNPs was defined as homozygous if it

Table 1. Samples and SNPs.

Before QC After QC (1) After QC (2)

Country Cases Controls SNPs Cases Controls SNPs Cases Controls SNPs

FR 466 0 567,589 460 0 529,347 449 0 412,212

NL 286 1,637 574,856 269 1,560 423,769 264 1,559 412,212

GER 239 976 561,466 235 945 506,183 233 943 412,212

USA 280 808 476,964 262 796 452,558 232 750 412,212

UK 286 3,751 480,729 269 3,739 442,050 267 3,735 412,212

Total 1,557 7,172 - 1,495 7,040 - 1,445 6,987 412,212

doi:10.1371/journal.pone.0028787.t001
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contained at most 1 heterozygous genotype and 1 missing

genotype. Such windows were moved across the genome, and a

SNP was counted as part of a ROH if .5% of windows spanning

it were homozygous. These are the values suggested in PLINK,

designed to minimize the probability of a window being called

homozygous by chance, while ensuring that SNPs on the edge of a

true ROH will be assigned to that ROH. Each ROH had to

contain on average at least 1 SNP per 50 kb. The minimum length

of the ROH was set at 1 Mb and sequentially increased by 1 Mb

up to 10 Mb.

Plotting these ROHs as custom tracks in UCSC genome

browser (http://genome.ucsc.edu/) showed that the majority of 1–

2 Mb ROHs, occur in clusters containing hundreds to thousands

of samples and are, most likely, identical by state (IBS) instead of

identical by descent (IBD). A SNP locus or region of loci is said to

be IBD if the homozygous alleles have originated from the same

ancestor, while IBS refers to loci/regions that are merely

homozygous by chance. In an attempt to remove homozygous

runs that occurred at a high frequency in the sample population

and that might bias our downstream analyses, we identified all

regions at which at least 1% of all individuals (both cases and

controls) harboured a ROH of 2 Mb or more in length. Within

most of these regions, the mean length of overlapping common

ROHs tended to be largely uniform. However some rare ROHs

(,1% frequency in the study population) that were considerably

longer and thus more likely to be IBD appeared to span some of

these regions independently of the common ROHs. Those whose

length deviated more than 3 SD from the mean length of the

ROHs in that region, were retained in the analysis (figure S2

illustrates which ROHs would remain in the analysis following this

approach in an example of one such region). This filtering

approach was repeated for ROHs with a minimum length of 3, 4,

and 5 Mb. At 6 Mb and above, no more regions with a ROH

frequency .1% were identified.

Statistical analyses
Basic homozygosity burden analysis. The proportion of

individuals with at least one ROH of a given minimum length and

the total number of ROHs per individual (rate) were calculated for

both all ROH and rare ROH. Means were compared between

cases and controls using simple one-tailed T-tests, and empirical p

values were generated by permuting case/control status (100

million permutations, resulting in accuracy up to 161028).

Homozygosity burden analysis using logistic regression

models. In order to estimate the magnitude of risk associated

with elevated levels of genome wide homozygosity, and to allow

the inclusion of potentially confounding variables, analyses were

further refined with a series of logistic regression models. Thus, the

proportion of samples with ROHs above a given length and the

total number of ROHs per individual were modelled separately as

independent variables with case-control status as the dependent

variable. Chronological age as of 2010 (when available) and the

two first components (C1 and C2) of the multidimensional scaling

matrix (MDS) (which captures about 90% of genetic variation in

Caucasian populations - see supporting information S1) were

included as covariates. To remove the possibility of chance

occurrences of homozygosity affecting our statistical calculations,

genome-wide rates of homozygosity ( f coefficients) outside of

linkage disequilibrium were calculated using PLINK v.1.07, in a

linkage disequilibrium trimmed dataset (supporting information

S1). This statistic summarizes the proportion of genotypes in our

trimmed dataset that deviated from the expected number of

homozygous genotypes in each population under assumptions of

Hardy-Weinberg equilibrium. A more negative f would suggest a

high level of heterozygosity in a sample; a more positive f estimate

would suggest elevated rates of homozygosity beyond what is

expected under normal assumptions. This statistic was then

applied as a covariate to our logistic regression models. Logistic

models were executed using R v.2.11.1 [25].

Exclusion of known PARK loci. In order to test whether the

excess of homozygosity detected might be due to carriers of

homozygous mutations in the most prominent PARK genes, both

the one-tailed t-tests and the logistic regression models were

repeated after excluding those samples with ROHs overlapping

the genomic position of any of these genes. For this purpose, the

start and end positions of RefSeq genes for ATP13A2, FA2H,

FBXO7, LRRK2, PARK2, PARK7, PINK1, PDXK, PLA2G6, SNCA,

and SPG11, were downloaded from the UCSC table browser

(build NCBI36/hg18). If more than one transcript was present, the

longest available transcript was used as a reference. A total of 47

cases and 184 controls harboured ROHs.2 Mb in length

overlapping with at least one of these genes.

Homozygosity Mapping. Two approaches were used to find

genomic regions in which extended homozygosity differed

between cases and controls. First, we used PLINK v1.07 to

define pools of overlapping ROHs. Each pool contained at least

two different ROHs that did not have to match allelically. This

approach identified 1,820 unique pools containing two or more

ROHs. The genomic region spanned by all the runs in a certain

pool was used to define 1,604 unique consensus regions spanning

at least 2 consecutive SNPs. The number of times each of these

consensus regions was completely overlapped by ROHs in cases

and controls was counted and p values calculated based on

100,000 permutations. Multiple test corrections were applied

based on the number of consensus regions tested.

In a second approach (gene-based) trying to identify genomic

regions differentially overlapped by ROHs in cases versus controls

in our cohort, a list containing the genomic coordinates of 19,058

genes and predicted transcripts in the human genome (NCBI B36

assembly) was downloaded from the PLINK resources website

(http://pngu.mgh.harvard.edu/,purcell/plink/res.shtml). Using

PLINK v1.07, the number of times a given gene was overlapped

by ROHs in cases and controls was counted and p values were

calculated based on 100,000 permutations. P values were multiple

test-corrected based on the number of genes and predicted

transcripts in our list.

Results

A total of 216,660 homozygous runs ranging in size from 1 to

,71.6 Mb (mean length: 1.4 Mb) and containing 50 to 9,743

contiguous homozygous SNPs, were identified. The exact number

of ROHs identified at any given size threshold in cases and

controls can be found in table S2. Every case and control had at

least one ROH measuring more than 1 Mb (table S3 a). The mean

number of ROH (greater than 1 Mb) per person was 25.5 (25.22

in cases, and 25.79 in controls, ratio: 0.98, p = 1, table S3 b). We

therefore focused on ROH of at least 2 Mb length in subsequent

analyses, of which there were 19,025 in our dataset.

Basic homozygosity burden analysis
Around 88% of cases and 90% of controls harboured ROHs of

at least 2 Mb length (ratio: 0.98, p = 0.97). However, at 3 Mb

minimum length, a small but significant increase in the proportion

of cases with ROHs versus controls became apparent (42.6% vs.

39.4%, ratio: 1.08, p = 0.01). The biggest difference in the

proportion of samples with an ROH of a given minimum size

was seen at 9 Mb (4.4% vs. 1.4%, ratio: 3.17, p,161028) (table

Extended Homozygosity in EOPD
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S3 a). At a minimum length of 2 Mb, the average number (rate) of

ROHs in cases was 2.24 and 2.26 in controls (ratio: 0.99, p = 0.65).

At a minimum length of 3 Mb, the rate in cases and controls

dropped to 0.65 and 0.52, respectively, indicating a highly

significant excess of homozygosity in cases (ratio: 1.25,

p = 2.3061026). Again, the biggest difference was seen at a

threshold of 9 Mb, with a rate of 0.08 in cases, and 0.02 in controls

(ratio: 3.48, p,161028) (table S3 b). This initial analysis showed a

clear excess of homozygosity by all metrics tested in cases as

compared to controls.

Analysis was repeated following filtering for rare ROHs. The

number of rare ROHs is shown in table S2 b). When taking only

rare ROHs into consideration, the case-specific excess of the

number of homozygous runs per person (rate) became more

pronounced, reaching statistical significance at a size threshold of

2 Mb (0.91 vs. 0.82, ratio: 1.10, p = 0.01) and remained strongly

significant throughout (table 2 a, figure 1). The proportion of

individuals with at least one rare ROH of a given length dropped

overall, and the difference between cases and controls became

significant at 4 Mb (0.12 vs. 0.08, ratio: 1.45, p = 6.5061026)

(table 2 b, figure 2). As expected, there was no increased burden in

cases when the analysis was performed using exclusively common

ROHs with a frequency .1% (data not shown).

Homozygosity burden analysis using logistic regression
models

Logistic models both without (Model 1) and with covariates ( f

coefficient, age, MDS factors) (Models 2–4) suggest a highly

significant association between the presence of one or more

particularly longer ROHs (proportion) and disease phenotype

(Tables S4a, S5a), as well as the rate of ROHs and phenotype

(tables S4 b, S5 b). Including the genome-wide rate of

homozygosity outside of LD (i.e. f ) as a covariate decreased the

average log10(p) by 2.1 units (Model 2). In other words, controlling

for background genome wide homozygosity increased the

detection of differences in ROHs between cases and controls.

Taking into account chronological age increased the average

log10(p) by 3.9, suggesting that the marginally older age of our

cases had a confounding effect (Model 3). Accounting for potential

population stratification had an impact on the significance of our

findings, also increasing the average log10(p) by 3.86, (Model 4,

table 3). The measure of rate is more attenuated through

incorporation of all covariates than the measure of proportion.

However, rate as well as proportion measures still remained

significantly associated with case status from a minimum ROH

length of 3 Mb onwards.

Investigating the source of excess homozygosity in EOPD
Given that the most striking differences were apparent at ROHs

of 8–9 Mb in length, we further investigated the role of individuals

with ROHs of .8 Mb (71 cases and 110 controls). Removing these

individuals from the analysis led to a complete loss of significant

differences in both the proportion of samples with ROHs (table S6

a) and the rate of ROHs per person (table S6 b). While a degree of

significance was lost due to the exclusion of rare long ROHs of

8 Mb and above, these individuals also carried an excess of shorter

ROHs. Differences in proportion (table S7 a) and rate (table S7 b)

were still significant after restricting analysis to only ROHs below

8 Mb in length. We observed that those 71 cases that had at least

one ROH.8 Mb had a higher frequency of runs between 2–7 Mb

than the remaining 1,374 cases (3.78 vs 2.07, ratio: 1.83,

p,161028; figure S3). The average AAO of these 71 cases was

40.73 years (range: 13–50, SD: 8.23, n = 70), and not significantly

different from the rest of cases (AAO: 41.25, SD: 7.21, range: 7–50,

n = 1351) as assessed by two-sample two-tailed t-test assuming equal

variances (p = 0.56). There was a 10-fold increase of the mean f

coefficient when comparing samples with or without 8 Mb ROHs

(0.014 versus 0.001, respectively, p = 1.16610216). The distribution

of cases with 8 Mb ROH across the different populations under

study was as follows: 25.35% France, 25.35% Germany, 23.94%

Netherlands, 15.49% USA and 9.86% UK. This did not differ

significantly from the distribution of cases without 8 Mb ROH,

apart from the observation that German cases were more likely to

have 8 Mb ROH than any other (Fisher’s exact test p value = 0.01).

7 of the 71 individuals (9.86%) carried a ROH of .2 Mb across

PARK2 (parkin), ATP13A2, FBXO7 or PLAS2G6, which was a

significantly higher percentage of carriers than that found in cases

without long ROH (2.91%, p = 0.01).

Homozygosity Mapping
The first homozygosity mapping approach involved testing

consensus regions where two or more ROHs overlapped at a

minimum of 2 SNPs for association with disease phenotype. In the

present dataset there were 1,604 consensus regions overlapped by

rare ROHs of at least 2 Mb length. One consensus region, located

on chromosome 19p13.3, remained significantly associated with

Table 2. Proportion and Rate of rare ROHs in EOPD cases and controls.

a) Proportion b) Rate

Size EOPD Controls Ratio P value EOPD Controls Ratio P value

.2 Mb 0.51 0.54 0.96 0.94 0.91 0.82 1.10 0.01

.3 Mb 0.22 0.20 1.08 0.10 0.37 0.26 1.43 2.00610206

.4 Mb 0.12 0.08 1.45 6.5061026 0.21 0.11 1.90 1.00610207

.5 Mb 0.10 0.06 1.71 ,1.0061028 0.17 0.08 2.22 ,1.00610208

.6 Mb 0.07 0.04 1.95 ,1.0061028 0.14 0.05 2.59 ,1.00610208

.7 Mb 0.06 0.02 2.58 ,1.0061028 0.11 0.04 3.13 ,1.00610208

.8 Mb 0.05 0.01 3.12 ,1.0061028 0.09 0.03 3.43 ,1.00610208

.9 Mb 0.04 0.01 3.17 ,1.0061028 0.08 0.02 3.48 ,1.00610208

.10 Mb 0.03 0.01 2.74 1.3061027 0.06 0.02 3.14 4.78610206

a)Proportion of samples with at least one rare ROH of a given minimum size.
b)Rate of rare ROHs of a given minimum size.
doi:10.1371/journal.pone.0028787.t002
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EOPD after correction for multiple testing (uncorrected p

value = 4.0061025, corrected p = 5.7961023, Consensus #1 in

table 4). 6 cases and no controls carried a ROH spanning this

region. These cases were originally from Germany (3 cases) and

the UK, France and USA (1 case each). The mean AAO in these

cases was 39 (range = 29–49) and not significantly different from

other cases as shown by a two tailed t-test (p = 0.54). Interestingly

all six cases belonged to the group of cases with at least one ROH

above 8 Mb length, although the longest ROH for a given person

was not necessarily overlapping consensus region #1 (mean length

of ROH = 7.5 Mb; range = 2.9–16.3 Mb).

This consensus region spans ,184 kb in chromosome 19p13.3

and contains 12 genes and predicted transcripts, namely: CLPP,

ALKBH7, PSPN, GTF2F1, KHSRP, MIR3940, SLC25A41,

SLC25A23, CRB3, DENND1C, TUBB4 and TNFSF9 (figure S4).

The presence of deletions and duplications in this region was

excluded by visual examination of the genotyping intensity data

(data not shown). There was no extended shared haplotype among

cases with homozygosity in the 19p13.3 region. Sanger sequencing

of all exons and exon-intron boundaries of genes and predicted

transcripts contained in this genomic region failed to find any

associated variants. Another 118 consensus regions were nomi-

nally associated with EOPD (p,0.05). However, none of them

passed correction for multiple testing. A list of the top 10

associated regions can be found in table 4.

In the second approach of homozygosity mapping, all genes and

predicted transcripts according to NCBI B36 assembly were used

as the unit of analysis. Of the 19,058 genes queried, a total of

17,182 were spanned by at least one ROH. Eleven genes across a

174 kb stretch on chromosome 19 were intersected by significantly

more ROHs in the cases compared to controls, a finding that

remained significant following multiple test correction (p = 0.01)

and was mostly overlapping with the region identified by the

consensus approach described above.

Nominal significance was also achieved for an additional 1,816

genes; however these did not withstand genome wide correction.

Given that a single ROH will typically span multiple genes, then in

the context of this experiment each locus is not truly independent

and therefore the genome wide correction for ,19,000 indepen-

dent tests is highly conservative. This is emphasised by post hoc

analysis which revealed that, as expected, a large proportion of the

associated genes were spanned by the same set of ROHs and it was

possible to assign all 1,827 genes to 300 independent groups

containing 1 – 66 genes each (table 5 shows the top 10 regions with

uncorrected p values#0.01; figure S5 shows the three most

significantly associated gene groups on chromosome 19p13.3).

Exclusion of known PARK loci
All samples with ROHs of above 2 Mb overlapping any of the

12 known parkinsonism and pallido-pyramidal syndrome genes

were removed. After removal, both the basic burden analysis and

logistic regressions models produced similar results as those

described above (tables S8, S9, S10, and S11). These results

indicate that excess of homozygosity outside the known parkin-

Figure 1. Number of rare ROHs at different size thresholds in EOPD and control groups. In this bar plot the average number of rare ROHs
per person (rate) in either EOPD (red) or control (blue) groups is shown for different minimum size thresholds. The black line represents the ratio of
average rate in cases vs. average rate in controls. Differences were statistically significant from a threshold of 2 Mb (0.91 vs. 0.82, ratio: 1.09, p = 0.01)
and remained strongly significant throughout, peaking at 9 Mb (0.04 vs. 0.01, ratio: 3.17, p,1.0061028.
doi:10.1371/journal.pone.0028787.g001
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sonism and pallido-pyramidal syndrome genes represent a risk for

EOPD in our population and that further recessive genes are yet to

be identified. Performing the gene-based homozygosity mapping

explained before in the aforementioned genes, resulted in the

association displayed in table S12. To note, only PARK2 (parkin)

was statistically more often overlapped by ROHs in cases versus

Table 3. Logistic models for proportion and rate of rare ROHs.

a) Proportion b) Rate

Size P value Odds Ratio (95%CI) P value Odds Ratio (95%CI)

.2 Mb n.s. 1.00 (0.86–1.16) n.s. 1.04 (0.99–1.10)

.3 Mb 0.02 1.22 (1.02–1.45) 3.0861023 1.12 (1.04–1.22)

.4 Mb 7.3161025 1.57 (1.25–1.96) 0.01 1.14 (1.03–1.26)

.5 Mb 8.2661026 1.77 (1.37–2.26) 0.01 1.17 (1.04–1.31)

.6 Mb 1.1961025 1.91 (1.42–2.53) 4.7261023 1.21 (1.06–1.38)

.7 Mb 3.2561027 2.39 (1.70–3.31) 0.01 1.22 (1.06–1.42)

.8 Mb 7.7361027 2.59 (1.76–3.74) 0.01 1.23 (1.05–1.46)

.9 Mb 2.2561026 2.62 (1.74–3.88) 0.01 1.27 (1.06–1.54)

.10 Mb 1.3561023 2.09 (1.32–3.25) n.s. 1.21 (0.98–1.49)

a)Logistic model 4 (adjusted for f, chronological age, and MDS covariates) with phenotype (EOPD case or control, 1 or 0) as dependent variable and proportion of
samples with at least one rare ROH of a given minimum size as independent variable.
b)Logistic model 4 (adjusted for f, chronological age, and MDS covariates) with phenotype (EOPD case or control, 1 or 0) as dependent variable and rate of rare ROHs per
person of a given minimum size as independent variable. (Models 1–3 in supplementary material).
doi:10.1371/journal.pone.0028787.t003

Figure 2. Proportion of cases and controls with rare ROH of a given minimum size. This bar plot displays the proportion of individuals
presenting with at least one ROH of a given size threshold in EOPD (red) and control groups (blue). The ratio of the case/control proportions is
represented by the black line. The difference between ROH-positive proportions in cases and controls became statistically significant at 4 Mb (0.12 vs.
0.08, ratio: 1.45, p = 4.3061026), and remained highly significant throughout higher size thresholds.
doi:10.1371/journal.pone.0028787.g002
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controls after multiple test correction (p = 0.04), further supporting

the idea that novel genetic factors are underlying the excess of

homozygosity detected in our cases. Additionally, any evidence of

association of ROH across PARK2 (parkin) disappeared when 2

cases with known mutations in the gene were excluded from the

analysis (p = 0.31, p corrected = 0.86).

Table 4. Top 10 associated consensus regions.

Consensus Chr. Start-End EOPD Controls P P*

#1 19 6,313,724–6,498,141 6
(0.42%)

0
(0.00%)

4.0061025 5.7961023

#2 3 7,263,365–7,356,271 4
(0.28%)

0
(0.00%)

8.9061024 0.17

#3 9 18,914,463–20,149,208 4
(0.28%)

0
(0.00%)

9.4061024 0.17

#4 4 57,197,834–57,284,828 4
(0.28%)

0
(0.00%)

9.9061024 0.17

#5 10 81,888,175–82,416,665 5
(0.35%)

1
(0.01%)

7.0061024 0.26

#6 4 58,379,742–58,393,395 7
(0.48%)

4
(0.06%)

5.3061024 0.33

#7 19 10,332,977–12,341,037 5
(0.35%)

2
(0.03%)

2.1061023 0.51

#8 19 3,747,849–4,335,674 5
(0.35%)

2
(0.03%)

2.2961023 0.51

#9 5 56,371,946–56,626,551 5
(0.35%)

2
(0.03%)

2.3961023 0.51

#10 5 54,228,580–54,301,303 5
(0.35%)

2
(0.03%)

2.4561023 0.51

P = uncorrected p value.
P* = p value corrected for multiple testing using 100,000 case/control status permutations.
doi:10.1371/journal.pone.0028787.t004

Table 5. Top 10 associated gene groups.

Group Chr. Start End EOPD Controls P P* Genes

#1 19 6312462 6486933 6
(0.42%)

0
(0.00%)

3.0061025 0.01 CLPP, ALKBH7, PSPN, GTF2F1. KHSRP. SLC25A41.
SLC25A23, CRB3, DENND1C, TUBB4, TNFSF9

#2 10 80591875 81842287 5
(0.35%)

0 1.1061024 0.07 ZMIZ1, PPIF, ZCCHC24, EIF5AL1, SFTPA2, SFTPA2B,
SFTPA1B, SFTPA1, SFTPA2, SFTPA2B, SFTPA1B,
SFTPA1, SFTPD, C10orf57

#3 19 5774817 6284562 5 0 1.3061024 0.07 NRTN, FUT6, FUT3, FUT5, NDUFA11, VMAC, CAPS,
RANBP3, RFX2, ACSBG2, MLLT1, ASAH3

#4 19 6536849 6702529 5 0 1.5061024 0.07 CD70, TNFSF14, C3, GPR108, TRIP10

#5 5 70787197 71052628 4
(0.28%)

0 6.9061024 0.34 BDP1, MCCC2, CARTPT

#6 4 114593020 114902177 5 1
(0.01%)

7.0061024 0.45 CAMK2D

#7 19 4353659 5742190 5 1 7.1061024 0.45 CHAF1A, UBXD1, HDGF2, KIAA1881, LSDP5, LRG1,
SEMA6B, TNFAIP8L1, C19orf10, DPP9, FEM1A,
TICAM1, M6PRBP1, ARRDC5, UHRF1, JMJD2B, PTPRS,
ZNRF4, SAFB2, SAFB, P117, HSD11B1L, RPL36, LONP1,
TMEM146, MGC24975, DUS3L

#8 10 81882237 82396296 5 1 7.3061024 0.45 PLAC9, ANXA11, MAT1A, DYDC1, DYDC2, C10orf58,
TSPAN14, SH2D4B

#9 4 55907165 56197222 4 0 7.5061024 0.34 SRD5A3, TMEM165, CLOCK, PDCL2, NMU

#10 15 64781687 64861380 7
(0.48%)

4
(0.06%)

7.5061024 0.51 SMAD6

P = uncorrected p value.
P* = p value corrected for multiple testing using 100,000 case/control status permutations.
doi:10.1371/journal.pone.0028787.t005
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Discussion

In this work, we have demonstrated an increased rate of

genomic homozygosity based on an increased proportion of

EOPD patients with long homozygous sequences as compared to

controls. In addition, two different homozygosity mapping

approaches identified a region in chromosome 19p13.3 in which

cases carried significantly more ROHs than controls.

This study was based on a very large series of patients with

EOPD. The excess number of ROHs in cases becomes apparent

at a threshold of 3 Mb for all homozygous tracts and at 2 Mb

when considering only rare homozygous tracts. The effects

became most pronounced at a threshold of 9 Mb where there is

a 3.5 fold increase in the proportion of EOPD cases with a

homozygous track as compared to controls.

Possible confounding effects in this work include ethnic/

regional and age differences between cases and controls and the

retention of cases with mutations in known genes. Because

differences in homozygosity measures among Caucasian popula-

tions have been reported previously [21,26], C1 and C2

components of the population MDS matrix were included as co-

factors in our analyses. This approach attenuated statistically

significant differences in the rate of ROH (p = 0.01), but did not

affect the highly significant differences in proportions.

Age factors were addressed by ensuring approximate matching

in the ages of cases as compared to controls (average year of birth

1950 vs. 1956, respectively) and by carrying out regression

analyses including chronological age as a covariate. Besides,

inbreeding coefficients ( f ) calculated on a LD-pruned version of

our dataset were included as covariates in our models to correct for

autozygosity differences across different generations in outbred

individuals [27]. The effect of this coefficient merits particular

comment. Including the f as a covariate increased case-control

differences suggesting that the excess of homozygous runs in cases

does not relate to genome wide homozygosity, but rather to an

excess of a small number of longer runs of homozygosity, likely to

be homozygous by descent and to contain pathogenic mutations.

In controls, the proportion and rate of homozygous runs relates

more directly to the effect of background genome wide

homozygosity.

Furthermore, the effect of occult homozygous mutations in

genes previously associated with EOPD or other related disorders

was excluded by repeating the analysis without those samples with

ROHs overlapping known loci for PD, pallido-pyramidal and

parkinsonism dystonia genes. Of note, gene-based homozygosity

analysis in these genes revealed that only ROHs overlapping

PARK2 (parkin) were associated with EOPD after correcting for

multiple tests. Removal of the samples involved in this association

did not remove the association described after our basic burden

and logistic regression analyses. These results strongly suggest the

role of other unknown genetic factors playing an important role in

the risk for recessive EOPD.

In other disorders, similar analyses aimed at showing an

increased homozygous burden in cases have resulted in mixed

results. One study reported an increased homozygous burden in

patients with colorectal cancer [28] but this finding was not

replicated [29]. In a study of ROH in bipolar disorder, no

increased burden was seen [30]. Lencz and colleagues [31]

demonstrated the presence of 9 ROHs significantly overrepre-

sented in a cohort of 178 patients with schizophrenia as compared

to 144 healthy controls. Hildebrandt and colleagues [22]

demonstrated the feasibility of homozygosity mapping using

SNP microarrays by investigating ROH in individuals from

families with varying degrees of consanguinity and two different

paediatric autosomal recessive kidney diseases, and 93% of known

mutations were identified in ROH of sizes as small as 2 Mb. In the

realm of neurological disorders, one study investigated homozy-

gous runs in ostensibly outbred individuals with late onset AD and

identified a trend to excess homozygosity in AD, as well as one

consensus region spanning 7 genes, which was significantly more

common in cases as compared to controls [32], however this

finding was not replicated in a more recent study [33].

Finally, using two different homozygosity mapping approaches

one region on the short arm of chromosome 19 was found to be

associated with EOPD after correcting for multiple testing. Six

different cases from four different countries contained rare ROHs

overlapping in a ,184 kb stretch in this chromosome 19. Twelve

genes were contained within the region. Of particular interest is

PSPN, which encodes persephin, a neurotrophic factor shown to

promote survival of ventral midbrain dopaminergic neurons in

vitro [34]. Visual examination of the genotyping intensity data of

the samples involved in this association failed to find any structural

variant overlapping with this genomic region (data not shown).

Also, exome sequencing of these samples failed to find any variant

to be associated with EOPD in our population (data not shown).

These results might suggest that a non-coding variant or a more

complex structural alteration is leading to disease in these patients.

Sequence capture of the entire region may help understanding the

etiology of EOPD in these cases.

We succeeded in showing an excess of homozygosity (in terms of

ROHs) in EOPD cases versus controls. To note, these ROHs are

not necessarily harbouring disease-causing variants. However, a

small proportion of them might carry recessive alleles associated

with EOPD. Although we succeeded in identifying one candidate

region using homozygosity mapping in our cohort, this related to a

small number of cases and a new Mendelian gene was not

identified. There are a number of possible factors which may

explain our results: i) a larger population is needed to detect new

genes for EOPD in unrelated cases, ii) there may be common

pathogenic mutations in shorter ROHs in inbred individuals

which are difficult to detect through conventional mapping, iii)

there may be a large number of recessive genes for EOPD which

are highly penetrant but individually uncommon, or iv) the effect is

explained by a burden of multiple low penetrance homozygous

alleles in cases.

Further work in which ROH are analysed with whole exome

data will be needed to resolve these issues. The identification of

autosomal recessive genes for EOPD to date has been based on the

identification of specific consanguineous families. Novel genetic

technologies will allow us to determine new Mendelian genetic

factors, without traditional linkage and positional cloning. The

present work indicates our current knowledge of the genetic

aetiology of EOPD is incomplete and that given sufficient sample

size it should be possible to clone new autosomal recessive genes

for EOPD following the investigation of apparently outbred

unrelated patients.
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