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Abstract

Antibodies are quintessential affinity reagents for the investigation and determination of a protein’s expression patterns,
localization, quantitation, modifications, purification, and functional understanding. Antibodies are typically used in
techniques such as Western blot, immunohistochemistry (IHC), and enzyme-linked immunosorbent assays (ELISA), among
others. The methods employed to generate antibodies can have a profound impact on their success in any of these
applications. We raised antibodies against 10 serum proteins using 3 immunization methods: peptide antigens (3 per
protein), DNA prime/protein fragment-boost (‘‘DNA immunization’’; 3 per protein), and full length protein. Antibodies thus
generated were systematically evaluated using several different assay technologies (ELISA, IHC, and Western blot).
Antibodies raised against peptides worked predominantly in applications where the target protein was denatured (57%
success in Western blot, 66% success in immunohistochemistry), although 37% of the antibodies thus generated did not
work in any of these applications. In contrast, antibodies produced by DNA immunization performed well against both
denatured and native targets with a high level of success: 93% success in Western blots, 100% success in
immunohistochemistry, and 79% success in ELISA. Importantly, success in one assay method was not predictive of
success in another. Immunization with full length protein consistently yielded the best results; however, this method is not
typically available for new targets, due to the difficulty of generating full length protein. We conclude that DNA
immunization strategies which are not encumbered by the limitations of efficacy (peptides) or requirements for full length
proteins can be quite successful, particularly when multiple constructs for each protein are used.
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Introduction

The post-genomic era has ignited a growing demand for the

cost-effective generation of high quality, affinity-purified polyclon-

al reagents to support the routine detection and/or measurement

of numerous protein biomarkers in basic and applied research,

and as diagnostic tools. Antibody reagents support traditional

immunodetection tools such as immunoblotting, immunohisto-

chemical (IHC) analysis, immunoprecipitation, flow cytometry,

ELISA, as well as more advanced proteomic assay platforms such

as planar or bead-based antibody multiplexing microarrays and

antibody-oriented mass-spectrometry technologies [1–7]. In de-

signing immunization strategies for these immunodetection

methods, the epitope on the target protein that is recognized by

the antibody can exist in multiple conformations, ranging from

linear, as in a fully denatured protein, to conformationally

complex epitopes that are more rigidly structured and often

composed of several discontinuous regions, as displayed in folded

proteins [8].

The generation of antibody reagents to meet the demands of

proteomic applications continues to be driven by conventional

protein immunization approaches [9]. Classical protein immuni-

zation strategies most often rely on synthetic peptides [6,7,10,11],

large fragment or full-length recombinant proteins of bacterial

[9,12,13] or mammalian cell origin [6], or purified native proteins

[14] as sources of immunogens.

By virtue of their low cost, simplicity of synthesis, and historical

track-record for polyclonal and monoclonal antibody production

the use of peptides as immunogens is widespread [6,10,11,15,16].

Antibodies raised against peptides represent the majority of

antibodies available through antibody catalog vendors. Because

very small peptides are poorly immunogenic [14] and large ones

are challenging to synthesize, peptide fragments deployed as

immunogens typically consist of 12 to 20 amino acid residues
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[6,10,11,15]. A number of limitations are not always appreciated

constrain the utility of peptide immunizations. Among them are

challenges in antigen design based on issues such as lack of

effective algorithms for predicting surface regions in the absence of

protein structure information or B cell epitopes and [17–19].

Moreover, the conventionally used size of 12–20 residues rarely

encompasses more than a single epitope and is likely to lack

secondary and tertiary conformational structure [9,10].Conse-

quently, it is much less likely to generate antibodies capable of

binding natively folded protein [8] in a sandwich ELISA, although

they can work well in many applications against the protein in a

denatured form and have widespread proteomic applications.

Full length protein antigens address many of the limitations

attributed to peptides. Inherently, they contain surface regions,

multiple immunogenic epitopes, and are likely to fold to form (at

least partially) native structures even if synthesized in prokaryotic

systems [9]. However, recombinant synthesis and/or purification

of full length protein antigens can be a daunting task, takes

significant time and resources, and is encumbered by uncertainty

regarding successful production [20].

More innovative approaches such as DNA (or ‘‘genetic’’)

immunization have emerged as alternative and/or complementary

tools to classical antibody generation strategies. DNA immuniza-

tion employs an expression plasmid encoding the selected antigen

to immunize animals. The transfected tissues of the immunized

animal express the antigen which subsequently drives an antibody

response [21–25]. DNA immunization with sequences coding

polypeptide protein regions combines the advantages of both full

length protein and peptide and immunization approaches,

providing immunogens that comprise relatively large regions of

the target protein with the potential for multiple epitopes, faster

turn-around, and greater accessibility than full-length protein. We

chose a strategy of using DNA for priming, and using the protein

fragment encoded by the DNA-construct for boosting. It has been

consistently reported that this combination strategy results in

clearly superior antibody responses when compared to immuni-

zations using either DNA for both priming and boosting, or a

protein fragment for both priming and boosting. [26–28]. These

published reports are entirely in keeping with our own in-house

observations and experience.

Despite the widespread use of synthetic peptide antigens for

generating antibodies, no well controlled, quantitative, directly

comparative studies demonstrating their performance on multiple

targets relative to other antigens such as purified protein have been

published. Most reports deal with a single protein in a limited

number of applications. Many reports discuss the performance of

off-the-shelf reagents obtained from catalog vendors; however,

they generally relate anecdotal evidence and their interpretation is

often limited due to lack of information on study design controlling

for any of the many variables that influence antibody production

and immunoassay performance (antigen design, immunization

protocols, immunoassay variables) [29–33].

To better understand the strengths and weaknesses of different

immunization approaches we carried out a systematic study

comparing 3 immunization strategies, i.e., using peptides (Pep-

Abs), DNA (DNA-Abs; i.e. DNA prime/encoded polypeptide

boost), and full length protein (FLP-Abs) to generate antibodies

against 10 different serum proteins. These were selected based on

their commercial availability as high purity, native full length

proteins. These proteins are well established markers in clinical

medicine and the steps that led them there, including generation of

high quality antibodies, could serve as models for newly discovered

biomarkers. The polyclonal antibodies against these targets made

by the 3 immunization strategies were then stringently evaluated

for fitness of use against their target full-length protein in several

commonly used immunologic techniques, including those where

the protein exists in a relatively native state, such as ELISA, and

those in which the target protein exists in different states of

denaturation, such as Western blots and IHC.

Methods

Antigens
Proteins targeted in this study were transferrin (TF), thyroglob-

ulin (TG), thyroxine binding globulin (TBG), alpha-fetoprotein

(AFP), sex hormone binding globulin (SHBG), prostate specific

antigen (PSA), carcinoembryonic antigen (CEA), alpha-1-antitryp-

sin (AAT), alpha-2-macroglobulin (A2M), and prostatic acid

phosphatase (PAP). Proteins were obtained from SCIPAC

(Sittingboure, Kent, UK) and Lee Biosolutions (St. Louis, MO).

Purity was analyzed by SDS PAGE and was greater than 98% for

all proteins. All proteins were stored at 280 degrees C unless

otherwise recommended by the manufacturer.

Immunogen Design and Synthesis
For each of the 10 target proteins non-overlapping regions were

selected as peptide antigens. The peptides were designed and

synthesized by three leading suppliers; 21st Century (Marlboro,

MA), Pi Proteomics (Huntsville, AL), and New England Peptide

(Gardner, MA). The peptide suppliers used their in house methods

to generate the designs and up to 3 designs were provided from

each company for each target, resulting in a total of 68 individual

peptide designs to the 10 targets. One non-overlapping design was

then selected from each company for each target, giving a total of

30 peptide designs. The 30 designs were selected from the pool of

68 designs using the following additional criteria: designs were

ranked based on surface accessibility (we argued that peptides

buried in the folded protein are unlikely to yield antibodies that

bind native, folded protein in a sandwich ELISA), the absence of

any post-translational modification (since the peptide immunogen

will not contain these), and lastly sequence identity to paralogs to

ensure that the antibodies are specific. Structural information was

available for most of the 10 targets and encompassed the regions

for 58 of the peptide designs. Upon review, 15 peptide designs

received for the 3 companies solicited were rejected due to lack of

surface accessibility in the structure, and 5 were rejected because

of identity to a paralog, or because they contained sites of post-

translational modification. The remaining peptides were ranked

by their identity to the host animal with the lowest identity selected

to avoid immune tolerance. The peptide lengths varied from 10 to

20 residues, with an average length of 16 residues. Peptides were

synthesized with a cysteine at either the N- or C-terminus of the

peptide to allow conjugation. Peptides were .85% pure and

conjugated to KLH using maleimide chemistry (Pierce, Rockford,

IL) for immunization.

Three DNA immunization antigens per target were designed

according to similar principles to those followed in the peptide

design, although regions were primarily selected to encompass an

entire domain, or a compact folded region. Domains were selected

based on Uniprot listed domain information. Structural informa-

tion was not available for 5 of the 30 designs. Surface accessibility

was not relevant for ranking since all encompassed large regions of

the protein, (80–152 residues, average 114), and thus all the

designs contained substantial surface exposed regions. Sequences

were ranked and selected based on lowest identity to the host

animal, lowest identity to paralogs, and avoidance of post-

translational modifications. Synthetic genes of the antigens were

synthesized (Integrated DNA Technology, Coralville, IA) and
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cloned into a DNA immunization plasmid based on pCI

(Promega, Madison, WI) and an E. coli expression plasmid based

on pSP2b (Sigma, St. Louis,MO) with a Ptac-lac promoter. The

latter plasmid was used to produce the portion of the protein

encoded by the DNA construct for an antibody affinity

purification column and for a single protein fragment boost [26–

28] following DNA immunization to improve antibody yields. This

E.coli protein, containing a his tag, was produced in cultures

induced by ITPG, spun down, frozen, and lysed, Lysate was

solubilized in 7 M Guanidine and purified over HisPur Cobalt

resin (Thermo Fisher Scientific, Rockford, IL) using 250 mM

imidazole for elution. Sequence details of peptide and DNA

designs are shown in Figure 1.

Immunization
All animal work was approved prior to start by the SDIX

Institutional Animal Care and Use Committee and performed in a

USDA Registered (50-R-0013), AAALAC accredited (accredita-

tion number 001011) facility. In total 140 rabbits were used in this

study. Immunization regimes were consistent with well-established

industry protocols [34]. Two New Zealand white rabbits, 12 weeks

of age, weighing 5.5 to 6.5 lbs, were immunized with each of the

antigens (30 peptides, 30 DNA constructs, 10 full-length proteins).

KLH conjugated peptides (0.2 mg per rabbit) were administered

in complete Freund’s adjuvant (CFA) by subcutaneous injection of

4 different sites. At weeks 3, 5 and 7 animals were boosted with

0.2 mg of conjugated peptide in incomplete Freund’s adjuvant

(IFA) administered as described previously. Serum was collected

over a 3 day period 2 weeks after the final boost. The DNA

antigen constructs were conjugated to nano-gold particles and

administered via gene gun (Helios, Biorad, Hercules,CA) to the

inside of the ears (3 mg total) and boosted with DNA (gene gun) at

week 2 (3 ug). At week 5 animals were given a single boost of

100 mg of recombinant E. coli protein fragment derived from the

same gene fragment in CFA by subcutaneous injection of 4

different sites, and serum was collected at week 7. Full length

protein (250 mg per rabbit) was administered following the same

immunization routes and schedule as described for peptides.

Antibody Purification
To minimize the effect of animal-to-animal variability the sera

from each set of 2 rabbits were pooled for purification and

analysis. Sera from each treatment group were purified on their

respective immunogen . Pep-Abs were affinity-purified using the

cognate peptide used for immunization coupled via the N- or C-

terminal cysteine to sepharose [35]. DNA Abs were purified on

column resins to which we coupled the recombinant E. coli protein

fragment derived from the same sequence used for the DNA

immunization. FLP-Abs were were affinity purified on the

purified, full length serum proteins coupled to cyanogen-bromide

activated sepharose (GE, Piscataway, NJ). Antibodies were eluted

using 0.1 M glycine buffer, pH 2.5, neutralized immediately and

dialyzed against PBS for a total of 3 buffer exchanges. Purified

antibodies were quantified by absorbance at 280 nm. For

sandwich assays, antibodies were biotinylated using NHS-LC-

Biotin (Pierce, Rockford, IL).

Figure 1. Regions of proteins selected for peptide and DNA immunization designs. Each protein is represented in grey with the length in
amino acids of the monomeric unit indicated. 2 proteins, TG and A2M are too large to fit proportionally and gaps in the grey band are shown in areas
where no designs were selected. Designs selected for peptides are shown in red and designs for DNA shown in blue.
doi:10.1371/journal.pone.0028718.g001
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Direct Bind ELISA
Direct bind ELISA was performed with purified full-length

antigen coated at a concentration of 1 ug/ml in 0.05 M carbonate

buffer pH 9.6 dispensed at 100 ml per well in 96-well microplates

(Nunc MaxiSorp, Nalge Nunc, Rochester, NY) [33]. Three-fold

serial dilutions of antisera were evaluated using standard protocols

and developed with goat-anti-rabbit IgG, Fc specific (Jackson

Immunochemicals, West Grove PA) secondary antibody and

tetramethylbenzidine/peroxide solution (TMB, Moss, Pasadena,

MD) as the color developing reagent. Plates were read after

15 minutes of development in a microtiter plate reader (Spec-

traMax, Molecular Devices, Sunnyvale, CA).

Sandwich ELISAs
Sandwich immunoassays were performed by coating purified

antibodies at a concentration of 2.5 ug/ml in 0.05 M carbonate

buffer pH 9.6, 100 ml per well onto 96 well microplates (0.25 mg of

antibody per well). Four-fold serial dilutions of purified full-length

native antigen ranging from 100 ng/ml to 0.024 ng/ml were

added to the wells, followed by subsequent addition of biotinylated

purified antibody (0.5 ug/ml), and horseradish peroxidase labeled

streptavidin (0.2 ug/ml; Jackson Immunochemicals, West Grove,

PA). Color was developed as previously described. All antibodies

within a treatment group for a protein (such as all Pep-Abs to a

given target) were paired with each other, both as capture and

detection antibodies. Additionally, FLP-Abs were paired with

every Pep-Ab and DNA-Ab to that protein as both capture and

detection antibodies. This resulted in a total of 31 different

sandwich assays for each target.

Western Blot Analysis
The immunological reactivity of 69 antibodies (one DNA-Ab

was lost due to insufficient yield) derived from synthetic peptide,

full-length protein, and DNA-polypeptide immunizations was

characterized by Western blot analysis against denatured full-

length protein samples. Protein samples were electrophoretically

separated under denaturing conditions on SDS-PAGE, 4–20%

Tris-HCl pre-cast gels in a Criterion Cell apparatus (Bio-Rad,

Hercules, CA) in running buffer as recommended by the

manufacturer (Bio-Rad, Hercules, CA). Fractionated proteins

were electro-blotted onto nitrocellulose membranes (0.45 mm pore

size, Protran, Whatman, Germany) in a semi-dry electrophoretic

transfer cell unit (Trans-BlotH SD, Bio-Rad, CA) and then blocked

with TBST (Sigma, St.Louis, MO) supplemented with 2% Difco

skim milk (Becton Dickinson, Sparks, MD).

After an overnight incubation at 4–8uC, secondary antibody

(horseradish peroxidase-conjugated goat anti-rabbit, Invitrogen,

Carlsbad, CA) was added to each blot. Membrane blots were then

developed with chemiluminescent substrate (SuperSignalH West

Femto, Thermo Scientific, Rockford, IL) and the signal was

captured with a multi-purpose Image Station 440CF system (ver.

3.6, Eastman Kodak, NY). Each immunoblot was inspected

thoroughly for the presence of a band at the protein’s expected

molecular weight by adjusting brightness, contrast, and magnifi-

cation settings using the 1D Image Analysis software (Kodak, ver.

1.0).

Immunohistochemistry (IHC)
Immunohistochemical analysis on formalin-fixed, paraffin-

embedded human tissue specimens was carried out, for reasons

of cost and practicability, only using the antibodies raised against

CEA and PSA, and was performed by LifeSpan BioSciences

(Seattle, Washington). Following formalin-fixation, tissue speci-

mens were de-paraffinized in xylene and rehydrated sequentially

in a stepwise fashion with decreasing ethanol concentrations and a

final wash in water.

After probing with anti-CEA and anti-PSA unlabeled primary

antibody at dilutions ranging from 2.5 mg/ml to 20 mg/ml to allow

for optimization , immunoreactivity to target proteins was detected

with secondary biotinylated anti-rabbit IgG (Vector Laboratories,

Burlingame, CA) and avidin-biotin-alkaline phosphatase complex

(Vectastain ABC kit, Vector Laboratories, Burlingame, CA),

visualized with Vector Red chromogen (Vector Laboratories,

Burlingame, CA), and then counterstained with Harris hematox-

ylin (Richard Allan Scientific, Kalamazoo, MI). Stained slides

were imaged with a DVC1310C digital camera mounted on a

microscope (Nikon Eclipse E400, Nikon Instruments, Melville,

NY). The degree of staining was assessed by a single pathologist

blinded to the experimental variables of the study. Each antibody

was then ranked on a scale of 1 to 7 where a rank of 1 was the

highest-ranking performance in IHC using 3 criteria: specific

staining of target tissues; least number of cells stained; and

differential staining between target and control tissues.

Data Analysis
Two-way analysis of variance (ANOVA) and a Welsh’s t-test

were computed for comparisons of means of antisera titers,

antibody yields, antibody specific activities (defined as the amount

of antibody required to produce a signal intensity of 0.5

absorbance units in direct bind ELISA), and for homologous

and heterologous sandwich assay performance for antibodies

generated by the 3 immunization strategies.

Odds ratios and their 95%confidence intervals (CI) were

calculated for Western blot data and analyzed by Fisher’s Exact

Test using GraphPad Prism 5 (ver. 5.04; GraphPad Software, La

Jolla, CA).

Results

Antibodies were evaluated based on yield after affinity

purification, specific activity of the purified antibody, and the

ability of these antibodies to work in sandwich ELISAs, Western

blots, and IHC. Affinity purification of the antibodies, each on the

antigen used for immunization (in the case of the DNA-

immunization group, the protein fragment encoded by the

respective DNA sequence), allowed assays to be normalized and

compared based on mass of antibody rather than just serum titer.

Furthermore, the sandwich assays required the use of purified

antibody for both the capture phase as well as for labeling as a

detector. Thirty antibodies made to peptides (Pep-Abs), 29

antibodies made to polypeptides by DNA immunization (DNA-

Abs; a very low yield occurred for 1 of the 30 immunizations) and

10 antibodies made to full length protein (FLP-Abs) were

evaluated. These represented sera from 140 rabbits, two rabbits

per treatment group.

Yields of antibodies after affinity purification varied widely

(Figure 2). Purified antibody yields from FLP-Ab (mean for 10

proteins of 36.9 mg from 80 ml of antisera, standard deviation

616.0 mg) were significantly higher (P,0.01) than yields using

other immunization methods (Table 1). While there was high

variability from protein to protein, Pep-Abs (geometric mean of

3.7 mg from 80 ml of sera) had significantly greater (P,0.01)

yields than DNA-Abs (geometric mean of 0.8 mg).

In direct bind ELISAs (Figure 3), 7 of 10 DNA-Abs showed

better specific activity than the respective Pep-Abs. In 7 instances

(AFP, TBG, SHBG, PSA, CEA, AAT, PAP) one of the 3 DNA-

Abs performed close to the value yielded by the respective FLP-
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Abs. In only 2 instances (SHBG, PSA) did a single Pep-Ab for each

protein show a performance similar to that of respective FLP-Abs.

Overall, specific activities of Pep-Abs were significantly lower

(P,0.01) than those of DNA-Abs (Table 1).

In sandwich ELISAs, DNA-Abs were more sensitive (lower limit

of detection) than Pep-Abs, but were less sensitive than FLP-Abs

(Figure 4). In sandwich assays paired with FLP-Abs, DNA-Abs

showed significantly higher (P,0.01) sensitivity than Pep-Abs

(Table 1). Both Pep-Abs and DNA-Abs did not achieve the

sensitivity of assays configured solely with FLP-Abs.

In a number of instances, it was possible to configure a

sandwich assay with 2 DNA-Abs raised against the same target,

and more rarely with a single DNA-Ab (self-sandwich),

suggesting multiple epitopes recognized by the polyclonal

antisera. Ten, 6, and 4 of the 29 DNA-Abs could be paired to

produce assays with sensitivities of at least 1 nM, 100 pM, and

10 pM, respectively. In contrast, no Pep-Ab was capable of

producing a sandwich assay of 1 nM sensitivity with another

Pep-Ab raised against the same protein. As would be expected

due to the nature of a single epitope, no Pep-Ab would pair with

itself (self-sandwich).

Western blot analysis
A total of 69 antibodies generated by three immunization

strategies were tested for immuno-reactivity against full length

SDS-denatured protein by Western blot analysis (Table 2). Of the

29 DNA-Abs, 26 (90%) and 27 (93%) recognized the denatured

protein at either the 100 ng/ml or 1000 ng/ml antibody probing

concentration, respectively. Only 14 of 30 (47%) and 17 of 30

(57%) Pep-Abs were immuno-reactive at either concentration

while all FLP-Abs performed well. Overall, the likelihood of

observing an immuno-reactive antibody for Western blot applica-

tions was significantly greater for DNA-Abs than for Pep-Abs, as

indicated by odds ratios for DNA-Abs vs. Pep-Abs of 9.9 (95% CI

2.5 to 39.9) and 10.3 (95% CI 2.1 to 51.5) for the lower and higher

antibody probing concentrations tested, respectively (P,0.01). A

10-fold increase in the antibody probing concentration yielded

positive Western blot results for 3 additional Pep-Abs and 1

Figure 2. Yields of purified antibody following affinity
purification from 80 ml of pooled rabbit sera. Each symbol
represents the yield for each pool of 2 rabbits. There are 3 constructs
per protein for each of the DNA-Ab and Pep-Ab methods and a single
data point for the pool from full length native immunization (FLP-Abs).
doi:10.1371/journal.pone.0028718.g002

Table 1. The overall effect of the various immunization strategies across ten different selected serum proteins on antibody yield,
antisera titer, antibody specific activity, and assay sensitivity of different antibody combinations by ELISA.

Sensitivity of Sandwich Assay (nM)1

Immunization
Method

Number of
Antibodies Yield2 (mg)

Specific Activity of
Affinity Purified
Antibody (ng/mL)

Antisera Titer3

(6105) Antibody Combinations Against:

Self Native Within Method

DNA-Abs 30 0.8 1 0.9 5.86105 4.9 3.36105

Pep-Abs 30 3.7 7.6 1.4 no detection 1.26107 no detection

FLP-Abs 10 36.9 0.1 109.7 1.261023 1.261023 1.261023

p-value of Welsh two sample t-test

DNA-Abs vs. Pep-Abs 6.8610204 2.9610204 0.57 7.0610204 1.5610207 7.1610204

DNA-Abs vs. FLP-Abs 2.4610211 1.5610204 4.3610210 3.0610211 1.1610204 3.5610210

Pep-Abs vs. FLP-Abs 4.6610211 2.9610209 1.3610210 8.0610213 6.1610215 8.0610213

1Geometric mean of assay sensitivity reported for homologous (self) and heterologous antibody combinations against native, and ‘‘within’’ immunization method.
2Geometric mean of antibody yield for a 80-ml antiserum affinity purification run.
3Geometric mean of antisera titers was intrapolated from a titration curve at 0.500 absorbance.
doi:10.1371/journal.pone.0028718.t001

Figure 3. Specific activity of purified antibodies in direct bind
ELISA to full length antigen. All purified antibodies were titered
against full length antigen in direct bind ELISA. Data was processed
with a four parameter curve fit (XLfit, IDBS, Guildford, UK) and expressed
as the quantity of purified antibody required to give an absorbance of
0.5 at 650 nm using a TMB substrate. Lower amounts of antibody
required (shown on an inverted scale) are indicative of higher specific
activity). Each symbol represents the activity for each pool of 2 rabbits.
There are 3 constructs per protein for each of the DNA-Ab and Pep-Ab
methods and a single data point for the pool from full length native
immunization (FLP-Abs).
doi:10.1371/journal.pone.0028718.g003
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additional DNA-Abs that had tested negative at the lower

concentration.

Immunohistochemistry (IHC)
Independent of immunization strategy, all seven anti-CEA

polyclonal antibodies were considered of excellent quality for use

in IHC applications showing superb staining of multiple benign

colonic epithelium and colon carcinoma specimens (Figure 5). All

antibodies were titered to optimal concentration in all IHC studies

described here and results discussed are at the optimal concen-

trations. To differentiate among antibodies in the setting of this

overall high performance, ranking of antibodies was primarily

based on the extent of variable staining in cell types of other tissues

rather than presence and/or intensity of staining of the

carcinomas. For instance, the highest-ranked antibody, R01736,

a DNA-Ab, showed outstanding staining of colon carcinoma and

colonic epithelium, moderate staining of sweat ducts (known to

express CEA [4]) and neutrophils, but showed no staining of other

normal tissues known not to express CEA, such as skin (dermis and

epidermis), prostate glands and stroma, colon muscularis propria,

and skeletal muscle tissues (Figure 5). In contrast, the lowest-

ranked anti-CEA antibody D3305-20, a Pep-Ab, showed prom-

inent nonselective staining in ganglion cells and peripheral nerves

of the prostate and colon.

Five of 7 anti-PSA antibodies were characterized as highly

successful for use in IHC showing excellent staining of prostatic

epithelium and carcinoma. The highest-ranked anti-PSA anti-

body, R01733, was a DNA-Ab. Staining of prostate epithelium

and carcinoma and differential staining of positive and negative

cell types was excellent and accompanied by very little background

staining (Figure 6). Staining of other tissues (skin epidermis and

dermis, prostate stroma, colonic mucosa and smooth muscle,

skeletal myocytes) was virtually nonexistent. In contrast, two Pep-

Abs, D3305-17 and D3305-18, performed poorly in IHC. D3305-

17 yielded relatively weak staining of prostatic epithelium and

cancer, unimpressive differential staining of prostate in compar-

ison with other tissues, and non-specific nuclear staining of some

cell types including colon epithelium and skin (data not shown).

D3305-18 showed predominantly nuclear staining in most tissues

with weak to moderate positivity in colonic epithelium, smooth

muscle, skin epidermis, and skeletal muscle and overall poor

discrimination between positive and negative cell types (Figure 6).

Overall success in multiple applications
Not all antibodies that worked in one application necessarily

worked in other applications. Table 3 provides the cumulative

success rates for each group of antibodies (Pep-Abs, DNA-Abs,

FLP-Abs) across different applications. As expected, a greater

fraction of Pep-Abs performed only in one application usually with

a denatured target as in Western blot or IHC or in no application

at all, while DNA-Abs performed more often in multiple

applications, demonstrating higher versatility. The best perfor-

mance under this paradigm was observed for FLP-Abs.

Discussion

Despite decades of refining algorithms for optimal antigen

design [18,19,36–38] the use of peptide immunization continues

to suffer from poor predictability and modest overall success at

generating antibodies that recognize native folded proteins,

whereas success at recognizing denatured proteins can be high

[15]. The performance of peptide immunization has heretofore

not been compared to other approaches in a carefully designed

and controlled, systematic and comprehensive study. The current

investigation provides such a systematic analysis of the perfor-

mance of 3 different immunization strategies, applied to 10

representative, well-characterized targets, and evaluates the

respective performance of the resultant antibodies across a range

of relevant assay applications. While all Pep-Abs demonstrated

strong reactivity with the immunizing peptide, and while yield of

affinity-purified Pep-Abs (using immobilized peptide) was accept-

able, we found that 37% of Pep-Abs in this study did not perform

adequately in any of the commonly used immunologic methods

tested. The performance of Pep-Abs was poorest in sandwich

ELISAs with native full length protein. Only 7 of 30 antibodies

were capable of pairing with an antibody to full length protein to

Figure 4. Sensitivity of antibodies in sandwich ELISA when
paired with an antibody to full length protein. Standard curves
were processed with four parameter curve fitting software and
sensitivity expressed as the amount of antigen that could be detected
at an OD 650 nm of 0.1 absorbance units above background. Each
symbol represents the sensitivity for each pool of 2 rabbits. There are 3
constructs per protein for each of the DNA-Ab and Pep-Ab methods
and a single data point for the pool from full length native
immunization (FLP-Abs).
doi:10.1371/journal.pone.0028718.g004

Table 2. Western blot analysis: frequency of antibodies
elicited by DNA immunization methodology or via peptide
and full-length protein (native) immunizations that
recognized the corresponding full length protein target run
under SDS-PAGE denaturing conditions.

Primary Antibody Concentration (ng/ml)

Protein DNA - Abs Pep-Abs FLP-Abs

100 1000 100 1000 100

A2M 3/3 3/3 2/3 3/3 1/1

AAT 3/3 3/3 2/3 2/3 1/1

CEA 3/3 3.3 1/3 1/3 1/1

PSA 3/3 3/3 1/3 1/3 1/1

AFP 3/3 3/3 1/3 2/3 1/1

PAP 2/3 3/3 1/3 2/3 1/1

TBG 3/3 3/3 1/3 1/3 1/1

TF 3/3 3/3 3/3 3/3 1/1

TG 0/2 0/2 1/3 1/3 1/1

SHBG 3/3 3/3 1/3 1/3 1/1

Totals: 26/29 27/29 14/30 17/30 10/10

(89.6%) (93.1%) (46.6%) (56.6%) (100.0%)

doi:10.1371/journal.pone.0028718.t002
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yield sensitivities of 1 nM or less, and of these only 2

demonstrated sensitivities of less than 100 pM. Pep-Abs demon-

strated significantly better performance under denaturing condi-

tions, i.e. in Western blots or IHC. At the higher concentration of

probing antibody, 57% of the Pep-Abs were able to recognize the

target protein in Western blots. The performance of peptide

immunizations to produce affinity reagents capable of recogniz-

ing the cognate target relative to the other immunization

strategies is in agreement with the rates of 25% to 50% for

peptide fragments (12 to 15 residues in length) [16] and 56% (7

to 20 residues) in another studies [15] for monoclonal and

polyclonal antibodies, respectively.

Even optimally designed peptides are unlikely to assume the

conformational structure of the respective residues as present in

the context of a full-length native, non-denatured protein. Pep-Abs

are therefore expected to perform better in assays where the target

protein is at least partially denatured. It is important to note that

the denaturing conditions to which a protein is subjected may

differ between applications, e.g. Western blotting and IHC, and

that performance in one assays format may not necessarily be

predictive of performance in another. Thus, 2 of the anti-CEA

Pep-Abs performed well in IHC but failed to perform in Western

blots under the conditions employed in this study (Figure 7),

whereas no such differences were observed with anti-PSA Pep-Abs

(Figure S1). Western blots for DNA-Abs and Pep-Abs for other

proteins are shown in in Figures S2, S3, S4, S5, S6, S7, S8, S9.

Pep-Abs showed lower specific activity in direct-bind ELISA to

native full length protein compared to DNA-Abs or FLP-Abs. It is

possible that the rotational flexibility of peptide antigens leads to

the induction and purification of multiple antibody species that

Figure 5. Immunohistochemical staining of human colon carcinoma and normal tissue specimens for carcinoembryonic antigen
(CEA). Staining was performed with highest rank antibody R10736 and lowest rank D3305-20 generated by DNA and peptide immunization,
respectively. DNA-Ab R01736 was generated against the sequence encoding amino acids 410–500. Pep-Ab D3305-20 was made from a peptide of
amino acids 561–570. After full optimization both of these antibodies were found to work best at 2.5 mg/ml, the level shown here. Magnification
ranges from 206 to 406.
doi:10.1371/journal.pone.0028718.g005
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Figure 6. Immunohistochemical staining of human prostate carcinoma normal tissue specimens for prostate specific antigen (PSA).
Staining was performed with the highest rank antibody R10733 (2.5 mg/ml) generated by DNA immunization and the lowest rank peptide-antibody
D3305-18 (10 mg/ml). DNA-Ab R01733 was generated against the sequence encoding amino acids 37–139. Pep-Ab D3305-18 was made from a
peptide of amino acids 126–144. Antibodies are shown at their optimized concentration, 2.5 mg/ml for R10733 and 10 mg/ml for D3305-18.
Magnification ranges from 206 to 406.
doi:10.1371/journal.pone.0028718.g006

Table 3. Effect of immunization method on fitness for purpose of resultant antibodies in a number of immunologic techniques.

Immunization method

Method Pep-Abs DNA-Abs FLP-Abs

Western blot only 12/30 (40%) 3/29 (10%) 0/10 (0%)

IHC only 2/6 (33%) 1/6 (17%) 0/10 (0%)

Western blot/IHC only 1/6 (17%) 0/29 (0%) 0/10 (0%)

Sandwich ELISA only 1/30 (3%) 1/29 (3%) 0/10 (0%)

Western blot and sandwich ELISA ,1 nM sensitivity 5/30 (17%) 22/29 (76%) 10/10 (100%)

Western blot and sandwich ELISA ,100 pM sensitivity 1/30 (3%) 13/29 (49%) 10/10 (100%)

Western blot and sandwich ELISA ,10 pM sensitivity 0/30 (0%) 5/29 (17%) 9/10 (90%)

Western blot and sandwich ELISA and IHC 1/6 (17%) 6/6 (1005) 6/6 (100%)

No performance in any application (i.e., complete failure) 11/30 (37%) 1/29 (3%) 0/10 (0%)

doi:10.1371/journal.pone.0028718.t003
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recognize peptide conformations that do not exist in the full-length

native target, thus accounting for low specific activity of affinity-

purified polyclonal peptide antibody.

During the course of this study, we encountered issues that may

further impact the success of commercial Pep-Abs. We observed

that 26% of peptide designs provided by the peptide suppliers were

predicted to be buried within the native protein’s structure and

therefore predicted not to be suitable for developing antibodies

that recognize native structures (although such designs may well

work in denaturing applications). In 9% of the designs additional

issues such as high sequence identity to a paralog, presence of

internal cysteine residues (that would interfere with conjugation),

presence of an N-linked glycosylation site, and even deletion of an

amino acid were noted that would have negatively impacted

antibody performance. Thus, more than a third of the original

peptide designs were a priori judged as not suitable for developing

antibodies and were rejected, highlighting the importance of

critical review of antigen design when ordering a custom Pep-Ab.

It stands to reason to wonder, therefore, that in situations where

the end-user has no control over peptide design (such as when

ordering a premade antibody from a catalogue) suboptimal

immunogen design may be of particular concern. It is possible

that selecting peptide designs based on surface exposure may have

introduced some bias into the success rates of the antibodies in

Western blots. Peptide design is a critical variable in determining

success for antibodies to recognize folded proteins. Algorithms for

predicting ‘antigenicity’ and B-cell epitopes generally perform

poorly [17] and not all post-translational modifications are

annotated. Because of the small size of peptides, appropriate

regions must be selected very carefully to ensure localization on

the surface of the folded protein as well as absence of interfering

post-translational modifications. We found little consensus among

the three leading suppliers of peptides regarding designs, with only

14 of the 68 initial designs overlapping another company’s design,

and only 2 of the designs with complete consensus overlapped

provided by all three suppliers. Furthermore, there were no

statistically significant differences in the resulting antibody

performance between the 3 companies (data not shown).

Antibodies produced by DNA-encoded polypeptide immuniza-

tion draw on the advantage of being raised against a larger fraction

of the protein, may potentially recognize several epitopes that are

also present on the surface of the native protein, and are therefore

expected to more likely react with the protein target in its correct,

native conformational structure than antibodies raised using

peptide antigens. The substantially higher specific activities

observed for DNA-Abs compared to Pep-Abs are consistent with

this argument, as are the considerably higher success rates in

sandwich ELISAs where the antigens are analyzed under more

physiologic, non-denaturing, conditions. Similarly, it would be

expected that full length protein would encompass all the possible

epitopes. Twenty-two of 29 DNA-Abs performed well in both

Western blots and sandwich ELISA, and 14 of these achieved

sensitivities of less than 100 pM in ELISAs using FLP-Ab as the

second partner. One antibody worked in ELISA, but not Western

blot, possibly indicative of highly conformation-specific properties.

Only 3 of 29 antibodies worked exclusively in Western blot, but no

other applications. All 6 antibodies tested in IHC showed

acceptable sensitivity and tissue specificity. Only 1 DNA-Ab failed

to demonstrate utility in any of the applications tested. Taken

together these results suggest that the polyclonal DNA-Abs to

larger polypeptide antigens contain antibodies to both linear and

conformation-dependent epitopes. It is interesting to speculate

whether even better results could be obtained by immunizing with

a DNA construct that encompasses the entire target protein;

however, the size of many of the proteins in this study, ranging

from 30 kD to a 720 kD tetramer precluded the reliable use of the

full length DNA; and production of the protein for boosting in E

coli would prove very challenging.

Success rates across antigen strategies varied among protein

targets used in the study, and it proved important to have used

more than one antigen design per target. Using 3 antigen designs,

we observed a 100%, 80%, and 40% chance of at least 1 of these

yielding a DNA-Ab that performed in a sandwich ELISA (paired

with the respective FLP-Ab) at a sensitivity of 1 nM, 100 pM, and

10 pM, respectively. Analogous likelihoods observed for Pep-Abs

were 40%, 10%, and 0%, respectively (Figure 8). Success rates

using not an FLP-Ab/DNA-Ab pair, but a DNA-Ab/DNA-Ab

pair (typically two different DNA-Abs to the same target) in

sandwich ELISAs (as might often be necessary for a new

biomarker where no full length protein or FLP-Abs exist), were

40%, 30%, 20%, at sensitivities of 1 nM, 100 pM, and 10 pM,

respectively. Pep-Ab/Pep-Ab-paired sandwich assays were uni-

formly unsuccessful at all sensitivities even when 2 different Pep-

Abs to the same target were used. Similarly, for Western Blot

applications, only an immunization strategy employing 3 different

peptide designs ensured the recovery of at least one useful Pep-Ab

for all 10 targets, even though the selected target proteins are all

well established as highly immunogenic and non-challenging with

Figure 7. Western blot analysis of full-length carcinoembryonic antigen (CEA) run under denaturing conditions. Each immunoblot
was probed with DNA (DNA-Abs) derived anti-CEA antibodies or peptide-derived (Pep-Abs) antibodies at 100 ng/ml and 1:4000 anti-rabbit HRP. Lane
1 = molecular weight standards (kDa); Lane 2 and 3 = 10 ng and 1 ng of CEA per lane, respectively. DNA-Abs R01736, R01737, and R01738 were
generated against the sequences encoding amino acids 410–500, 588–686, and 317–421 respectively. Pep-Abs D3305-19, D3305-20,and D3305-21
were made from peptides of amino acids 616–630, 561–570, and 321–339 respectively.
doi:10.1371/journal.pone.0028718.g007
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regard to eliciting antibody-responses. Conversely, only one DNA-

Ab antigen design would have been required for 9 of 10 target

proteins given that in these 9 targets all 3 selected DNA antigens

yielded DNA-Abs successful in Western blots. Only for a single

protein, TG did all three of the DNA-encoded polypeptide designs

fail to generate any antibody compatible with Western blot

applications at any of the assay conditions tested in this study.

Despite the success rate of one DNA construct design per protein

within this limited sample set we recommend that multiple

constructs be employed to maximize the probability of obtaining

antibodies with the desired assay performance characteristics. This

is certainly critical in the event of developing immunoreagents to

protein biomarker targets that are immunologically more

demanding than the targets addressed in the present study, and/

or if antibodies with a broader scope of assay applications are

intended.

It is noteworthy, that all 6 DNA-Abs tested in IHC showed

excellent performance in this application. We accept that our

inferences regarding the success rate in IHC applications are

limited by the small number of protein targets and respective

antibodies evaluated in this study. However, despite the restricted

data set, the current observations confirm our previous findings

and those of others that DNA-Abs perform in IHC at a level

equivalent to their protein counterparts [2].

A current limitation of the DNA-based immunization approach

described here relates to using a protein fragment generated in E.

coli both for a final boost and for affinity purification. While DNA

immunization has been shown to be very effective at priming

immune responses, a single protein boost is recognized to often

dramatically increase titers and is commonly practiced as a

‘‘prime-boost’’ protocol for producing antibodies [26–28]. Al-

though antibody yields with this technique still appear low in

comparison to Pep-Abs, their binding characteristics more than

counterbalance this, thus providing higher yields if regarded from

the viewpoint of specific activity. Since a prokaryotic protein is

used for affinity purification, this approach would not be expected

to result in purification of antibodies that recognize post-

translationally modified forms of the protein, or conformational

epitopes dependent on disulfide bonds. Whereas such antibodies

may indeed have been generated by DNA immunization, they

would have been lost during the purification step. Efforts are

underway to refine the DNA immunization method by employing

eukaryotically expressed protein fragments for both protein boost

and in the affinity purification step. It is noteworthy, however, that

use of the prokaryotic protein portion for affinity purification

frequently gave rise to repertoires of antibodies that recognized

denatured as well as native conformations (as evidenced by

sandwich ELISA with native protein).

Immunizations with full length protein produced higher

polyclonal antibody titers, greater yields, and superior perfor-

mance in sandwich ELISA compared to other immunization

strategies studies. These antibodies also performed well in Western

blot and IHC, with a 100% success rate. The full length proteins

used in this study are well-characterized serum proteins, many of

which have been extensively studied for in-vitro diagnostic

applications, and are highly immunogenic, consistent with this

success rate. Their performance is likely also related to the fact that

one would expect the most diverse repertoire of surface-epitope-

specific antibody species with this approach.

As pointed out, immunization with full length protein is

generally fraught with a number of challenges related to difficulties

that may be encountered in gene construction, expression, and

purification. For multiple application uses DNA-encoded poly-

peptide immunization may offer an effective alternative with

significantly higher probabilities of success than peptide-based

immunization approaches. It remains important, still, to use more

than one antigen design for a given target to achieve a high

probability of success for any one desired application.

An important trend in the last decade has been the development

of proteome-scale studies enabling a deeper understanding of

biology and a much wider search for biomarkers. The increased

scale of these whole proteome-screening technologies makes the

generation of high quality affinity reagents an ever-more urgent

need, as these reagents are a mainstay of quantitative biological

measurements. Ironically, the technology for generating what

continues to be the gold standard affinity reagents, animal-

Figure 8. Success rates in sandwich ELISA using 3 different immunization designs for Pep-Abs or DNA-Abs. 8a) Success is defined as
the percent of the time that at least one of the designs will give rise to an antibody that can pair with an FLP-Ab to the target giving sensitivity at or
above the indicated concentrations. 8b) Success when at least one of the designs will form a sandwich pair with itself or with another antibody within
the group (Pep-Abs with Pep-Abs, DNA-Abs with DNA Abs) to give sensitivity at or above the indicated concentrations.
doi:10.1371/journal.pone.0028718.g008
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immunization-derived antibodies, has lagged behind. Only a

sound understanding of the attributes of antibodies generated by

different approaches, and advances in the generation of such

reagents applicable in proteome-wide analytical methodology will

allow the field to move forward successfully. Whereas it is always

critical to test antibodies in their ultimate intended application to

optimize chances of success, the present study demonstrates that

DNA immunization-based technology can generate antibodies

that have a relatively high success rate in multiple immunoassay

formats and avoid many of the limitations of Pep-Abs as well as of

the challenges of FLP-Abs, thus representing a technology that can

augment the arsenal of methods to fill the needs of proteomic-scale

investigations. Our current study was limited to interrogate these

aspects with regard to well characterized and highly immunogenic

targets; additional work will be required to characterize the

performance of this technology in comparison with others with

regard to less immunogenic targets.

Supporting Information

Figure S1 Western blot analysis of full-length prostate
specific antigen (PSA) run under denaturing conditions.
Each immunoblot was probed with DNA (DNA-Abs) derived anti-

PSA antibodies or peptide-derived (Pep-Abs) antibodies at

100 ng/ml and 1:4000 anti-rabbit HRP. Lane 1 = molecular

weight standards (kDa); Lane 2 and 3 = 10 ng and 1 ng of PSA per

lane, respectively.

(TIF)

Figure S2 Western blot analysis of full-length prostatic
acid phosphatase (PAP) run under denaturing condi-
tions. Each immunoblot was probed with DNA (DNA-Abs)

derived anti-PAP antibodies or peptide-derived (Pep-Abs) anti-

bodies at 100 ng/ml and 1:4000 anti-rabbit HRP. Lane

1 = molecular weight standards (kDa); Lane 2 and 3 = 10 ng and

1 ng of PAP per lane, respectively.

(TIF)

Figure S3 Western blot analysis of full-length thyroxine
binding globulin (TBG) run under denaturing condi-
tions. Each immunoblot was probed with DNA (DNA-Abs)

derived anti-TBG antibodies or peptide-derived (Pep-Abs) anti-

bodies at 100 ng/ml and 1:4000 anti-rabbit HRP. Lane

1 = molecular weight standards (kDa); Lane 2 and 3 = 10 ng and

1 ng of TBG per lane, respectively.

(TIF)

Figure S4 Western blot analysis of full-length transfer-
ring (TF) run under denaturing conditions. Each immu-

noblot was probed with DNA (DNA-Abs) derived anti-TF

antibodies or peptide-derived (Pep-Abs) antibodies at 100 ng/ml

and 1:4000 anti-rabbit HRP. Lane 1 = molecular weight standards

(kDa); Lane 2 and 3 = 10 ng and 1 ng of TF per lane, respectively.

(TIF)

Figure S5 Western blot analysis of full-length thyro-
globulin (TG) run under denaturing conditions. Each

immunoblot was probed with DNA (DNA-Abs) derived anti-TG

antibodies or peptide-derived (Pep-Abs) antibodies at 100 ng/ml

and 1:4000 anti-rabbit HRP. Lane 1 = molecular weight standards

(kDa); Lane 2 and 3 = 10 ng and 1 ng of TG per lane, respectively.

(TIF)

Figure S6 Western blot analysis of full-length alpha-1-
antitrypsin (AAT) run under denaturing conditions. Each

immunoblot was probed with DNA (DNA-Abs) derived anti-AAT

antibodies or peptide-derived (Pep-Abs) antibodies at 100 ng/ml

and 1:4000 anti-rabbit HRP. Lane 1 = molecular weight standards

(kDa); Lane 2 and 3 = 10 ng and 1 ng of AAT per lane,

respectively.

(TIF)

Figure S7 Western blot analysis of full-length alpha-
fetoprotein (AFP) run under denaturing conditions. Each

immunoblot was probed with DNA (DNA-Abs) derived anti-AFP

antibodies or peptide-derived (Pep-Abs) antibodies at 100 ng/ml

and 1:4000 anti-rabbit HRP. Lane 1 = molecular weight standards

(kDa); Lane 2 and 3 = 10 ng and 1 ng of AFP per lane,

respectively.

(TIF)

Figure S8 Western blot analysis of full-length alpha-2-
macroglobulin (A2M) run under denaturing conditions.
Each immunoblot was probed with DNA (DNA-Abs) derived anti-

A2M antibodies or peptide-derived (Pep-Abs) antibodies at

100 ng/ml and 1:4000 anti-rabbit HRP. Lane 1 = molecular

weight standards (kDa); Lane 2 and 3 = 10 ng and 1 ng of A2M

per lane, respectively.

(TIF)

Figure S9 Western blot analysis of full-length sex
hormone binding globulin (SHBG) run under denaturing
conditions. Each immunoblot was probed with DNA (DNA-

Abs) derived anti-SHBG antibodies or peptide-derived (Pep-Abs)

antibodies at 100 ng/ml and 1:4000 anti-rabbit HRP. Lane

1 = molecular weight standards (kDa); Lane 2 and 3 = 10 ng and

1 ng of SHBG per lane, respectively.

(TIF)
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