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Abstract

Background: The aim of this study is to determine anti-cancer effect of Icariside II purified from the root of Epimedium
koreanum Nakai on human acute myeloid leukemia (AML) cell line U937.

Methodology/Principal Findings: Icariside II blocked the growth U937 cells in a dose- and time-dependent manner. In this
anti-proliferation process, this herb compound rendered the cells susceptible to apoptosis, manifested by enhanced
accumulation of sub-G1 cell population and increased the terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL)-positive cells. Icariside II was able to activate caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP) in a time-
dependent manner. Concurrently, the anti-apoptotic proteins, such as bcl-xL and survivin in U937 cells, were downregulated
by Icariside II. In addition, Icariside II could inhibit STAT3 phosphorylation and function and subsequently suppress the
activation of Janus activated kinase 2 (JAK2), the upstream activators of STAT3, in a dose- and time-dependent manner.
Icariside II also enhanced the expression of protein tyrosine phosphatase (PTP) SH2 domain-containing phosphatase (SHP)-
1, and the addition of sodium pervanadate (a PTP inhibitor) prevented Icariside II-induced apoptosis as well as STAT3
inactivation in STAT3 positive U937 cells. Furthermore, silencing SHP-1 using its specific siRNA significantly blocked STAT3
inactivation and apoptosis induced by Icariside II in U937 cells.

Conclusions/Significance: Our results demonstrated that via targeting STAT3-related signaling, Icariside II sensitizes U937
cells to apoptosis and perhaps serves as a potent chemotherapeutic agent for AML.
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Introduction

Icariside II, a flavonoid compound, is derived from the stems and

leaves of Epimedium koreanum that has been traditionally utilized for

neurasthenia, amnesia and impotence in Oriental medicine [1,2].

The other compounds from E. koreanum exerted various biological

activities. For instance, icariin could stimulate angiogenesis by

activating the extracellular signal-related kinase (ERK) and

phosphatidylinositol 3-kinase (PI3K)/AKT/endothelial nitric oxide

synthase (eNOS)-dependent signal pathways in human endothelial

cells [3]. Also, ikarisoside A inhibited osteoclatogenic differentiation

via c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-

kB) in RAW 264.7 cells [4]. We and others recently reported that

Icariside II appeared to possess anti-cancer activity against multiple

myeloma [5], prostate cancer [6] and osteosarcoma cells [7].

Acute myeloid leukemia (AML) is an aggressive malignancy

characterized by the rapid growth of abnormal white blood cells

(WBCs). AML is primarily treated by chemotherapy and rarely

applied by radiotherapy [8]. Although various chemotherapeutic

agents such as cytarabine, daunorubicin and idarubicin have been

developed for AML treatment, they can affect even normal cells to

cause unpleasant side effects such as anemia, bleeding and

infection. In recent studies, many groups have suggested the

potential of natural products as potent chemotherapeutic drugs for

AML to improve the therapeutic efficacy and lower the side

effects. For instance, wogonin, an active compound in Scutellaria

baicalensis, induced apoptosis by inhibiting telomerase activity in

HL-60 AML cells [9] and ajoene, a natural garlic compound, was

suggested as an anti-leukemic agent for AML therapy [10]. In

addition, corchorusin-D, a saikosaponin-like compound isolated

from Corchorus acutangulus, targeted mitochondrial apoptotic

pathways in HL-60 and U937 cells [11].

In the present study, the underlying anti-cancer mechanisms of

Icariside II in U937 AML cells were investigated using cytotoxicity
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assay, cell cycle analysis, terminal deoxynucleotidyl transferase

dUTP nick end labeling (TUNEL) assay, Western blotting and

electrophoretic mobility shift assay (EMSA).

Results

Icariside II exerted anti-proliferation activity in U937 cells
Icariside II, a flavonoid compound, is purified from the stems

and leaves of Epimedium koreanum (Fig. 1A). To evaluate the effect of

this herb compound on the proliferation of U937 cells, MTT assay

was performed. U937 cells were treated with Icariside II at the

concentrations of 0, 25 or 50 mM for 0, 24, 48 or 72 h,

respectively. The treatment with Icariside II dramatically inhibited

the proliferation of U937 cells in a dose- and time-dependent

manner (Fig. 1B).

Icariside II induced apoptotic cell death in U937 cells
To examine whether Icariside II could induce apoptosis in

U937 cells, sub-G1 DNA contents were measured by DNA

fragmentation analysis. Icariside II increased the accumulation of

sub-G1 population to 10.14%, compared that of the control

(1.1%) at 24 h after the treatment (Fig. 2A). TUNEL assay further

confirmed the occurrence of apoptosis after U937 cells were

treated with Icariside that increased the number of fluorescein

isothiocyanate (FITC)-stained, TUNEL positive cells in a time-

dependent manner (Fig. 2B).

Icariside II regulated apoptosis-related proteins in U937
cells

Caspase-3 is a key mediator of apoptosis [12]. Icariside II

strongly blocked the expression of pro caspase-3 and induced

cleavage of PARP, a substrate for caspase-3, in a time-dependent

manner (Fig. 3A). Icariside II also mediated PARP cleavage in

another AML cell line HL-60 (Fig. 3B), confirming the ability of

Icariside II to induce apoptosis in AML cells. In addition, Icariside

II treatment attenuated the expression levels of anti-apoptotic

proteins including bcl-2, bcl-xL, survivin and COX-2 in a time-

dependent manner inU937 cells (Fig. 3C).

Icariside II suppressed STAT3 activation in U937 cells
We recently reported that Icariside II had the inhibitory effect

on STAT3 activation in multiple myeloma cells [5]. To test the

effect of Icariside II on U937 cells, immunoblotting analysis was

performed (Fig. 4A and B). The addition of Icariside II reduced

the phosphorylation of STAT3 in a dose- and time-dependent

manner in U937 cells. Inhibitory effect of Icariside II on STAT3

activation was also found in HL-60 cells (Fig. 4C). Consistently,

EMSA assay revealed that this herb compound significantly

inhibited the STAT3/DNA binding activity in a dose-dependent

manner (Fig. 4D). In contrast, Icariside II did not show significant

effect on the phosphorylation of STAT5 (Fig. 4E).

Icariside II inhibited phosphorylation of JAK2 and Src in
U937 cells

STAT3 is activated by cooperating with JAKs and/or directly

by Src kinase [13]. Here, we again demonstrated that the

treatment with Icariside II decreased the level of phopsho-JAK2,

but not phospho-JAK1 (data not shown), in a dose- and time-

dependent manner (Figs. 5A and B). Furthermore, the addition of

Icariside II blocked the phosphorylation of Src in a dose- and time-

dependent manner (Figs. 5C and D), indicating that Icariside II

inactivates STAT3 signaling pathway through inhibiting JAK2

and Src in U937 cells.

Protein tyrosine phosphatase (PTP) was involved in
Icariside II-induced apoptosis in U937 cells

PTPs are known to induce dephosphorylation of protein

tyrosine kinases (PTKs) including STAT family proteins [14]

and the transient character of the tyrosine phosphorylation of

JAK2 and STAT3 suggests the involvement of protein tyrosine

phosphatases (PTPs) as negative regulators of this signaling

pathway [15]. To test whether protein tyrosine phosphatase

(PTP) was involved in Icariside II-induced apoptosis in U937 cells,

immunoblotting analysis was performed. The treatment with

Icariside II increased the expression of SHP-1, an upstream PTP

of JAK2, in a time-dependent manner (Fig. 6A). Consistently,

Icariside II also enhanced mRNA level of SHP-1 in a time-

Figure 1. Effect of Icariside II on the proliferation of U937 cells. (A) Chemical structure of Icariside II. (B) Cells were treated with Icariside II (0,
25 or 50 mM) for 0, 24, 48 or 72 h and subjected to MTT assay to analyze cell proliferation. Data are presented as means 6 SD for triplicate
experiments.
doi:10.1371/journal.pone.0028706.g001
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dependent manner in U937 cells (Fig. 6B). Conversely, PTP

inhibitor sodium pervanadate overturned the Icariside II-mediated

inactivation of STAT3 in a dose-dependent manner (Fig. 6C).

Interestingly, pervanadate treatment also reversed the cleavages of

caspase-3 and PARP induced by Icariside II (Fig. 6D). Further-

more, silencing SHP-1 using its specific siRNA significantly

blocked STAT3 inactivation and apoptosis induced by Icariside

II (Fig. 6E), suggesting that Icariside II induced apoptosis via

inhibition of STAT3 in U937 cells.

Icariside II induced apoptosis but did not affect phospho-
JAK2 and SHP-1 in STAT3 inactive MM.1S cells

To further examine whether Icariside II specifically inhibits

STAT3 signaling, we used STAT3 inactive MM.1S cells. The cells

did not show any phosphorylation of STAT3 as well as STAT5

(Fig. 7A). Differently from STAT3 positive U937 cells, Icariside II

treatment had no significant effect on phospho-JAK2 and SHP-1

expression in MM.1S cells (Fig. 7B), while Icariside II induced

apoptosis by targeting bcl-2 and COX-2, but not bcl-xL and

survivin (Fig. 7C).

Discussion

In the current study, the underlying mechanisms of Icariside II-

induced anti-cancer activity were investigated in U937 AML cells.

Apoptosis is the process of programmed cell death characterized

by a series of morphological alterations including plasma and

nuclear membrane blebbing and cell shringkage [16], and the

molecular regulation such as caspase activation [17]. Here, we

demonstrated that Icariside II significantly suppressed the viability

of U937 cells, increased sub-G1 and TUNEL-positive cells and

attenuated the expression of caspase-3, along with enhanced

cleavage of PARP, indicating that Icariside II may exert its

antitumor activity via enabling to induce apoptosis in U937 cells.

Bcl-2 and inhibitor of apoptosis protein (IAP) family proteins are

known as anti-apoptotic proteins [16,18]. We also showed that

Icariside II attenuated the expression levels of bcl-2, bcl-xL and

Figure 2. Effect of Icariside II on apoptosis induction in U937 cells. Cells were treated with Icariside II (50 mM) for 24 h. (A) The treated cells
were fixed with 70% ethanol, stained with propidium iodide (PI) and analyzed the sub-G1 apoptotic cells by flow cytometry. (B) TUNEL staining was
performed by using Dead EndTM fluorometric TUNEL assay kit (Promega) and visualized under fluorescence microscopy (6200). Arrows indicate
TUNEL (FITC)-stained cells. Representative results of three independent experiments are shown for each experiment.
doi:10.1371/journal.pone.0028706.g002
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survivin in a time-dependent manner, further suggesting the

Icariside II-induced apoptosis in U937 cells.

STAT3, one of member of the STAT family, is a transcriptional

factor that can be activated by cytokines or growth factors in

normal cellular responses. Recently, STAT3 has been considered

as an important molecular target for cancer therapy due to its

strong activation in various cancer cells including AML. Zhao and

colleagues reported that sorafenib, a multikinase inhibitor, induced

apoptosis in HL-60 AML cells by inhibiting Src kinase-mediated

STAT3 phosphorylation [19]. Redell and colleagues reported that

a novel small molecule STAT3 inhibitor, C188-9, suppressed G-

CSF-induced STAT3 phosphorylation and apoptosis induction in

AML cells, implying that STAT3 inhibition can be a valuable

strategy for targeted therapies for AML [20].

In this study, we found that Icariside II suppressed the

phosphorylation of constitutively active STAT3 in AML cell lines

U937 and HL-60. In contrast, Icariside II did not alter the

phosphorylation of STAT5 in U937 cells, indicating the specificity

of Icariside II for STAT3 in AML cells. Furthermore, Icariside II

treatment dramatically inhibited the transcriptional activity of

STAT3 in gel shift assay by disturbing the binding of STAT3/

DNA in U937 cells, suggesting that constitutively active STAT3

activity was not promoted by Icarisde II to undergo a

dephosphorylation event. Moreover, a significant reduction of

phospho-JAK2 and Src, the upstream tyrosine kinases of STAT3,

was observed in Icariside II-treated U937 cells in a dose- and time-

dependent manner, which was similarly supported by our previous

report in multiple myeloma cells [5]. Thus, the anti-cancer

activities of Icariside II can be exerted by its pleiotropic effects on

the multiple targets including STAT3 as well as JAK2, Src, and

anti-apoptotic bcl-2, bcl-xL, survivin and COX-2 in U937 cells.

Activation of tyrosine kinases including STAT3 is regulated by

balancing with PTPs. Various PTPs have been reported to be

responsible for dephosphorylation of STAT3, including SHP-1

Figure 3. Effect of Icariside II on apoptosis-related proteins in U937 cells. (A) U937 cells were treated with Icariside II (50 mM) for 0, 6, 12 or
24 h. Cell lysates were prepared and subjected to Western blotting for procaspase-3 and PARP. (B) HL-60 cells were treated with or without Icariside II
(50 mM) for 24 h. Western blot analysis was performed for PARP. (C) U937 cells were treated with Icariside II (50 mM) for 0, 6, 12 or 24 h. Western
blotting was performed for bcl-2, bcl-xL, survivin and COX-2. Representative results of three independent experiments are shown for each
experiment.
doi:10.1371/journal.pone.0028706.g003
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[21], SHP-2 [22], T cell (TC)-PTP [23], phosphatase and tensin

homolog (PTEN) [24], suppressor of cytokine signaling (SOCS)-1

[25]. In our study, Icariside II treatment increased SHP-1

expression at protein and mRNA levels in U937 cells. Importantly,

the co-treatment with pervanadate (a general PTP inhibitor)

effectively blocked Icariside II-induced STAT3 inactivation as well

as apoptosis, strongly indicating that Icariside II, via affecting

SHP-1, had a negative effect on STAT3 for the induction of

apoptosis in U937 cells. Similarly, STAT3 targeted efficacies were

reported by potent natural compounds such as ursolic acid [26],

guggulsterone [27], genipin [28] and compound K [29] in various

cancer cells.

Of interest, Icariside II also induced apoptosis in STAT3

inactive MM.1S multiple myeloma cells. Nonetheless, Icariside II

treatment did not target bcl-xL and survivin, and phosphorylation

of JAK2 compared to STAT3 active U937 cells. Furthermore,

highly expressed SHP-1 protein was not changed by Icariside II

treatment in MM.1S cells. These results suggest Icariside II

induced apoptosis through an alternative pathway in STAT3

inactive MM.1S cells.

In conclusion, Icariside II suppressed the growth of U937 cells,

by sensitizing the cells to apoptosis, manifested by increasing

TUNEL-positive cells and accumulation of sub-G1 population in

U937 AML cells. Also, Icariside II treatment increased the

expression caspase-3, cleavage of PARP, and decreased bcl-xL and

survivin. In addition, suppressed the activation of STAT3 and

JAK2 and enhanced SHP-1 expression in U937 cells. Moreover,

blocking SHP-1 by sodium pervanate attenuated the Icariside II-

induced STAT3 inhibition and PARP cleavage in U937 cells.

These findings suggested that Icariside II can induce apoptosis via

Figure 4. Inhibitory effect of Icariside II on activation of STAT3 in U937 cells. (A) U937 cells were treated with Icariside II (0, 25, 50 or
100 mM) for 9 h. (B) U937 cells were treated with Icariside II (50 mM) for 0, 3, 6, 9 or 12 h. Cell lysates were prepared and subjected to Western blotting
for phospho-STAT3 and STAT3. (C) HL-60 cells were treated with or without Icariside II (50 mM) for 9 h. Western blotting was performed for phospho-
STAT3 and STAT3. (D) U937 cells were treated with Icariside II (0, 25, 50 or 100 mM) for 9 h. EMSA was performed to determine the STAT3/DNA
binding activity. N.S.; nonspecific binding. (E) U937 cells were treated with Icariside II (50 mM) for 0, 3, 6, 9 or 12 h. Western blotting was performed for
phospho-STAT5 and STAT5. Representative results of three independent experiments are shown for each experiment.
doi:10.1371/journal.pone.0028706.g004
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inactivation of STAT3-related signaling pathway in AML U937

cells.

Materials and Methods

Isolation of Icariside II
Icariside II (Fig. 1A) was isolated from Epimedium koreanum as

previously described previously [6].

Cell lines
U937, HL-60 and MM.1S cells were purchased from American

Type Culture Collection (ATCC) (Rockville, MD) and maintained

in RPMI 1640 containing antibiotic and antimycotic solution with

10% fetal bovine serum.

Cell proliferation assay
The anti-proliferative effect of Icariside II was determined by 3-

(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT)

assays. Cells (56103 cells/well) were seeded in a 96-well plate, and

treated with Icariside II (0, 25 or 50 mM) for 0, 24, 48 or 72 h. The

treated cells were incubated with medium containing 5 mg/ml of

MTT for 2 h at 37uC and then solubilized by 200 ml of lysis

solution. The absorbance was read on a microplate reader

(Molecular Devices E-max) at 570 nm.

Cell cycle analysis
Cells were exposed to Icariside II (50 mM) for 0, 1 or 24 h and

fixed in 70% cold ethanol overnight at 220uC. The fixed cells

were centrifuged, washed, resuspended in 100 ml of PBS

containing 10 ml of RNase A (10 mg/ml) and incubated for 1 h

at 37uC, and stained by adding 900 ml of propidium iodie (PI)

(50 mg/ml) for 30 min at room temperature in dark. The DNA

contents of stained cells were analyzed using Cellquest Software

with a FACSCalibur flow cytometry (BD Biosciences, San Jose,

CA).

Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) assay

Individual apoptotic cell death was observed using DeadEndTM

fluorometric TUNEL assay kit (Promega, Madison, WI) as

described by manufacturer. Cells were treated with 50 mM

Icariside II for 0, 12 or 24 h and washed with cold PBS. The

cells were fixed with 4% paraformaldehyde for 30 min, washed

twice with PBS for 2 min, resuspended in permeabilization

solution (0.1% Triton X-100 and 0.1% Sodium citrate) for 4uC
overnight, and incubated with 25 ml of TUNEL assay mixture

(Sigma, St. Louis, MO) for 60 min at 37uC in a humidified

atmosphere in dark. After washing 3 times in PBS for 2 min and

filtering, the cells were analyzed by the flow cytometry.

Western blotting
Whole-cell extracts were lysed in lysis buffer [20 mM tris

(pH 7.4), 250 mM NaCl, 2 mM EDTA (pH 8.0), 0.1% Triton X-

100, 0.01 mg/ml aprotinin, 0.003 mg/ml leupeptin, 0.4 mM

phenylmethylsulfonyl fluoride (PMSF), and 4 mM NaVO4].

Lysates were then spun at 13,0006 g for 15 min to remove

insoluble material and resolved on a 10% SDS gel. After

electrophoresis, the proteins were electrotransferred to a nitrocel-

lulose membrane, blocked with 5% nonfat milk, and probed with

antibodies against caspase-3, PARP, bcl-2, bcl-xL, survivin, COX-

2, SHP-1 (Santa Cruz Biotechnologies, Santa Cruz, CA),

phospho-STAT3, STAT3, phospho-STAT5, STAT5, phospho-

JAK2, JAK2, phospho-Src and Src (Cell Signaling, Danvers, MA)

overnight. The blots were washed, exposed to horseradish

Figure 5. Effect of Icariside II on JAK2 and Src in U937 cells. (A and C) Cells were treated with Icariside II (0, 25, 50 or 100 mM) for 9 h. (B and D)
Cells were treated with Icariside II (50 mM) for 0, 3, 6 or 9 h. Cell lysates were prepared and subjected to Western blotting for phospho-JAK2 and JAK2
(A and B), and phospho-Src and Src (C and D). Representative results of three independent experiments are shown for each experiment.
doi:10.1371/journal.pone.0028706.g005
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Figure 6. Involvement of protein tyrosine phosphatase SHP-1 in Icariside II-induced apoptosis in U937 cells. (A) Cells were treated with
Icariside II (50 mM) for 0, 1, 3, 6 or 8 h. Cell lysates were prepared and subjected to Western blotting for SHP-1. (B) Total RNA from cells treated with
Icariside II (50 mM) 0, 3, 6 or 8 h was extracted, and the mRNA level of SHP-1 was analyzed by RT-PCR. GAPDH was used as an internal control. (C) Cells
were treated with Icariside II (50 mM) in the absence or presence of pervanadate (0, 5, 10, 15, 20, 25 or 50 mM) for 9 h. Cell lysates were prepared and
subjected to Western blotting for phospho-STAT3 and STAT3. (D) Cells were treated with Icariside II (50 mM) and/or pervanadate (20 mM) for 9 h. Cell
lysates were prepared and subjected to Western blotting for caspase-3 and PARP. Representative results of three independent experiments are
shown for each experiment. (E) Cells were transiently transfected with either SHP-1 or scrambled siRNA (40 nM) for 48 h and then treated with
Icariside II (50 mM) EP for 9 h. Western blotting was performed for SHP-1, phospho-STAT3 and PARP.
doi:10.1371/journal.pone.0028706.g006

Figure 7. Effects of Icariside II on STAT3-related signaling in STAT3 inactive MM.1S cells. (A) MM.1S cells were treated with or without
50 mM Icariside II for 9 h. Cell lysates were prepared and subjected to Western blotting for phospho-STAT3 and phospho-STAT5. U937 cells were used
as a control of phospho-STAT3 and 5. (B) MM.1S cells were treated with or without 50 mM Icariside II for 9 h. Cell lysates were prepared and subjected
to Western blotting for phospho-JAK2, phospho-Src and SHP-1. (C) MM.1S cells were treated with or without 50 mM Icariside II for 24 h. Cell lysates
were prepared and subjected to Western blotting for procaspase-3, PARP, bcl-xL, bcl-2, survivin and COX-2. Representative results of three
independent experiments are shown for each experiment.
doi:10.1371/journal.pone.0028706.g007

Role of STAT3 in Icariside II-Induced Apoptosis

PLoS ONE | www.plosone.org 8 April 2012 | Volume 7 | Issue 4 | e28706



peroxidase (HRP)-conjugated secondary antibodies for 2 h, and

finally examined by enhanced chemiluminescence (ECL) (GE

Health Care Bio-Sciences, Piscataway, NJ). Band intensities were

quantified using NIH Image-J software.

Electrophoretic mobility shift assay (EMSA)
The STAT3/DNA binding was analyzed by electrophoretic

mobility shift assay (EMSA) using Gelshift Chemiluminescent

EMSA kit (Active Motif, Carlsbad, CA). Nuclear extracts were

prepared and incubated with STAT3 consensus oligonucleotides

(59-GAT CCT TCT GGG AAT TCC TAG ATC-39) (Santa Cruz

Biotechnologies, Santa Cruz, CA). The DNA/protein complex

formed was separated from free oligonucleotides on 5% native

polyacrylamide gels. Chemiluminescent detection was performed

using ECL reagents according to the vendor’s protocols (GE

Health Care Bio-Sciences, Piscataway, NJ).

Reverse transcription-PCR (RT-PCR)
Total RNA was extracted by using Trizol reagent (Invitrogen,

Carlsbad, CA) according to the manufacturer’s instructions.

cDNA was synthesized from 1 mg of total RNA and subjected to

PCR reaction by using Superscript One Step reverse transcription-

PCR (RT-PCR) kit (Invitrogen, Carlsbad, CA). The PCR

conditions were 30 cycles of 94uC for 15 s, 55uC for 30 s, and

72uC for 1 min. The primer sequences were as follows: shp-1

(forward primer 59-AAT GCG TCC CAT ACT GGC CCG A-39;

reverse primer 59-CCC GCA GTT GGT CAC AGA GT-39) and

gapdh (forward primer 59-TCA CCA TCT TCC AGG AGC GA-

39; reverse primer 59-CAC AAT GCC GAA GTG GTG GT-39).

PCR products were run on 2% agarose gel and then stained with

ethidium bromide. Stained bands were visualized under UV light

and photographed.

siRNA transfection
U937 cells were transiently transfected with STAT3-siRNA or

control-siRNA (40 nM) (Santa Cruz Biotechnology, Santa Cruz,

CA) for 48 h using INTERFERinTM transfection reagent (Poly-

plus-transfection Inc., New York, NY) according to manufacturer’s

protocols.

Statistical analysis
All data were expressed as means 6 standard deviation (S.D.) of

three independent experiments.
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