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Abstract

Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches
to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification
of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to
analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events.
We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and
energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based
analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the
single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class
distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including
mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic
modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling,
combining morphological and functional data as a single model. Modeling results are in accordance with previous studies,
where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane
potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that
can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for
elucidating specific and general relationships between mitochondrial morphology and apoptosis.
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Introduction

Mitochondria exist as a network of interconnected organelles

and are responsible for generating the majority of ATP essential

for cellular biochemistry. In response to specific stress stimuli,

mitochondria participate in apoptosis via mitochondrial outer

membrane permeabilization (MOMP), which results in the release

of pro-apoptotic proteins to the cytosol [1,2].

The number and morphology of mitochondria within a cell are

a function of regulated rates of fusion and fission events [3].

Mitochondria display a complex architecture that varies from

highly interconnected networks [4], to precisely structured

individual units [5]. MOMP is not only regulated by interactions

between pro- and anti-apoptotic Bcl-2 members, but also by a

family of GTPases which control mitochondrial morphology (for

review see, [6]). During the early stages of apoptotic cell death,

network fragmentation and cristae remodeling are widely reported

[7,8,9,10,11]. However, the relationship between morphology and

apoptosis signaling remains unresolved, and can appear paradox-

ical. For example, pro-apoptotic Bax can promote mitochondrial

fusion [12] and fragmentation may be preceded by increased

fusion [13]. Furthermore, a pre-fragmented state confers protec-

tion by limiting mitochondrion-to-mitochondrion apoptotic sig-

naling [10].

The overall goal of this study was to quantitatively investigate

the relationship between mitochondrial morphology and pro-

grammed cell death. Therefore, we performed high-content

measurements of mitochondrial morphologies, and apoptotic

and energetic states in MCF-7 breast cancer cells, under control

and drug-induced apoptotic conditions. We analyzed large sample

populations as cell-to-cell heterogeneity in phenotypic responses is

a critical source of biologically relevant information [14].

CellProfiler [15,16] was used to perform automated image

segmentation and feature extraction, generating rich parameter

sets. From these sets we built a Random Forest (RF) classifier [17]

using a supervised classification model, that was able to distinguish

between networked, fragmented and swollen mitochondrial states,

at the level of a single cell and within populations of cells.
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Measurements of critical MOMP parameters, i.e. Bax activation,

mitochondrial membrane potential (DYm) and mitochondrial

membrane depolarization were performed under matched condi-

tions. To explore the relationships between morphological and

functional parameters, these heterogeneous high-content datasets

were integrated using data-driven fuzzy logic (FL) modeling. Our

results suggest that mitochondrial morphological states are not

linearly related to either Bax or DYm. Instead, FL modeling

proposes a hierarchy of non-linear interactions between Bax,

morphology, and DYm.

Methods

Cell culture and the induction of apoptosis
Human breast carcinoma MCF-7 cells (Cell Line Services;

Heidelberg Germany) were cultured in DMEM (Invitrogen)

supplemented with 10% FBS (Invitrogen), 1% penicillin/strepto-

mycin (Invitrogen), 1% Glutamax (Invitrogen) and 1% nonessen-

tial amino acids (PAA laboratories) in a 37uC, 5% CO2 incubator.

Cells were seeded overnight (56105 cells per well) and treated with

the following compounds: C-6 ceramide (300 mM; Biozol), CCCP

(20 mM; Calbiochem), TNFa (43 ng/mL; BASF), TRAIL (20 ng/

mL; R&D Systems), thapsigargin (1 mM; Calbiochem), campto-

thecin (2 mM; BioVision), and oligomycin (10 mM; Sigma). Drug

stocks were prepared according to manufacturer instructions.

Drugs were diluted in balanced salt solution (BSS; Krebs-Henseleit

Solution -in mM: 110 NaCl, 4.7 KCl, 1.2 KH2PO4, 1.25

MgSO4, 1.2 CaCl2, 25 NaHCO3, 15 glucose, 20 HEPES,

pH 7.4) before application and incubated for 6 hours prior to all

measurements.

Expression plasmids and transfection
Plasmids encoding Mito-GFP (fusion of the localization tag of

cytochrome c oxidase IV and GFP) [18] and GFP-Bax [19] were

transfected into MCF-7 cells using Effectene (Qiagen) and positive

clones were selected using neomycin (G418, 1 mg/mL; Carl Roth

GmbH). Stable cell lines were generated from single colonies in

order to minimize genetic background.

Imaging procedures
All images were acquired using a wide-field DeltaVision RT

(DVRT) deconvolution microscope.

Mitochondrial morphology. MCF-7 cells stably expressing

Mito-GFP were seeded overnight (56105 cells per well) in an 8-

well imaging m-slide (ibidi) and treated with apoptotic drugs.

Nuclei were stained with Hoechst (100 ng/mL; Sigma) for

1 minute prior to imaging. Live cells were imaged using a 636
oil objective (NA 1.40) and Z-stacks with 0.22 mm step sizes were

collected and subsequently deconvolved using the bundled

softWoRx software. The middle slice of the Z-stack was most

representative of cellular mitochondrial content under all

conditions, and was chosen for following analysis.

Mitochondrial membrane potential (DYm). After

respective drug treatments, MCF-7 wild-type (wt) cells were

incubated with tetramethyl rhodamine methyl-ester (TMRM,

25 nM; Invitrogen) for 25 minutes at 37uC. Imaging was

performed using a 406 air objective (NA 1.20). Sequential

images of a single focal plane were acquired every second, over a

period of 5 minutes. Exposure times were identical for each

condition. For inhibition of the mitochondrial permeability

transition pore (MPTP), MCF-7 wt cells were incubated in

cyclosporine A (CsA, 5 mM; Calbiochem) for 30 minutes at 37uC
or pre-treated with Bongkrekic acid (BA, 50 mM; Santa Cruz

Biotechnology) for 1 hour at 37uC.

Bax activation. MCF-7 cells stably expressing GFP-Bax were

incubated for 6 hours with the respective compounds and nuclei

were stained with Hoechst (100 ng/mL; Sigma) before imaging

(406 air objective, NA 1.20). 10 Z-stacks were acquired per

condition and Z-projections (max) were preformed prior to

analysis. 3D rendering was performed for representative image.

Feature extraction of mitochondrial morphology
Mitochondrial morphology analysis was performed with Cell-

Profiler software by combining available modules and submodules

(www.cellprofiler.org), and configured to automatically (i) perform

image preprocessing, (ii) segment and identify objects within the

image (iii) and measure a selection of mitochondria and cell features.

A detailed description of the CellProfiler pipeline and extracted

features is available in Information S1 and Figure S1.

Supervised classification (Random Forest)
The exported features were analyzed using a Random Forest

(RF) model [17], which performed multidimensional data explora-

tion and supervised machine learning-based image classification.

The RF method is an ensemble classifier that consists of a family of

decision trees. Each tree is constructed using a bootstrap sample of

the data. The percentage of trees voting for a specific class is referred

to as the RF score. Thus, the RF predictor assigns a degree of

belonging between 0% and 100% to each class (networked/

fragmented/swollen = N/F/S) per cell. At each iteration of the RF

construction, the data not being in the training subsample (out of

bag data) is used to estimate the error rate. The mean error

estimation over all iterations is referred to as the out of bag (OOB)

error. Peak importance is estimated by the mean decrease in

accuracy (MDA). This score is the increase in OOB error when the

OOB data for that peak is permuted while all others are left

unchanged. A specific class can be assigned by taking in

consideration only the class with the majority of the RF votes.

However, this was only used for the 10-times-10-fold cross

validation and validation purposes (comparison of the classifier

with manual classification). All other data analysis steps used ‘‘raw’’

percentages given by the RF score, i.e. plotted results correspond to

the mean value of each class assigned per cell (N/F/S) and reflect

mitochondrial population distributions under a specific treatment.

Mitochondrial membrane potential (DYm)
The release kinetics of the TMRM dye is here reported by the

standard deviation (StDev) of the signal intensity from individual

cells. Under normal conditions, mitochondrial TMRM is highly

localized (high StDev) and upon DYm loss, redistribution of the dye

throughout the cell occurs and both total signal intensity and StDev

decreases per cell [20]. From the StDev curves plotted for each

condition, three parameters were extracted by using an automated

MATLAB script: (i) t1/2_decay: time for the signal-StDev to reach

half of its initial value; (ii) Y_spread: total signal-StDev decrease over

time; (iii) MAX: initial signal-StDev maximum value. The median

of the first and last 10 points of each data set were used to calculate

the maximum and minimum intensity. The t1/2_decay is defined as

the time point at which the StDev of the signal reaches half of its

initial starting value (see Equation 1).

StDev decay(t=2)~
( max (StDev)z min (StDev))

2

Equation 1. Definition of StDev value used in MATLAB

script to extract t1/2_decay parameter from StDev curves of

TMRM signal.

Automated Analysis of Mitochondrial Morphology

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e28694



Fuzzy logic modeling
The fuzzy logic (FL) toolbox (MATLAB R2009a) was used to

establish a modeling pipeline to perform exhaustive searches for

relative correlations between measured events. Single input-single

output (SISO) FL models were assembled using the Sugeno

inference method. As a parameter reduction strategy, input

membership functions (MF) were fixed to Gaussian functions,

and thereby the number of input parameters was excluded from

the model training. In FL, a Gaussian function has the form shown

in equation 2, where the height of the peak is fixed to 1, i.e. the

maximum degree of belonging to a fuzzy set (degree of

membership, DOM).

mlow(x)~e
{

(x{a)2

2b2

Equation 2. Gaussian equation as a membership function to

establish the degree of membership (DOM) of a measurement x to

the set low.

As output, linear MFs were chosen, and thus their stepwise

combination allowed for the approximation of nonlinearity upon

simulation.

In a FL system, the number of rules constitutes a free

parameter, which we eliminated by using a fix number of rules.

This number was the total of possible combinations of input MFs.

Hence, this allowed the representation of all possible input-

combination, while parameter fitting extracted from the data the

degree to which this was happening in the specific measurement.

Training of the model was performed using a hybrid algorithm

combining back propagation and iterative least-squares procedure

[21]. Simulations of the SISO FL models were run using Simulink

and root mean square errors (RMSE) were calculated. For the

final step of the exhaustive search we selected the models with

least-error. A detailed description of our FL modeling pipeline is

available in Information S1 and Figure S2.

Data analysis and statistics
Data is given as mean 6 standard error of the mean (s.e.m).

Statistical significance of differences was determined using a two-

tailed Student’s t-test. P values#0.05 were considered to be

statistically significant.

Results

Detection of mitochondrial morphology states by high-
resolution imaging

Human MCF-7 breast cancer cells stably expressing mitochon-

drial targeted GFP (Mito-GFP) were imaged by high-resolution,

widefield-fluorescence microscopy. All images were submitted to

the workflow described in Figure 1A. Importantly, images were

first deconvolved using a constrained iterative algorithm

(Figure 1Ai) to increase the classification accuracy (92% accuracy

for deconvolved vs. 65% accuracy for non-deconvolved; data not

shown). Initial datasets were generated from putative conditions

with enriched networked, fragmented and swollen phenotypes

(Figure 1B). Networked states were obtained under full medium

(FM) conditions. Fragmentation was induced by the pro-apoptotic

lipid second messenger ceramide [22] and swelling was induced

using the mitochondrial uncoupler CCCP (carbonyl cyanide m-

chlorophenylhydrazone) [23].

Example images representing these three classes were initially

characterized by manual classification of mitochondrial perimeters

(Figure 1B). Perimeter size was greatest for networked mitochon-

dria (14.062.0 mm), followed by swollen (8.862.0 mm) and

fragmented (2.760.5 mm). Nevertheless, initial control perturba-

tions revealed a high degree of perimeters variation within

intracellular mitochondrial populations and among cell popula-

tions. Therefore, in order to analyze a significant amount of cells

and exhaustively measure mitochondrial morphology states, we

utilized the open source CellProfiler image analysis software

[15,16]. Our analytical pipeline comprised segmentation of

individual nuclei, inference of cell boundaries, segmentation of

mitochondria within assigned cells and feature extraction

(Figure 1A). Parameter sets included mitochondrial size (e.g.

area/volume), number (e.g. average per cell) and distribution

within the cell, for a total of 69 features per cell (Tables S1, S2 and

S3), which were exported to a MySQL database. All extracted

features were the basis for building the mitochondrial morphology

classifier algorithm.

Machine learning based classification of mitochondrial
morphology

We developed a supervised learning approach using an image

set of cells, which were individually cropped and manually

classified as networked, fragmented, or swollen (Figure 2A and B).

These image sets were obtained from control conditions (FM,

ceramide and CCCP) and submitted to the CellProfiler pipeline

(see Information S1 for the detailed description). The extracted

features were used to build a Random Forest (RF) classifier. RF

method [24] is an established classification algorithm that shows a

very robust and competitive performance on diverse data sets. The

algorithm is an extension of the bagging principle [25], a method

for improving results of machine learning classification, and

consists of a collection of classification trees. Two training sets of

cropped and manually classified cells were used to build and

validate the RF classifier (see Figure 2C). In order to compare our

manual classification with the RF classification, we assigned one

class, i.e., networked, fragmented, or swollen, per cell, since it is

impossible to clearly define intermediate classes within a single cell

manually. Therefore, the class with the highest percentage (major

score) was considered for validation purposes (Figure 2C).

Training sets were crossed-validated and resulted in 92% overall

accuracy (Figure 2Ciii).

While complex ensemble models offer a high accuracy, human

interpretation of the model is not feasible. To aid interpretation of

the single tree representation of our RF classifier, we utilized the

Mean Decrease in Accuracy (MDA) score (Figures 3 and S1) [25].

This score is a measure for feature importance in the RF model.

Scalings were applied when considering splits for the representa-

tive tree (Figure 3B), and the improvement on splitting on a

variable is weighted by its cost (1/MDA) in deciding which split to

choose. Our results demonstrate that the Zernike and mitochon-

drial ‘‘Area and Shape’’ features were the most relevant for our

classification (Figure 3). Furthermore, ‘‘networked’’ is the most

distinct mitochondrial class, followed by ‘‘fragmented’’ and

‘‘swollen’’ classes, where the mitochondrial ‘‘Area and Shape’’ is

determinant for deciding between these two classes (Figure 3B).

The representative tree was not used for classification purposes; all

classification results used for further analysis were obtained from

the RF model built upon the training sets (Figure 2). Thus, the

prediction of our classifier was (i) not substantially biased for new

cells, which did not undergo manual classification (e.g. Figure 4A

and 5), and (ii) describes mitochondrial intracellular heterogeneity

by assigning a degree of belonging (RF score) to each class for each

cell (%(N/F/S)/cell) (Figure 4A). This is based on the percentage

of trees in the ensemble voting for a specific class, and is the basis

for all further analysis steps.

Automated Analysis of Mitochondrial Morphology
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Figure 1. Mitochondrial morphology classification. A) Method pipeline - Principal modules: 1- Image acquisition; 2 - CellProfiler analysis; 3-
Random Forest (RF) classification. MCF-7 cells stably expressing Mito-GFP were submitted to different apoptotic drugs for 6 hours at 37uC.
Microscopic images were randomly acquired with a DeltaVision microscope and deconvolved: (i) shows half non-deconvolved (left) and half
deconvolved (right) cell. Images were loaded into the following CellProfiler pipeline: (ii) illumination correction; (iii) threshold application; (iv) primary
object (cell) identification from based on Hoeschst-labeled nuclei; (v) identification of cell borders; (vi) segmentation of individual mitochondria.
Finally, 69 relative features were extracted and exported to build a Random Forest (RF) tree classifier. B) Cell-based classification - MCF-7 cells stably
expressing Mito-GFP were incubated 6 hours under controlled conditions to induce networked (FM), fragmented (ceramide, 300 mM) and swollen
(CCCP, 20 mM) mitochondria. Average perimeter values (in red) were measured from 10 mitochondria present in the zoomed region. Representative
images correspond to the middle slice from 3D stacks.
doi:10.1371/journal.pone.0028694.g001

Automated Analysis of Mitochondrial Morphology
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Figure 2. Establishment and validation of the Random Forest (RF) classifier. A) Individual cell analysis- training sets were built from
manually-cropped single cells. An example of a ‘‘full image’’ with regions of interest (ROIs) for individual cells and a corresponding ‘‘cropped cell’’ are
depicted. B) Phenotypic variability- MCF-7 stably expressing Mito-GFP cells were incubated 6 hours at 37uC with the 3 control conditions: full medium
(FM), ceramide (300 mM) and CCCP (20 mM). Shown here are representative examples of mitochondrial phenotypes manually selected for training
each class. C) Random Forest classifier- (i) The classification algorithm was first trained with training set I (approx. 100 cropped cells per class) and
tested in training set II (approx. 50 cropped cells per class); (ii) Classifier was trained with training set II and validated on training set I. (iii) Both
datasets (set I and set II) were combined and used to train the final model. Each tree in the ensemble was calculated using a subset of cells stratified
according to class and experimental origin. A 10610 fold cross validation gives an overall accuracy of 92%. (iv) Comparison of results obtained for
individual cells manually classified and the same set of cells automatically classified in their original image by our classifier. For comparison purposes,
RF results were reduced to one class showing the major score from Networked/Fragmented/Swollen (N/F/S) intracellular populations.
doi:10.1371/journal.pone.0028694.g002

Automated Analysis of Mitochondrial Morphology
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Automated identification of mitochondrial morphology
classes within single cells and within populations of cells

The feature extraction pipeline generation was optimized for

the morphological classes using cropped single cells, manually

classified as networked, fragmented, or swollen phenotypes

(Figure 2A and B). Next, this pipeline was applied to full images

that had not undergone manual cropping. To determine the

classifier accuracy on raw images, a new dataset consisting of

randomly chosen images from different conditions was assembled.

From this set, 159 individual cells with an obvious phenotype were

manually classified, and the manual classification of single cells was

assessed against RF classification of the same cells within their

original raw images (Figure 2Civ). Once again, for comparison

with the manual classification, we considered only the major score

(highest % (N/F/S)) present in each cell. Our method presents

comparable results when automatically classifying individual cells

within full images to those manually classified (90% accuracy;

Figure 2Civ).

In summary, the generated pipeline was accurate when applied

to images containing multiple cells (Figure 2Civ and 4A) and was

able to quantify the mitochondrial morphology response as a

function of perturbation-induced shifts of networked, fragmented,

Figure 3. Extracted features and classification. A) MDA score- features used to build the Random Forest (RF) classifier ordered by its mean
decrease in accuracy (MDA) value (%). Here we present the most relevant 10 CellProfiler features resulting from the 10610 fold cross-validation. B)
Representative decision tree- Tree consists of fork nodes, each labeled with an attribute and an intermediate class decision, and leaf nodes
representing the final morphology classes (N/F/S). Feature/Split selection for the tree building process was weighted by the respective cost (1/MDA)
score.
doi:10.1371/journal.pone.0028694.g003

Automated Analysis of Mitochondrial Morphology
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and swollen subpopulations (Figure 5). Moreover, we were able to

distinguish the several states of mitochondrial morphology within a

single cell and provide a quantitative index of intracellular

heterogeneity (Figure 4A). In Figure 4A we show representative

examples of segmented cells and mitochondria by CellProfiler and

respective cell-based RF classifications. The classifier attributes a

Figure 4. Population wide analysis of mitochondrial morphology. A) CellProfiler pipeline applied to ‘‘Full Images’’- (i) Representative
examples of images as obtained by the DVRT microscope after deconvolution; (ii) Cell border identification and segmentation with final classification
for each considered cell (color code corresponds to single cell segmentation); (iii) Mitochondrial segmentation per cell (color code corresponds to
single mitochondrion segmentation). Here we present examples for 6 hours incubation (37uC) in control condition (FM) and drug conditions
(ceramide, 300 mM, camptothecin, 2 mM). Percentage values of Networked/Fragmented/Swollen (N/F/S) mitochondria are attributed to each cell.
These values (N/F/S) can be averaged per cell to obtain whole cell population shifts on mitochondrial morphology under the tested condition. B)
Cartoon scheme representing the tested apoptotic drugs and its targets. MCF-7 stably expressing Mito-GFP were incubated for 6 hours at 37uC with 7
different apoptotic drugs inducing a variety of cellular stress: calcium overload (thapsigargin, 1 mM); DNA synthesis inhibition (camptothecin, 2 mM);
ATP synthesis inhibition (oligomycin, 10 mM); death receptor (DR) pathway activation (TNFa, 43 ng/mL and TRAIL, 20 ng/mL); mitochondrial
fragmentation (ceramide, 300 mM); as well as a mitochondrial uncoupler (CCCP, 20 mM). The scheme summarizes the subcellular impact of our drug
selection and depicts the three possible morphologic states of mitochondria: networked, fragmented and swollen. For example, DR activation
activates pro-apoptotic tBid, which leads to Bax activation at the mitochondria. Mitochondria are shown in a fragmented state during cytosolic
release of pro-apoptotic signaling factors and related to a swollen stated upon loss of DYm (gradient arrow).
doi:10.1371/journal.pone.0028694.g004

Figure 5. Mitochondrial morphologic classes quantification in response to apoptotic stimuli. A) Mitochondrial classes distribution during
apoptosis- Column chart shows the Random Classifier (RF) classification into networked (black), fragmented (gray) and swollen (white) (N/F/S) for the
different conditions. Values are given as mean percentage 6 s.e.m. of N/F/S per cell for each N. (N = 3, approx. 300 cells per condition; *, P#0.05, * *,
P#0.01, t-test against BSS). B) Normalization with control- results plotted in A are here normalized against BSS.
doi:10.1371/journal.pone.0028694.g005

Automated Analysis of Mitochondrial Morphology

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e28694



degree of belonging to each of the three main classes (N/F/S) for

each cell and these three values are always taken into

consideration, averaged per class over cell population within each

condition. Initial conditions revealed a high degree of intracellular

(Figure 4A) and population-based heterogeneity (Figure 5 and

Table S4), with fragmented and swollen mitochondria co-

occurring within a single cell (Figure 4A, segmented yellow cell

in FM) and all classes co-occurring within a population (Figure 4A,

camptothecin conditions).

Population analysis of mitochondrial morphology
dynamics in response to diverse apoptotic stimuli

We next quantified redistributions of morphology subpopula-

tions in response to various pro-apoptotic stimuli. Cells were

treated with compounds known to impact mitochondrial bioen-

ergetics and induce mitochondrial apoptosis (Figure 4B). It is

important to note that our experimental model, MCF-7 breast

cancer cells, lack caspase 3 [26], and therefore undergo a slower

progression of cell death. This allows for an optimal visualization

and analysis of mitochondrial morphology in early apoptotic

stages, before cells begin to shrink and detach.

Drugs were selected which initiate mitochondrial apoptosis in a

spatially heterogeneous manner. Death receptor (DR) ligands

TNFa (43 ng/mL) and TRAIL (20 ng/mL) activate the mito-

chondrial death pathway via caspase 8-mediated cleavage of Bid

[27]. The ER calcium pump inhibitor thapsigargin (1 mM) induces

ER stress, cytosolic calcium, and subsequent activation of BH3-

only proteins [28]. Camptothecin (2 mM), a DNA topoisomerase I

inhibitor induces mitochondrial apoptosis [29]. Bioenergetic

perturbations were induced with oligomycin (10 mM), which

inhibits oxidative phosphorylation at the mitochondrial ATP

synthase [30] (Figure 4B).

Images were acquired following 6 hours treatment at 37uC and

approximately 300 cells per condition were classified (Figure 5A).

Plotted results reflect the drug impact on mitochondrial subpop-

ulations, as (N/F/S) percentages are all taken into account and

averaged throughout whole cell population for each experimental

N (Figure 5). In parallel to the apoptotic conditions, cells were

incubated with two control conditions: FM and BSS. Under FM

conditions, mitochondria were mostly networked ((N/F/

S)6s.e.m.) = (52.2464.62/35.6563.70/12.1160.98)%). Cells in-

cubated in BSS showed markedly changes ((N/F/

S)6s.e.m.) = (43.5665.11/45.7064.00/10.7361.74)%), with in-

creased fragmentation and decreased networked mitochondria

(Figure 5). CCCP revealed a 72% increase in the population of

swollen mitochondria compared to the control (BSS) (Figure 5B).

Curiously, ceramide incubation resulted in a small increase of

fragmented mitochondria ((N/F/S)6s.e.m.) = (23.5463.03/53.18

63.59/23.2865.86)%) when compared with BSS, although

remained the condition with the largest population of fragmented

mitochondria (Figure 5). We detected subtle but distinct responses

of mitochondrial morphology distribution in comparison to BSS

for cells treated with TNFa ((N/F/S)6s.e.m.) = (39.7966.12/

44.4265.11/15.7961.61)%) and TRAIL ((N/F/S)6s.e.m.) =

(49.2661.57/41.1861.33/9.5661.57)%). While the population

of swollen mitochondria increased for TNFa, networked mito-

chondria remained unchanged in response to TRAIL. Oligomycin

considerably increased the number of swollen mitochondria ((N/

F/S)6s.e.m.) = (13.2062.87/38.2662.39/48.5364.91)%). Thap-

sigargin treated cells exhibited a high percentage of networked

mitochondria with fragmentation and swollen populations smaller

than the control ((N/F/S)6s.e.m.) = (48.6464.62/43.2263.74/

8.1461.26)%) (Figure 5B). Camptothecin treatment resulted in

similar distributions of networked and fragmented mitochondria

((N/F/S)6s.e.m.) = (37.3964.96/38.3165.33/24.3064.55)%),

with a 13% increase of swollen mitochondria when compared to

BSS control. Based on intercellular variances (standard deviation,

StDev) camptothecin showed the highest intercellular heteroge-

neity after treatment (StDev = 25%), while CCCP revealed the

least population heterogeneity (StDev = 15%) (Table S4).

Mitochondrial dysfunction can drive changes to morphology,

and interactions between the mitochondrial morphology machin-

ery and the Bcl-2 family contribute to MOMP. Paradoxically, pro-

apoptotic Bax not only activates mitochondrial permeability

transition (MPT) when active [31], but can also promote

mitochondrial fusion in its inactive form [32]. In order to explore

changes to mitochondrial morphology in the context of apoptosis,

we determined the impact of the drugs employed above on

mitochondrial membrane potential (DYm), Bax activity, cyto-

chrome c release and cell death.

MPT as a measure of cell sensitivity to apoptotic stimuli
Tetramethylrhodamine methyl ester (TMRM), a fluorescent

lipophilic cation that electrophoretically accumulates in mitochon-

dria [33], can be photoactivated to generate reactive oxygen

species (ROS) levels within the mitochondrial matrix that are

sufficient to trigger MPT [34]. Following 6 hours incubation with

pro- apoptotic compounds, MCF-7 wt cells were loaded with

TMRM (25 nM) for 25 minutes at 37uC. Continuous fluorescence

imaging was performed for 5 minutes to induce ROS-dependent

triggering of the MPT [35]. The time of DYm loss reports the

threshold for MPT induction, and can be used as a gauge for

mitochondrial sensitivity to specific stresses [36].

Initially, mitochondria appeared as homogeneously polarized

and then entered a phase of stochastic flickering, i.e. transient

redistribution of TMRM (Figure 6A). Eventually, DYm collapsed

within mitochondrial populations (Figure 6B and C). In Figure 6A,

representative examples are shown for single mitochondria after

control or drug treatment (TNFa). By following the TMRM signal

intensity along time in mitochondrial areas (mean signal intensity

plotted in red) or cytosolic regions (mean signal intensity plotted in

blue) a gradual decrease in mitochondrial-TMRM occurs,

concomitant with an increase in the cytosolic-TMRM signal. To

quantify the kinetics of TMRM release, we measured the StDev

[20] of the TMRM signal in individual cells (Figure 6B–D and S5)

by considering the whole cell area and extracting a StDev value

per cell. Approximately 400 cells per condition were analyzed per

condition and the mean value was plotted (Figure 6C, D and S5).

In Figure 6C is shown an example of the StDev measurements

over time for BSS (see Figure S5 for all conditions).

Cyclosporin A (CsA) and bongkrekic acid (BA) are two

commonly used MPTP inhibitors, which act at different sites.

CsA binds to the cyclophilin D and BA inhibits at the ANT (ATP/

ADP translocator) (for review see [37]). MCF-7 cells were treated

with either CsA (5 mM, 30 minutes) or with BA (50 mM, 1 hour)

before 6 hours incubation in BSS. Results show that CsA caused a

delay in depolarization events and BA blocked mitochondrial

depolarization when compared to BSS alone (Figure 6C and D).

Signal dissipation curves (Figure S5) were represented as

heatmaps (Figure 7A and B) to allow an easy comparison between

the drugs. As expected, under FM (negative control), TMRM

signal dissipation occurred at the latest point (approx. 232 sec-

onds). Euclidean clustering of our results (Figure 7B) suggests three

main groups: 1) conditions which did not impact initial

mitochondrial polarization state, 2) drugs which sensitized

mitochondria to depolarization, and 3) drugs which depolarized

mitochondria.
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Figure 6. Mitochondrial membrane sensitivity to apoptotic stimuli. A) Mitochondrial membrane potential (DYm)- MCF-7 wild-type (wt) cells
were incubated with tetramethyl rhodamine methyl-ester (TMRM, 25 nM) for 25 minutes at 37uC after 6 hours treatment with the apoptotic drugs.
Sequential images of TMRM fluorescence were acquired every second using exposure times of 20 milliseconds, during a total of 5 minutes. Here we
show the TMRM signal over the 5 minutes time for one cell incubated under full medium (FM) control condition and a cell incubated with a drug
(TNFa, 43 ng/mL). The curve plots represent the TMRM signal variation over time in a mitochondrial region (red) and in the cytosol/nucleus region
(blue)- here is shown the mean value from the 3 regions depicted in the image. B) Standard deviation (StDev) of TMRM signal- Distribution of the
TMRM signal throughout the whole cell was followed over time by the StDev value that corresponds to the standard deviation of the average gray
values within the ROI selection (each individual cell, in white). A single focal plane for 3, 35, 82, 180 and 300 seconds in cells under FM are shown. C)
Cyclosporin A (CsA)- MCF-7 wt cells were treated with CsA (5 mM, 30 minutes) prior to 6 hours incubation in BSS, followed by TMRM addition as
described above. D) Bongkrekic acid (BA)- MCF-7 wt cells were treated with BA (50 mM, 1 hour) prior to 6 hours incubation in BSS, followed by TMRM
as described. (Mean values 6 s.e.m. per condition are shown; experiments N = 2, approx. 100 cells per condition were followed).
doi:10.1371/journal.pone.0028694.g006
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Figure 7. DYm loss and derived dataset. A) Standard deviation (StDev) of TMRM signal as a heatmap- mean values of StDev were translated into
a heatmap (color scaled from 0 to 50 in arbitrary units, a.u.). B) Heatmap of StDev values over time for all conditions and derived dendogram (left side
diagram in black) illustrates the similarity of responses (Euclidean clustering). C) Derived dataset- Tree parameters were extracted per each StDev
curve: 1. t1/2_decay- time that takes for the signal to reach half of its initial value; 2. Y_spread- Total decrease of the signal over time; 3. MAX- The
initial maximum value. These parameters were extracted by using of a MATLAB function (see METHODS for details). Boxes show a representative
curve example for the StDev curve of FM over time (301 seconds). (Mean values 6 s.e.m. per drug are shown; experiments N = 4, approx. 400 cells per
condition were followed).
doi:10.1371/journal.pone.0028694.g007
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The latter was apparent for CCCP (20 mM) and thapsigargin

(1 mM), in which DYm was collapsed at the onset of the

experiment. In the intermediate group, TRAIL (20 ng/mL),

camptothecin (2 mM), oligomycin (10 mM) and TNFa (43 ng/mL)

similarly sensitized mitochondria to depolarization events. As

expected, under control FM and BSS conditions, DYm loss

occurred at later time points than for most drug treatments.

Surprisingly, ceramide (300 mM) clustered together with control

conditions. Although the initial StDev of the TMRM signal was

low, ceramide revealed a very mild impact on mitochondrial

membrane depolarization over time. For further analysis, the

dynamic response was described by extracting three subset

features: the half time for the signal-StDev decay (t1/2_decay);

the spread of the signal-StDev (Y_spread) and the maximum initial

signal-StDev value (MAX) (Figure 7C).

Apoptotic compounds result in different levels of Bax
activation

Bax has been shown to both promote mitochondrial fusion [32]

and participate in fragmentation events [38]. Drp1, which

promotes fission, can enhance Bax activation and cytochrome c

release [39]. On the other hand, pro-fusion protein, Mfn2, was

shown to block Bax activity [8]. We therefore measured Bax

activity in response to drug treatments. MCF-7 cells were stably

transfected with GFP-Bax, which upon activation forms high

molecular weight clusters (Figure 8) [40]. Under BSS control

conditions (Figure 8A, SBB), GFP-Bax was homogeneously

distributed within the cytosol, with low basal activation (5%

shown in Figure 8D). In response to apoptotic stimuli, GFP-Bax

became punctate and clustered at the mitochondria (Figure 8A

and B). Following 6 hours of treatment with CCCP (20 mM),

TNFa (43 ng/mL), or camptothecin (2 mM), 30% to 80% of the

cells showed GFP-Bax clustering (Figure 8D). Low levels of GFP-

Bax clustering were observed in response to ceramide (300 mM),

thapsigargin (1 mM) and oligomycin (10 mM) (Figure 8D). Notably,

the two DR ligands, TNFa (43 ng/mL) and TRAIL (20 ng/mL),

showed marked differences in Bax activation (Figure 8). While

both TNFa and TRAIL treatments resulted in a relatively small

population of fragmented mitochondria (Figure 5), TNFa
increased the number of swollen mitochondria, and TRAIL

maintained a high population of networked mitochondria

(Figure 5B). Moreover, although both treatments increased Bax

activation, the response was about 4-fold higher with TNFa than

with TRAIL (Figure 8C and D). We have assessed cytochrome c

release under control and drug conditions (Figure S3), and cells

expressing active GFP-Bax (clusters) exhibited loss of mitochon-

drial cytochrome c (Figure S3). Finally, we quantified cell death at

6 hours of treatments, and observed that cell death was minimal

under most conditions (Figure S4). At this timepoint, only

camptothecin caused significant cell death, in accordance with

its induction of high levels of Bax activation (Figure 8D and S4).

For the majority of the conditions, cell death was only evident at

the later time point of 24 hours (Figure S4).

Fuzzy Logic (FL) analysis of mitochondrial morphology
and cell death datasets

In summary, our results above show no apparent linear

relationship between morphology, DYm, or Bax activation

(Figure 9), suggesting that more complex interactions exist

between mitochondrial morphology and apoptotic events. There-

fore, we performed computational modeling to suggest cause-and-

effect relationships between morphological and functional features

of mitochondria in response to cell death activation. Primary and

secondary metrics contain biologically relevant information, yet

are not possible to incorporate using mechanistic modeling

frameworks such as ordinary differential equations (ODE) due to

lack of knowledge of the underlying interactions at the molecular

level. Fuzzy logic (FL) is a rule-based approximate artificial

reasoning method suitable for investigating signal transduction

pathways [41]. FL-based approaches allow for the integration of

prior knowledge and experimental data enabling high interpret-

ability [42]. Here, FL was used for the analysis of the multivariate,

heterogeneous datasets described above.

Initially, we performed an exhaustive search for all possible

interactions by constructing 30 single input-single output (SISO)

FL models. Each interaction represents a potential cause-and-

consequence relationship. In order to assemble a SISO FL model,

we used two membership functions (MFs) to represent the single

input in our fuzzy system, and combined them linearly upon

aggregation of two rules per model. This stepwise linear

combination allowed for the simulation of nonlinearity. A

parameter distribution mimicking the structure of a neural

network (NN) enabled the use of learning algorithms [21].

Importantly, this eliminated the bias inherent to manually

implementing the model. The SISO model was then fit to the

data. An advantage of this method is that it is straightforward to

extend the approach to a multiple input-single output model (see

Figure S2 and Information S1 step 2 for detailed description).

To determine directionality of all interactions (relationships

between morphological and functional responses), we analyzed

each model in a pair-wise manner (Figure 10A): the two analogous

models encoding the two potential senses are termed ‘‘mirror-

models’’, e.g. the models which considered Bax influence on

mitochondrial morphology classes were compared against the

models in which mitochondrial morphology classes influenced Bax

activity. From each pair of ‘‘mirror-models’’, the one with an error

(RMSE) higher than 15 were excluded (threshold in Figure 10A).

Thereby we obtained a set of models with a defined directionality

of input-output (Figure 10C). From the remaining models those

with the least error within each ‘‘mirror-model’’ were selected and

its direction represented in Figure 10B and C (black arrows for the

smaller RMSE). Our exhaustive search results suggest that Bax

activation was strongly related to both DYm and mitochondrial

fragmentation, which in turn, strongly influenced DYm dynamics

together with the swollen mitochondrial morphologic state

(Figure 10B). In summary (Figure 10C), Bax is suggested to be

upstream of mitochondrial depolarization and mitochondrial

fragmentation. In turn, mitochondrial morphology and DYm are

closely related in both directions, although with different intensities

revealed by a smaller error on the direction from mitochondrial

fragmented states (fragmented and swollen) to DYm (RMSE of

approx. 6.60 a.u., discontinuous arrow).

Discussion

High-resolution imaging is uniquely suited for addressing

complex events within single cells. As signaling events do not

function in a synchronized binary manner, it was necessary to

measure changes at the population level. Here we employed three

high-content imaging approaches to access information contained

not only at the subcellular level, but also at the population level.

Bioenergetic and apoptotic events result in diverse
mitochondrial morphology

The heterogeneous response of mitochondria to stress allowed

for identification of three distinct mitochondrial morphologies and

classification of phenotypic responses based on redistributions of
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subpopulations (Figure 1B). It was critical to include the ‘‘swollen’’

phenotype [43] in our analysis, as it greatly enhanced functional

information content, serving as an indicator for bioenergetic

dysfunction. Bioenergetic collapse was induced with CCCP, which

is presumed to induce mitochondrial swelling by influx of water

due to osmotic disruption. Similarly, inhibition of F1F0-ATPase

with oligomycin enhanced the swollen subpopulation (Figure 5B).

Indeed, swollen subpopulations revealed the greater variation in

response to our drug selection, indicating that in a classical

classification of merely two phenotypes (networked and fragment-

ed) these swollen mitochondria would be misclassified as

fragmented. It is notable that both thapsigargin and CCCP

induced a potent physiological impact (Figure 7B), which was not

equally reflected by their resultant morphological changes where

networked and fragmented mitochondria still coexisted in thap-

sigargin treated cells (CCCP: ((N/F/S)6s.e.m.) = (3.7260.58/

13.0761.95/83.1962.41)%); thapsigargin: ((N/F/S)6s.e.m.) =

(48.6464.62/43.2263.74/8.146126)%). Surprisingly, we found

no linear correlation between impact on DYm and mitochondrial

morphology. Thapsigargin, which induces an increase in cytosolic

Figure 8. Bax clustering under apoptotic stress. A) Bax clustering- MCF-7 cells stably expressing GFP-Bax were incubated 6 hours at 37uC with
the different conditions and nuclei were stained with Hoechst (100 ng/mL). Here is shown a representative example of basal levels of Bax activation
(BSS) and an example of Bax activation under camptothecin (2 mM). B) Active Bax translocates to the mitochondria- MCF-7 cells stably expressing
GFP-Bax were transiently transfected with mito-mCherry and incubated 6 hours (37uC) with camptothecin (2 mM) (Hoechst for nuclei). The 3D
rendering (ImageJ) image shows GFP-Bax (green) translocated to mitochondria (in red). C) Bax clustering- Representative microscope region for each
pro-apoptotic condition is shown. D) Bax levels- Cells with GFP-Bax clusters were scored as ‘‘positive’’ for Bax activation. D) Cells ‘‘positive’’ for
activated Bax were scored and plotted as shown. Values are presented as mean percentage 6 s.e.m. (N = 5, approx. 500 cells/condition; *, P#0.05, * *,
P#0.01, t-test). Images were acquired with a DVRT scope and a 406Objective.
doi:10.1371/journal.pone.0028694.g008
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calcium [44] and caused DYm collapse (Figure 7B), would have

been expected to enhance mitochondrial swelling [45]. Similarly,

oligomycin caused DYm collapse (Figure 7B) and resulted in an

elevated swollen subpopulation (Figure 5B), but with coexistence

of fragmented and networked mitochondria ((N/F/S6s.e.m.)

= (13.2062.87/38.2662.39/48.5364.91)%). Conversely, cer-

amide, which had the least impact on mitochondrial membrane

depolarization induced an increase in fragmented and swol-

len subpopulations ((N/F/S6s.e.m.) = (23.5463.03/53.1863.59/

23.2865.86)%) when compared with FM condition (Figure 5 and

Figure 7B). Interestingly, cells treated with ceramide showed

highly fragmented mitochondria when analyzed on a single-cell

basis [22], but population-based classification revealed co-

existence of swollen and networked population (approx. 22%

each). Furthermore, activation of different DRs by TNFa and

TRAIL showed subtle but distinct effects (Figure 9ii). Whereas

TNFa increased the incidence of swelling, TRAIL-treated cells

maintained more networked mitochondria (Figure 5B). This lack

of correlation may be due to the dual roles of swelling, both in

cytochrome c release [46] and cytoprotection [47]. Overall, the

Figure 9. Ensemble of parameters extract from imaging datasets. Data concerning mitochondrial morphology classification, Bax activation
scores and DYm derived dataset were acquired for matched apoptotic condition after 6 hour incubation at 37uC. Shown are the ensemble datasets
plotted together as a radar plot. This approach illustrates how each of the acquired parameters (mitochondrial morphology classes, DYm subset and
Bax activation) varies among tested conditions. i) Subset of results for control morphology conditions: FM, BSS, ceramide and CCCP. ii) Subset of
results for death receptor ligands, illustrating. It is possible to observe distinct mitochondrial responses of TNFa and TRAIL.
doi:10.1371/journal.pone.0028694.g009
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Figure 10. Fuzzy Logic modeling. A) Root mean square error (RMSE) of all 30 models. After assembly, all Single Input-Single Output (SISO) models
were trained with the data for the corresponding interaction. Model accuracy was measured upon calculation of RMSE. Here are plotted the RMSE for
all possible hypothesis (H): H1. ‘‘Individual mitochondrial morphology classes cause Bax’’; H2. ‘‘Bax is responsible for morphology classes’’; H3. ‘‘Bax
causes each of mitochondrial membrane potential (DYm) subset’’; H4. ‘‘DYm subset induces Bax’’; H5. ‘‘Mitochondrial morphology induces DYm
subset’’; H6. ‘‘Each of the DYm subset is responsible for the morphologic classes’’. First selection was made by discarding all models with a RMSE.15
(threshold in red). Secondly, the least errors between ‘‘mirror-models’’ were chosen (black bars). For clarity, H1-model is the ‘‘mirror-model’’ of the H2-
model as H3-model is the opposite of H4-model and as H5-model is for H6-model. B) Detailed causality predictions between datasets- Scheme
representing the final 6 most relevant predictions out of the 30 models. To assign these directional arrows, associated RMSE errors of the individual
‘‘mirror-models’’ were compared, e.g. H1-RMSE against H2-RMSE. Arrow direction was chosen based on the smaller error between ‘‘mirror-models’’
per dataset: Morphology, Bax and DYm. The numeric values associated with the arrows correspond to the actual RMSE value resultant for the
directional model prediction. C) Simplified scheme summarizing main interactions and causality suggested by our modeling results.
doi:10.1371/journal.pone.0028694.g010
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different apoptosis inducers differentially impacted morphologies

(Figure 5 and Table S4). Surprisingly, fragmentation was not the

most prominent phenotype, even under conditions where Bax was

considerably high (e.g. TNFa, camptothecin, CCCP). Apoptotic

drugs had the strongest impact on the swollen phenotype,

suggesting its association with apoptosis (Bax activation) rather

than the fragmented state.

Bax activation did not correlate with fragmentation
To directly address the apoptotic mitochondrial state we

measured Bax activation, an apoptotic point-of-no-return that

occurs as a single event in the population of mitochondria [19].

GFP-Bax reports a binary cellular response, allowing for precise

manual classification of the population response to different

apoptotic stimuli. It should be noted that GFP-Bax overexpression

in stable cell lines likely sensitized cells to apoptotic stimuli, so that

endogenous Bax activity at the 6 hour time point is likely not

matched. However, such an approach offers insight into the rate at

which Bax is impacted. Three of the drugs tested induced

significant Bax activation: CCCP, TNFa, and camptothecin

(Figure 8D). Likewise, these were the conditions that induced cell

death at 6 hours treatment (Figure S4). Notably there was no

apparent relationship between distribution of mitochondrial

morphologies and levels of Bax activation (Figure 9). CCCP

activation of Bax (28%), suggests that Bax activation is

downstream of compromised mitochondrial bioenergetics. Hence,

under certain conditions, regulation of mitochondrial morphology

can be uncoupled from Bcl-2 signaling. Interestingly, it has been

shown that CCCP alone is not sufficient to trigger Bax in MCF-7

wt cells [48], suggesting that our overexpressed Bax-MCF-7 cell

line is more sensitive to bioenergetic stress. Nonetheless,

oligomycin, which similarly enhanced swollen and reduced

fragmented and networked mitochondrial subpopulations had

little impact on GFP-Bax (8%). Furthermore, the TNFa and

TRAIL receptor ligands, which had a distinctive impact on

subpopulation distributions, also acted differently on GFP-Bax

activation (TNFa, 42% and TRAIL, 10%) (Figure 8D and 9).

These results suggest that TNFa apoptotic signaling to the

mitochondrion is faster than via TRAIL signaling.

Induced- DYm collapse revealed heterogeneous drug
action

The use of dyes is more challenging compared to GFP-based

sensors, due to photo-toxicity and loading concerns [49]. We

exploited the photo-toxicity effect and used it to locally induce

reactive oxygen species (ROS) within the mitochondrial matrix.

Because of the heterogeneous sensitivity of mitochondria to MPT

activation, we measured multiple parameters of mitochondrial

energetic response to stress. As such, single cell (and subcellular)

MPT events were quantified and averaged over the population.

High cytosolic calcium accumulation induces mitochondrial

uncoupling and opening of the MPTP to trigger matrix swelling

[50]. Therefore it is not surprising that CCCP (mitochondrial

uncoupler) and thapsigargin (responsible for calcium overload)

showed very low DYm at the onset (after 6 hours treatment) and

therefore clustered together (Figure 7B). These two drugs

differentially impacted both mitochondrial morphology and Bax

activation (Figure 9), suggesting that MOMP can occur indepen-

dent of or primary to Bax activation and mitochondrial swelling as

earlier reported [51,52]. In accordance with MPT association with

swollen states, camptothecin, TNFa and oligomycin, three of the

drugs presenting mostly swollen mitochondria, triggered MPT to a

similarly high extent (Figure 7B). Given that the DYm drives

mitochondrial fusion [53,54], we expected a negative correlation

between initial DYm (MAX) and time to depolarization (t1/

2_decay) with mitochondrial networked state. Nevertheless, this

was true only for control conditions (FM and BSS). For instance,

ceramide had little impact on DYm (Figure 7B and S5) although it

reduced networked mitochondria (Figure 5). Similarly, we also

expected negative correlations between Bax activation and

networked state, yet camptothecin induced both high Bax

activation (64%) and showed elevated networked mitochondria

(N6s.e.m. = (37.3964.96)%) (Figure 9).

Rule-based modeling of collective dataset suggests a
hierarchy for mitochondrial apoptotic events

The primary analysis of our compendium of data showed no

linear relationship between the different datasets (Figure 9). FL

modeling was used to investigate non-linear relationships within

datasets through an exhaustive search approach, and learning

algorithms were used to fit the model to our data. The resulting

models suggest that upon Bax activation, mitochondria become

fragmented and that different states of mitochondrial morphology

closely relate to MPT (Figure 10B). First, Bax is actively involved

in causing mitochondrial fragmentation, consistent with reports

that its interaction with mitochondrial fission protein Drp1

regulates fragmented states (Table 1). Secondly, our models

suggest that mitochondrial morphology states are tightly linked to

MPT dynamics (Figure 10B and C). As previously reported, our

model proposes a strong connection between DYm and non-

networked states of mitochondrial morphology, fragmentation in

particular ([55], Figure 10C). Indeed, previous studies have shown

that by inhibiting mitochondrial fragmentation a delay in MPT is

observed (Table 1). Finally, our model correctly predicted that Bax

Table 1. Summary of model predictions.

Causality Least error parameter (RMSE) Reported interactions

BaxRMitochondrial Morphology Fragmented (13.83) Active Bax redistributes to the mitochondria and stimulates Drp1-
mediated fission during apoptosis, leading to fragmentation
[[6,7,38,58,59,60,61].

BaxRDYm Max (8.46); t1/2_decay (8.49) Bax undergoes conformational changes and oligomerization resulting in
loss of DYm and subsequent MOMP [19,31,56,62,63,64,65,66,67].

Mitochondrial MorphologyRDYm (Y_spread) Fragmented (6.69); Swollen (6.56) Inhibition of fragmentation has been shown to delay MOMP [7,60,68].
Disruption of the mitochondrial outer membrane and consequent loss
of DYm can result from intensive swelling [69,70,71,72].

RMSE- Root mean square error; DYm - mitochondrial membrane potential; MOMP- Mitochondrial outer membrane permeability.
Here are stated the final most relevant modeling predictions and the literature references that validate them.
doi:10.1371/journal.pone.0028694.t001
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activation is upstream of MPT, consistent with the previously

experimentally demonstrated hierarchy [56]. Here the authors

demonstrated that Drp1-mediated mitochondrial fragmentation

can be downstream of Bax activation, but occurs prior to DYm loss

in Hela cells (Table 1).

Overall, our results demonstrate that the integrated response of

the mitochondrion to diverse stimuli is rarely, if ever, linear. Cell-

to-cell heterogeneity represents a rich source of biological

information, but remains relatively unexploited due to challenges

in its detection and quantification. To that end we utilized high-

content biosensors and rich feature extraction to quantify

subcellular mitochondrial phenotypes, identify single cell dynamics

and phenotype distributions in subpopulations of cells. Important-

ly, fuzzy logic-derived predictions based on these measurements

are in accordance with published data, thereby supporting the

suitability of our approach for determining the importance and

role of mitochondrial network maintenance in the regulation of

apoptotic cell death.

Earlier studies have shown that the combination of theoretical

and computational approaches with live-cell imaging and

quantitative biochemical analysis can provide new insight into

apoptotic mechanisms (for recent review see [57]). Our platform,

established and validated for human MCF-7 cells, can be extended

and readily applied for further mitochondrial-related studies.

Namely, by collecting new training and validation sets, mitochon-

drial morphology in different cell lines can be investigated, as well

as new phenotypic classes can be added (e.g. hyperfused [13]).

Note that our rule-based model can be readily used to include

datasets related to mitochondria function (e.g. respiration levels,

degradation by mitophagy) and to cell death events (e.g. calcium

overload, DNA fragmentation). Thus, the here-described platform

provides a flexible tool to integrate heterogeneous data into a

unified analysis and classification pipeline.

Supporting Information

Figure S1 Feature weighted importance- The extracted

features are ordered in a descending manner according to their

mean decrease in accuracy (MDA) score obtained during the

Random Forest (RF) model construction. The RF algorithm

estimates the importance of a feature by calculating how much the

prediction error increases when the data for that variable is

permuted. The calculations are performed tree by tree as the RF is

constructed to obtain the final descending order of importance.

(TIF)

Figure S2 Representative Single input-single output
(SISO) model- Example of one model built upon the hypothesis

that Bax activation caused fragmented mitochondria. The

parameters of the model are distributed following a neural

network (NN) structure. In the first layer are shown the parameters

of the membership functions (MFs) that fuzzified Bax activation,

mapping the degree of membership (DOM) of its measurements

into 2 fuzzy sets. These fuzzy sets represent ‘‘low’’ and ‘‘high’’

levels of Bax activation. The second layer has scalability purposes:

it would contain the rules to combine all the inputs if the model

had more than 1 input. The third layer contains parameters (c) to

linearly combine the i input MFs. Input and output MF

parameters were fitted to the data. The forth layer aggregates

the values from layer 3 to finally model the behavior of

‘‘fragmented’’ mitochondria as a function of ‘‘Bax’’.

(TIF)

Figure S3 Drug-induced cytochrome c release. Represen-

tative MCF-7 cells stably expressing GFP-Bax and immunostained

for cytochrome c and COXIV (mitochondria) following 6 hours

subjection to control (FM, BSS) or drug conditions. Nuclei were

detected using Hoechst (100 ng/mL). Images were acquired with a

DVRT microscope and a 636 objective (approx. 60 cells per

condition were imaged).

(TIF)

Figure S4 Cell death dataset. Cells were plated in 96 well

plates, and cell death was quantified for each condition at 6 hours

and 24 hours incubation with indicated drugs at 37uC. Dead cells

were stained with propidium iodide (PI, 1.0 ug/ml) and signal

intensity measured by plate reader (excitation: 530 nm; emission:

620 nm). Results are normalized to control and represented as

percentage 6 s.e.m (BSS, 100%). (N = 4).

(TIF)

Figure S5 Quantification of DYm sensitivity in response
to apoptotic stimuli. MCF-7 wild-type (wt) cells were incubated

with tetramethyl rhodamine methyl-ester (TMRM, 25 nM) for

25 minutes at 37uC after 6 hour treatment with the apoptotic drugs.

Sequential images of TMRM fluorescence were then acquired

every second using exposure times of 20 milliseconds, during a total

of 5 minutes. TMRM signal over time is reported as the StDev

value, which corresponds to the standard deviation of the average

gray values within each individual cell. A) Depolarization profiles of

initial conditions. TMRM signal StDev over 5 minutes (301 sec-

onds) for the initial conditions used to build mitochondrial

morphology training sets: FM, ceramide (300 mM) and CCCP

(20 mM). B) Depolarization profiles of drug selection.- TMRM

signal StDev over 5 minutes (301 seconds) for apoptotic conditions:

BSS, TNFa (43 ng/mL), TRAIL (20 ng/mL), thapsigargin (1 mM),

camptothecin (2 mM) and oligomycin (10 mM). Values are present-

ed as mean 6 s.e.m. (N = 4, approx. 400 cells/condition).

(TIF)
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to the nucleus.
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Table S2 List of Features extracted per cell and related
to the cell.
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Table S3 List of Features extracted per cell and related
to each mitochondrion.
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Table S4 Intercellular variances of mitochondrial class
subpopulations under the different drug treatments.
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3. Bereiter-Hahn J, Vöth M (1994) Dynamics of mitochondria in living cells: shape

changes, dislocations, fusion, and fission of mitochondria. Microscopy research
and technique 27: 198–219.

4. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, et al. (1998) Close

Contacts with the Endoplasmic Reticulum as Determinants of Mitochondrial Ca
2+ Responses. Science. pp 1–5.

5. Kuznetsov AV, Usson Y, Leverve X, Margreiter R (2004) Subcellular

heterogeneity of mitochondrial function and dysfunction: evidence obtained

by confocal imaging. Molecular and cellular biochemistry 256–257: 359–365.

6. Karbowski M, Youle RJ (2003) Dynamics of mitochondrial morphology in
healthy cells and during apoptosis. Cell Death and Differentiation 10: 870–880.

7. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, et al.

(2001) The role of dynamin-related protein 1, a mediator of mitochondrial

fission, in apoptosis. Developmental cell 1: 515–525.

8. Karbowski M, Arnoult D, Chen H, Chan DC, Smith CL, et al. (2004)
Quantitation of mitochondrial dynamics by photolabeling of individual

organelles shows that mitochondrial fusion is blocked during the Bax activation
phase of apoptosis. The Journal of cell biology 164: 493–499.

9. Frieden M, James D, Castelbou C, Danckaert A, Martinou J, et al. (2004) Ca(2+)

homeostasis during mitochondrial fragmentation and perinuclear clustering

induced by hFis1. THE JOURNAL OF BIoLoGiCaL CHEMISTRY 279:
22704–22714.

10. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, et al. (2004)

Drp-1-dependent division of the mitochondrial network blocks intraorganellar
Ca2+ waves and protects against Ca2+-mediated apoptosis. Molecular Cell 16:

59–68.

11. Lee Y, others, Youle J (2004) Roles of Mammalian Mitochondrial Fission and

Fusion Mediators Fis1, Drp1, and Opa1 in Apoptosis. Moecular Biology of the
Cell 15: 5001–5011.

12. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ (2006) Role of Bax

and Bak in mitochondrial morphogenesis. Nature 443: 658–662.

13. Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, et al.
(2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. The

EMBO Journal 28: 1589–1600.

14. Slack MD, Martinez ED, Wu LF, Altschuler SJ (2008) Characterizing

heterogeneous cellular responses to perturbations. Proceedings of the National
Academy of Sciences of the United States of America 105: 19306–19311.

15. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, et al. (2006)

CellProfiler: image analysis software for identifying and quantifying cell
phenotypes. Genome biology 7: R100.

16. Lamprecht MR, Sabatini DM, Carpenter AE (2007) CellProfilerTM: free,

versatile software for automated biological image analysis. BioTechniques 12:

379–382.

17. Liaw A, Wiener M (2002) Classification and Regression by random. Forest 2:
1–5.

18. Rizzuto, Dsandona, Racapaldi, Rbisson (1990) Nucleotide sequence ofthe

cDNA encoding subunitV IIe of cytochrome c oxidase from the slime mold
Dictyostelium discoideum. Nucleic Acids Research 18: 1–1.

19. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, et al. (1997) Movement
of Bax from the cytosol to mitochondria during apoptosis. The Journal of cell

biology 139: 1281–1292.

20. Toescu E, Verkhratsky A (2000) Assessment of mitochondrial polarization status
in living cells based on analysis of the spatial heterogeneity of rhodamine 123

fluorescence staining. Pflegers Archiv European Journal of Physiology 440:
941–947.

21. Ubeyli ED (2009) Adaptive neuro-fuzzy inference systems for automatic
detection of breast cancer. J Med Syst 33: 353–358.

22. Parra V, Eisner V, Chiong M, Criollo A, Moraga F, et al. (2008) Changes in

mitochondrial dynamics during ceramide-induced cardiomyocyte early apopto-
sis. Cardiovasc Res 77: 387–397.

23. Ganote CE, Armstrong SC (2003) Effects of CCCP-induced mitochondrial

uncoupling and cyclosporin A on cell volume, cell injury and preconditioning

protection of isolated rabbit cardiomyocytes. J Mol Cell Cardiol 35: 749–759.

24. Breiman L (2001) Random Forests. Machine Learning 45: 5–32.

25. Breiman L (1996) Bagging Predictors. Technical Report N0421: 1–20.

26. Jänicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required
for DNA fragmentation and morphological changes associated with apoptosis.

THE JOURNAL OF BIoLoGiCaL CHEMISTRY 273: 9357–9360.

27. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the
mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501.

28. Puthalakath H, O’Reilly LA, Gunn P, Lee L, Kelly PN, et al. (2007) ER stress
triggers apoptosis by activating BH3-only protein Bim. Cell 129: 1337–1349.

29. Shimizu T, Pommier Y (1997) Camptothecin-induced apoptosis in p53-null

human leukemia HL60 cells and their isolated nuclei: effects of the protease
inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both

caspases and serine proteases. Leukemia: official journal of the Leukemia Society
of America, Leukemia Research Fund, UK 11: 1238–1244.

30. Penefsky HS (1985) Mechanism of inhibition of mitochondrial adenosine
triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to

ATP synthesis. Proc Natl Acad Sci U S A 82: 1589–1593.

31. Pastorino JG, Tafani M, Rothman RJ, Marcinkeviciute A, Hoek JB, et al. (1999)

Functional consequences of the sustained or transient activation by Bax of the

mitochondrial permeability transition pore. THE JOURNAL OF BIoLoGiCaL

CHEMISTRY 274: 31734–31739.

32. Conradt B (2006) Cell biology: mitochondria shape up. Nature 443: 646–647.

33. Métivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, et al. (1998)

Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/

APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven

mitochondrion-specific fluorochromes. Immunology letters 61: 157–163.

34. Bradham CA, Qian T, Streetz K, Trautwein C, Brenner DA, et al. (1998) The

Mitochondrial Permeability Transition Is Required for Tumor Necrosis Factor

Alpha-Mediated Apoptosis and Cytochrome c Release. MOLECULAR AND

CELLULAR BIOLOGY 18: 1–12.

35. Brady NR, Elmore SP, van Beek JJ, Krab K, Courtoy PJ, et al. (2004)
Coordinated behavior of mitochondria in both space and time: a reactive oxygen

species-activated wave of mitochondrial depolarization. Biophys J 87:

2022–2034.

36. Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H (2005) Activated

mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and

reduces susceptibility to radical induced depolarization. The Journal of

biological chemistry 280: 25060–25070.

37. Green, John C, Nbsp, Reed D (1998) Mitochondria and Apoptosis. Science

(New York, NY) 281: 1309–1312.

38. Desagher S, Martinou JC (2000) Mitochondria as the central control point of

apoptosis. Trends in cell biology 10: 369–377.

39. Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, et al. (1998) Bax-

induced cytochrome C release from mitochondria is independent of the

permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 143:

217–224.

40. Nechushtan A, Smith CL, Lamensdorf I, Yoon SH, Youle RJ (2001) Bax and

Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell
Biol 153: 1265–1276.

41. Bosl WJ (2007) Systems biology by the rules: hybrid intelligent systems for

pathway modeling and discovery. BMC Syst Biol 1: 13.

42. Aldridge BB, Saez-Rodriguez J, Muhlich JL, Sorger PK, Lauffenburger DA

(2009) Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-
induced signaling. PLoS Comput Biol 5: e1000340.

43. Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, et al. (2002) A distinct

pathway remodels mitochondrial cristae and mobilizes cytochrome c during

apoptosis. Developmental cell 2: 55–67.

44. Furuya Y, Lundmo P, Short AD, Gill DL, Isaacs JT (1994) The role of calcium,
pH, and cell proliferation in the programmed (apoptotic) death of androgen-

independent prostatic cancer cells induced by thapsigargin. Cancer research 54:

6167–6175.

45. Korge P, Weiss JN (1999) Thapsigargin directly induces the mitochondrial

permeability transition. FEBS. pp 1–8.

46. Sauvanet C, Duvezin-Caubet S, Rago J, Rojo M (2010) Energetic requirements

and bioenergetic modulation of mitochondrial morphology and dynamics.

Seminars in Cell and Developmental Biology. pp 1–8.

47. Chang DT, Reynolds IJ (2006) Mitochondrial trafficking and morphology in

healthy and injured neurons. Progress in neurobiology 80: 241–268.

48. Smaili S, Hsu Y, Sanders K, Russell J, Youle R (2001) Bax translocation to

mitochondria subsequent to a rapid loss of mitochondrial membrane potential.

Cell Death and Differentiation 8: 909–920.
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