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Abstract

Defective IFN signaling results in loss of innate immunity and sensitizes cells to enhanced cytolytic killing after Vesticular
Stomatitis Virus (VSV) infection. Examination of the innate immunity status of normal human bronchial epithelial cells
Beas2B and 7 lung cancer cells revealed that the abrogation of IFN signaling in cancer cells is associated with greater
sensitivity to VSV infection. The disruption of the IFN pathway in lung cancer cell lines and primary tumor tissues is caused
by epigenetic silencing of critical interferon responsive transcription factors IRF7 and/or IRF5. Although 5-aza-29-
deoxycytidine treatment fails to reactivate IRF7 and IRF5 expression or protect cells from VSV infection, manipulating IFN
signaling by altering IRF expression changes the viral susceptibility of these cells. Lung cancer cells can be partially
protected from viral killing using IRF5+IRF7 overexpression, whereas IFN pathway disruption by transfection of siRNAs to
IRF5+IRF7 increases cells’ vulnerability to viral infection. Therefore, IRF5 and IRF7 are key transcription factors in IFN pathway
that determine viral sensitivity of lung cancer cells; the epigenetically impaired IFN pathway in lung cancer tissues provides
potential biomarkers for successful selective killing of cancer cells by oncolytic viral therapy.
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Introduction

As the leading cause of cancer-related mortality in both men

and women, lung cancer is responsible for well over 1 million

deaths worldwide annually. Although diagnosis and treatment

have been improved, the five-year survival rate is only 14% largely

due to the failure of tumor debulking surgery and systemic

chemotherapy. The improvement of lung cancer treatment is a

major public health goal. Recently, naturally occurring or

genetically engineered oncolytic viruses, including measles virus,

Newcastle Disease Virus (NDV), VSV, adenoviruses, reovirus and

Herpes simplex virus offer an effective and promising alternative

therapeutic approach to fight this disease [1]. Used alone or in

combination with chemotherapy, oncolytic viruses selectively

destroy tumor cells by targeting cancer defects in major pathways,

such as p53 tumor suppressor, ras signal transduction and IFN

signaling pathways [1,2]. Currently the effectiveness and safety of

different oncolytic viruses in treatment of various cancers is being

evaluated in preclinical animal models and phase I–III clinical

trials [3]. Among them, a negative strand RNA virus VSV, which

can trigger innate immunity mechanisms, has been shown to be

efficacious against malignant glioma, melanoma, leukemias,

hepatocellular, breast, bladder and prostate cancers that have

defective antiviral responses. [4,5,6,7].

Type I IFN signaling pathway is activated by VSV infection as

first line innate immune response to protect normal tissues from

viral killing, and therefore tumor cells that have lost their antiviral

reactivity represent selective targets for VSV. The primary

response upon viral infection and uptake of double-stranded

RNAs is TLR3 activation which is mediated by IRF-3, cJUN/

ATF-2, and NFkB, thereby inducing the production of immediate-

early response genes primarily IFNb. Those early response IFNs

bind to type I IFN receptors (IFNAR) in an autocrine or paracrine

manner to activate STAT1 and induce expression of secondary

antiviral response genes including the transcription factor IRF7

which then promotes the expression other IFN stimulated genes

(ISGs). Finally, the tertiary transcriptional wave of IFNa
establishes an antiviral state [8,9].

The impairment of IFN signaling is linked to an enhanced risk

of tumor development [10,11,12] as the IFN pathway also exhibits

antiproliferative and immune surveillance activities against cancer.

Accordingly, the majority (,80%) of NCI 60 panel cancer cell

lines display disrupted innate immunity responses [9]. We have

shown that the IFN signaling pathway was abrogated during

spontaneous immortalization in fibroblasts from Li-Fraumeni

Syndrome (LFS) patients, who are predisposed to early onset

and multiple tumors because of germ-line mutations in p53. As an

important epigenetic control mechanism, DNA hypermethylation

of CpGs in promoter regions represses gene expression both

during development and tumorigenesis. Several ISGs were down-

regulated by epigenetic silencing during immortalization, an early

and necessary step in carcinogenesis, and some of the same ISGs

were up-regulated upon replicative senescence [13,14,15]. Treat-

ment of the immortal LFS cell lines with 5-aza-29-deoxycytidine

(5-aza-dC), an inhibitor of DNA methyltransferases restored IFN

signaling and induced a senescence-like state [13,15].
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The IFN-inducible transcription factors, IRFs, are essential

mediators of the IFN-response. Lack of IRF7 expression

corresponded to aberrant promoter hypermethylation of CpG

islands within its promoter and was also identified as one of

methylation-silenced genes in several cancer types including lung,

hepatocellular, gastric and pancreatic cancers [16,17,18,19].

Reduced expression of IRF5, another important transcription

factor of the IFN pathway, was also observed in hematological

malignancies, which is consistent with its role to induce G2-M

growth arrest and apoptosis [20]. Epigenetic inactivation of IRF5

was similarly observed in hepatocellular and gastric cancer

[21,22]. As direct inducers of IFN pathway, IRF7 and IRF5

induce overlapping ISG transcriptional profiles, however, differ-

ential expression patterns and kinetics of ISGs indicted that they

possess nonredundant and distinct roles in innate immune

responses. Compared to IRF7, IRF5 is a much stronger activator

of the early antiviral genes including IFNb [23]. In a recent report

we demonstrated that enhanced expression of IRF5 and/or IRF7

could reactivate IFN related genes, inhibit cell growth, and induce

senescence [15]. Silencing of these essential IRFs and the growth-

suppressive IFN pathway may be a necessary early event in the

development of cancer, particularly associated with immortaliza-

tion.

Although cancer cells, with their IFN-pathway-abrogated, may

have acquired a growth/survival advantage over their normal

counterparts, they simultaneously compromise their antiviral

protective ability. Here, new therapeutic paradigms involving

oncolytic RNA viruses to target the defective innate immune

system in cancer cells are being explored. We found that the

sensitivity to oncolytic VSV was strongly and significantly

associated with the disruption of the IFN signaling pathway. A

failure to up-regulate ISG expression upon dsRNA stimulation

indicated a weakened antiviral response sensitizing lung cancer cell

lines to VSV-induced oncolytic cell death. However, not all lung

cancer cells can be killed by VSV infection, as some of them

possess a relatively normal innate immunity pathway and therefore

are resistant to VSV-mediated viral killing. Bisulfite sequencing

revealed promoter hypermethylation of either IRF7 and/or IRF5

in several lung cancer cell lines. Similarly, when we investigated

DNA from fresh frozen lung cancer tissues, we observed promoter

methylation of IRF7 and/or IRF5, suggesting that their IFN

antiviral response was also epigenetically silenced as functional

IRF7 and IRF5 are required for an intact IFN pathway. However

5-aza-dC treatment failed to reactivate IRF5 or IRF7 expression

or rescue lung cancer cells from VSV infection. Altering innate

immunity by manipulating IRF expression changed viral suscep-

tibility of normal Beas2B bronchial epithelial cells or lung cancer

cells. Cells without a functional IFN response are partially

protected from virus following IRF5 and IRF7 overexpression,

whereas disruption of IFN signaling by targeting IRF5 and IRF7

using siRNAs increased Beas2B cells’ vulnerability to the cytolytic

effects of VSV. Therefore, IRF5 and IRF7 are pivotal factors in

IFN pathway that determine the viral sensitivity of the cells to

oncolytic viruses. The highly selective VSV killing of lung cancer

cells with an impaired IFN pathway due to epigenetically

downregulation of IRFs indicates that these genes are ideal

biomarkers for determining the susceptibility of tumors to

oncolytic viral therapy.

Results

IFN signaling deficiency is associated with VSV sensitivity
The IFN pathway controls the cellular response to viral

infection and dsRNA. Cells that have a fully functional innate

antiviral system are able to protect themselves against viruses,

largely due to the induction of IFN signaling cascade. We have

shown that the IFN pathway was epigenetically inactivated in

fibroblasts from LFS patients after spontaneous immortalization

[14]. Examination of innate immunity status in normal bronchial

epithelial cell line Beas2B, its ras transformed derivative cells and 2

tumorigenic clones revealed that as IFN signaling activity

decreased the sensitivity to VSV killing increased during lung

tumorigenesis (Li and Tainsky, unpublished data). Because

functional inactivation of IFN pathway has been a common

trait of many cancers, we used 7 long-term lung cancer cell lines

(4 adenocarcinomas: CRL5800, CRL5807, CRL5810 and

CRL5872, 2 squamous carcinomas: HTB172 and CRL5928 and

1 small cell carcinoma: CRL5869) to study the changes in their

innate immune system.

Using a representative set of ISGs in Q-RT-PCR assays, we

examined both the baseline ISG expression levels and their

expression after stimulation of the IFN pathway by synthetic

dsRNA polyI:C, which mimics viral RNA [15]. We found lower

baseline expression of most ISGs tested in all lung cancer cell lines

as compared to Beas2B cells (Table 1). The IFN pathway could be

activated in Beas2B cells as 12 out of 14 genes were inducible by

polyI:C stimulation. In contrast, polyI:C failed to induce mRNAs

of all 14 genes tested in CRL5810 cells, while variable induction

deficiencies of essential antiviral response genes such as IFNa,

IFNb, IRF7, IRF5 and STAT1 were detected in CRL5800,

CRL5807, CRL5872 and CRL5869 cells. Surprisingly, Q-RT-

PCR demonstrated polyI:C inducible expression of 10 out of 14

ISGs in HTB182 and CRL5928 cells at similar levels to Beas2B

indicating a relatively normal antiviral response in those two lung

cancer cells (Table 2).

Because compromised innate immune signaling often leads to

increased sensitivity to viral killing, VSV sensitivity was investi-

gated to determine whether the lack of ISG activation corresponds

to elevated vulnerability to oncolytic viral killing in the lung cancer

cells. As expected, Beas2B cells with intact IFN response resisted

VSV infection exhibiting little change in cell viability. In addition,

HTB182 and CRL5928 were relatively resistant compared to

other lung cancer cells as more than 60% of the cells were still

alive at high dose VSV (MOI5) even without exogenous IFNa
pretreatment (Figure 1A). In contrast, the rest of the lung cancer

cell lines variably lost their ability to protect themselves from VSV.

An increasing number of IFN-signaling-deficient lung cancer cells

(from ,30% to ,70%) were killed by raising dose of VSV

exposure and adding IFNa to the medium failed to inhibit

cytotoxicity of high dose VSV (MOI5) in CRL5800, CRL5810

and CRL5869 cells (Figure 1A). Interestingly, the reduced basal

levels of most ISGs in all lung cancer cell lines suggested no

association between VSV susceptibility and basal ISG levels

(Table 1). The variable sensitivity to viral killing corresponded to

the differential abrogation of the IFN response in lung cancer cell

lines. The selective virolytic effects of VSV were most significant in

CRL5810 cells consistent with the most severe defects in their

innate anti-viral system (Table 2 and Figure 1A). We also

identified 5 ISGs (IRF5, IRF7, STAT1, IRF3 and IFI16), whose

expression was distinctively elevated .3-fold in response to poly

I:C treatment only in VSV-resistant cell lines (Table 2 and

Figure 1A). Western blot analysis confirmed that the elevated ISG

mRNA expression upon polyI:C induction resulted in upregulated

protein levels in VSV-resistant cells. Ser727 phosphorylation of

STAT1 can only be induced by IFNb but not by IFNa [24], and

was used as a specific marker for early response gene activation of

IFN pathway. A strong polyI:C-induction of phosphorylated-

STAT1 (p-STAT1, Ser727), STAT1, IRF5 and IRF7 protein

IRF Epigenetic Silencing Increases VSV Sensitivity
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levels was consistent with the resistance of normal Beas2B cells and

the two cancer cells, HTB182 and CRL5928, to VSV infection

and vice versa for the viral-sensitive lung cancer cell line. Mild

Ser727 phosphorylation of STAT1 can be detected in CRL5807

cells indicating relatively normal early IFN signaling in this cell

line compared to other VSV-sensitive cell lines. IRF5 and IRF7

protein levels were uniformly not inducible upon polyI:C

treatment in all the virus-sensitive lung cancer cell lines

(Figure 1B). No significant change of IRF3 protein was observed

by polyI:C treatment among all lung cancer cells perhaps because

its activity is mainly regulated post-translationally by changes in

phosphorylation (data not shown). Therefore, our observations

supported the inverse association between the oncolytic sensitivity

to VSV and the inducibility of IFN signaling in normal bronchial

epithelial cells Beas2B and lung cancer cells.

Epigenetic silencing of critical transcription factors IRF7
and IRF5 results in abrogation of IFN pathway

Promoter hypermethylation is an epigenetic mechanism of gene

regulation known to silence gene expression in mechanisms of cell

fate determination and carcinogenesis. We previously reported

that the IFN pathway has been abrogated by epigenetic silencing

of a key antiviral defense mediator IRF7 in immortal LFS

fibroblasts [14,15]. Interestingly, another study found cigarette

smoke exposure led to suppression of IFN signaling due to IRF7

promoter hypermethylation, which resulted in decreased antiviral

defenses of the respiratory epithelium [25]. Therefore, we

investigated whether promoter methylation of IRF7 could also

be the cause of IFN pathway disruption in lung cancer cell lines.

DNA sequencing of sodium bisulfite-treated genomic DNA

revealed IRF7 promoter hypermethylation in 2 lung cancer cell

Table 2. Abrogation of IFN pathway activation in human lung cancer cell lines after polyI:C treatment.

Beas2B T/U CRL5800 T/U CRL5807 T/U CRL5810 T/U CRL5872 T/U HTB182 T/U CRL5928 T/U CRL5869 T/U

TLR3 1.22 3.46 2.41 1.27 1.04 2.85 2.22 21.27

IFNa 3.54 1.89 2.44 22.46 21.77 21.17 2.27 21.91

IFNb 25.58 2.30 1.69 23.46 21.73 1.71 1.26 1.40

IRF5 2.15 23.03 1.84 23.01 22.41 2.77 1.23 21.44

IRF7 13.96 1.03 1.33 1.79 1.49 7.31 8.17 21.30

IRF8 9.45 1.84 8.34 21.80 21.80 21.16 1.08 22.22

STAT1 14.25 1.93 1.54 2.16 1.42 10.56 5.62 23.05

OAS1 15.85 2.81 6.32 21.95 22.19 7.41 12.82 21.41

IFI15 27.28 2.53 5.74 21.80 1.64 39.12 75.06 21.45

IFI78 28.76 21.34 5.54 22.64 22.03 6.50 48.50 22.10

IFNAR1 1.34 21.64 21.40 1.18 21.39 1.57 1.24 29.25

IRF3 4.95 2.23 21.42 1.72 21.62 6.15 3.73 29.13

IFI16 35.62 1.40 21.38 22.33 21.04 24.59 17.88 25.24

IFI27 566.7 133.44 121.10 216.45 21.33 675.59 8.63 255.33

T/U: treated with polyI:C versus untreated cells.
doi:10.1371/journal.pone.0028683.t002

Table 1. Basal levels of selected ISGs were down-regulated in human lung cancer cell lines compared to Beas2B cells.

CRL5800 CRL5807 CRL5810 CRL5872 HTB182 CRL5928 CRL5869

TLR3 236.00 231.34 223.43 221.41 22.89 21.39 1.47

IFNa 27.01 27.46 24.53 25.89 25.54 21.17 4.06

IFNb 235.75 219.03 215.35 24.11 25.90 1.67 1.11

IRF5 21.87 28.46 23.86 22.57 21.01 22.03 1.80

IRF7 222.32 26.73 225.99 266.26 24.53 213.36 24.79

IRF8 2.27 21.02 21.65 4.86 21.69 30.27 47.18

Stat1 212.55 215.24 26.54 232.45 21.87 22.25 22.38

OAS1 219.16 29.06 292.41 7.94 24.53 21.96 2.01

IFI15 2143.01 220.97 2519.15 2270.60 228.64 224.76 277.71

IFI78 2109.90 27.57 2232.32 212.38 1.60 216.91 22.60

IFNAR1 24.35 22.91 1.20 27.11 21.66 26.15 21.10

IRF3 213.36 220.97 236.76 27.31 221.26 27.21 1.44

IFI16 2112.99 22.95 2308.69 255.33 252.71 2172.45 29.45

IFI27 226.91 22592.27 2436.55 26.36 2689.78 22.43 227.86

doi:10.1371/journal.pone.0028683.t001
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lines (CRL5810 and CRL5869), which suggests that epigenetic

silencing of IRF7 has played a role in the disruption of IFN

signaling in these cell lines (Figure 2A). Since IRF5 induced a

stronger transcription profile of the early antiviral genes [23] and

has been newly identified as a novel methylation marker for cancer

[21,22], we further examined the methylation status of IRF5

promoter regions in lung cancer cells. Increasing IRF5 hyper-

methylation was found in CRL5800, CRL5807, CRL5872 and

CRL5810 cell lines (Figure 2B), thus the similar virus susceptibility

of IRF7-unmethylated CRL5800, CRL5807, CRL5872 cells was

the consequence of epigenetic IRF5 inactivation. Moreover,

promoter hypermethylation of both IRF7 and IRF5 explained

the highest sensitivity to VSV manifested by CRL5810 cells. In

contrast, promoter regions of neither IRF7 nor IRF5 were found to

be methylated in Beas2B, CRL5928 and HTB182 cell lines

consistent with their intact innate immunity and resistance to

oncolytic viral killing. Altogether the selective loss of viral

protection in lung cancer cells was related to epigenetic

inactivation of at least one of the IRFs implicating the necessity

of both IRF7 and IRF5 to be active for a functional IFN pathway.

Because epigenetic events may occur during long-term culture,

which were not present in the original cancer, we examined IRF-

promoter methylation patterns in fresh-frozen primary lung cancer

tissues. The IRF7 promoter was fully methylated in 6 out of 20

NSCLCs, while 5 other tumors had 59-partial methylation

(Figure 2B) as an initial event that can spread to neighboring

CpG sites [26]. In parallel, we found heavy methylation in 4 of 20

NSCLC samples and 11 others had partial methylation of the

Figure 1. VSV sensitivity was directly correlated with the status of the IFN pathway of the cells. A. Selective cytotoxicity of VSV in lung
cancer cells with defective IFN pathway. Beas2B and 7 lung cancer cell lines were evaluated for their ability to induce antiviral response upon VSV
infection with or without IFNa pretreatment by virus-induced cytopathicity using MTT assay. The values were normalized to the value of control
uninfected cells, which was set to 100% from at least two independent experiments (n = 3) with SD at ,10%. (-): No VSV infection control. MOI0.05:
multiplicity of infection 0.05, low dose of VSV infection. MOI5: multiplicity of infection 5, high dose of VSV infection. B. Protein expression levels of
several ISGs in polyI:C treated Beas2B and lung cancer cells were compared to untreated cells using western blots. Fold changes of IRF5 and IRF7
expression after polyI:C treatment were indicated. Tubulin was used as a normalizing control.
doi:10.1371/journal.pone.0028683.g001

IRF Epigenetic Silencing Increases VSV Sensitivity
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Figure 2. Sequencing of bisulfite treated genomic DNA revealed promoter methylation of IRF7 and IRF5 in lung cancer cell lines and
primary tissues. The methylation status of CpG islands in the IRF7 and IRF5 promoter regions in Beas2B, human lung cancer cell lines and primary
tissues was examined by sequencing of bisulfite treated genomic DNA. A. IRF7. B. IRF5. Closed circles, methylated C in CpG dinucleotides; open
circles, unmethylated C in CpG dinucleotides. TSS, transcription start site.
doi:10.1371/journal.pone.0028683.g002

IRF Epigenetic Silencing Increases VSV Sensitivity
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IRF5 promoter regions. Overall, 15 out of 20 patient samples had

promoter methylation of either one or both IRFs, events sufficient

to attenuate their IFN response. No aberrant IRF7 or IRF5

hypermethylation was detected in the matching buffy coat DNAs

from these same patients indicating that the IRF promoter

hypermethylation had not resulted from germ-line epigenetic

changes. Therefore the methylation IRF7 or IRF5 promoters

found in the lung cancer cell lines probably had its origin in the

tumor rather than being an event selected during to cell culture.

Our results demonstrated that the increased susceptibility to viral

infection is mediated by epigenetic mechanisms down-regulating

key antiviral defense pathway regulators IRF5 and IRF7. The

prevalence of epigenetic silencing of IRFs and its tight association

with VSV sensitivity make them ideal theranostic biomarkers to

screen lung cancer patients for possible oncolytic viral therapy.

Manipulation of IFN signaling pathway targeting IRFs
alters VSV viral sensitivity

We previously demonstrated that 5-aza-dC demethylation

treatment could restore gene expression of epigenetically silenced

IRF7 and other ISGs thereby reactivating the IFN signaling

pathway in immortal LFS fibroblast cell lines [14,15]. To our

surprise, IRF7 and IRF5 expression levels remained absent

(Figure 3A, less than 1.5 fold increase for both IRF5 and IRF7)

in lung cancer cell line CRL5810 after 5-aza-dC treatment for as

long as 4 weeks. Remarkably, sequencing of bisulfite-treated DNA

at the IRF5 and IRF7 promoter regions revealed that prolonged 5-

aza-dC application was not able to reverse promoter hypermethy-

lation of IRFs in CRL5810 cells (data not shown). Similar

resistance to 5-aza-dC treatment was found for the other IRF7-

methylated lung cancer cell line CRL5869 (data not shown). As a

result, extended demethylation treatment with 5aza-dC was

unable to affect the VSV sensitivity of CRL5810 cells (Figure 3B)

and further indicate that IRF5 and IRF7 are two of the

fundamental factors in IFN signaling that can regulate oncolytic

viral sensitivity.

Neither of these two IRF transcription factors was able to be

induced in VSV-sensitive lung cancer cells (Table 2 and Figure 1B),

whereas overexpression of IRF5 and/or IRF7 in immortal LFS

fibroblasts upregulated other ISGs, manifested a faster and

stronger innate immune signaling upon dsRNA stimulation, which

is sufficient to induce senescence [15]. In order to revive the

disabled IFN response in lung cancer cells, IRF5 and IRF7 alone

or in combination were stably transfected into CRL5810 cells, in

which sustained 5-aza-dC treatment had no effect on demethyl-

ation of IRF promoter. Western blot analysis confirmed the

elevated basal protein expression of IRFs in IRF5 and IRF7

overexpressing cells (Figure 4A). Individual restoration of IRF

expression partially protected CRL5810 cells from VSV cytolysis

with the greatest increase of cell viability from ,50% to more than

85% at MOI0.05, and from ,30% to ,50% at MOI5 of VSV

infection in cells overexpressing both IRF5 and IRF7 compared to

vector control cells (Figure 4B). We explained the modest gain of

viral protection even after IRF5 and IRF7 combined transfection

by severe loss of other important ISGs in CRL5810 cells as

indicated by the lack of effect upon exogenous IFN.

The selective replication of VSV in tumors with compromised

IFN pathway is the cornerstone for its clinical application as

oncolytic viral therapy. However, not all lung cancer patients’

cancers are deficient in their innate immune pathway. To

overcome this obstacle and destroy those VSV-resistant cells,

siRNAs to IRF5 (siIRF5) and IRF7 (siIRF7) were applied to

suppress IFN response in cells with active IFN pathway.

Compared to Beas2B cells transfected with control scrambled

siRNA, cells transfected with siIRF5 or siIRF7 resulted in a

decrease in IRF5 and IRF7 induction after polyI:C treatment

while transfection of both siIRF5+siIRF7 totally eliminated IRF

activation (Figure 5A). Transfection of siIRF5 alone significantly

inhibited polyI:C-activation of both IRF5 and IRF7, which can be

explained by an essential role for IRF5 as a strong inducer of IFNb
[23]. Diminished IRF5 expression by siIRF5 resulted in much less

IFNb production leading to decreased stimulation of secondary

response gene IRF7. As expected, the suppression of those 2 genes

by siRNAs resulted in significant loss of protection from VSV

infection with the most cytotoxicity increase to nearly 40% upon

higher dose VSV exposure in the combination knockdowns

compared to control siRNA (Figure 5B). Similar findings were

observed in parallel transfection studies of VSV-resistant

CRL5928 cells, which have relatively intact IFN signaling (data

not shown). This clearly demonstrates that IRF5 and IRF7 are

Figure 3. 5-aza-dC treatment failed to reactivate IFN pathway or protect CRL5810 cells from VSV infection. A. Western blots revealed
no increase of IRF7 or IRF5 protein expression after 5-aza-dC treatment of CRL5810 cells. Fold changes of IRF5 and IRF7 expression were indicated on
top of the 5-aza-dC treated column. B. CRL5810 cells were still sensitive to VSV cytolyic effects after 5-aza-dC treatment.
doi:10.1371/journal.pone.0028683.g003

IRF Epigenetic Silencing Increases VSV Sensitivity
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functionally essential for innate immunity that determines the viral

sensitivity of these cells.

In summary, the loss of IFN signaling is necessary and sufficient

for increased sensitivity to killing by oncolytic viruses. The

manipulation of the IFN pathway through the transcription

factors IRF5 and IRF7 altered the cells’ response to VSV

infection. Analysis of the IFN pathway using these IRF

methylation biomarkers may provide new theranostic biomarkers

for determining a patient’s sensitivity to oncolytic viruses.

Discussion

A functional innate immune antiviral system protects cells

against viral infection, mainly due to the induction of the defensive

IFN signaling cascade, which appears to be the basis for virus

resistance and immune stimulatory properties. Here, we have

demonstrated the strong and convincing inverse relationship

between effective innate antiviral response and oncolytic viral

susceptibility using lung cancer cell lines. Moreover, transcription

factors IRF5 and IRF7 were identified as critical regulators of

innate immune system and useful biomarkers for oncolytic virus

susceptibility in lung cancer cells as both of them have to be

inducible for a functional IFN pathway. Inactivation of either

IRF5 or IRF7 weakened the antiviral response with the most

significant loss when both IRFs were epigenetically silenced in

CRL5810 cells. The varying extent of cytolytic death was related

to the differential severity of IFN pathway defects. Despite the

presence of exogenous IFNa, CRL5810 cells are non-responsive

and remain vulnerable to VSV killing corresponding to the

complete disruption of IFN pathway activity.

Loss of tumor suppressor gene expression by aberrant promoter

methylation is an early and common epigenetic event during the

onset and progression of cancer [27]. We have shown epigenetic

silencing of IRF5 and IRF7 at CpG islands of promoter regions in

lung cancer. Pharmacological targeting of aberrant epigenetic

changes by demethylation agents has shown clinical efficacy in

several hematologic malignancies [28]. However, those methyla-

tion inhibitors may not prevent the recurrence of hypermethyla-

tion and we have presented evidence that epigenetic deregulation

cannot be fully reverted in a series of lung cancer cell lines. The

failure of demethylation agents to restore crucial ISG expression

indicates that those lung cancer cells are ideal targets for oncolytic

viral therapy.

Although basal levels of most ISGs were reduced in all the lung

cancer cell lines compared to normal bronchial epithelial cells,

oncolytic viral sensitivity is only associated with polyI:C-inducible

expression levels of certain key ISGs such as IRF7 and IRF5.

However, IRF5 and IRF7 overexpression is not sufficient to

completely restore IFN pathway and only partially rescued cells

from viral infection due to deficiency of other important ISGs.

Failure to induce Ser727 phosphorylation upon polyI:C treatment

suggested additional innate immunity defects in several VSV

sensitive cell lines (Figure 1B). In addition, mRNA of 3 other ISGs

(STAT1, IRF3 and IFI16, Table 2) is consistently induced in

VSV-resistant cells. Further studies are needed to confirm them as

theranostic biomarkers and may identify additional ISGs as

biomarkers in lung cancer whose activation could distinguish

virus-resistant from virus-sensitive cancers.

We presented evidence that functional inactivation of IRF5 and

IRF7 is the major mechanism to disrupt IFN signaling in lung

cancer cells. Nevertheless, various malignancies harbor diverse

molecular defects of this pathway. Deregulated JAK3 and RNase

L pathways in LNCaP prostate cancer cells [29], defective STAT1

and STAT2 activation in fibrosarcoma and melanoma cells

[30,31] and down-regulated IFNAR in high grade bladder cancer

[32] have all been reported to disable the innate immune

signaling. Overall, the IFN pathway is frequently downregulated

during tumorigenesis even though distinct sets of ISGs are

suppressed by different mechanisms in a cancer-type-specific

manner.

A failure to activate innate immunity response upon oncolytic

RNA virus infection leads to the highly selective clearance of IFN-

nonresponsive tumor cells. In addition to VSV, other RNA viruses

such as NDV [33] and influenza virus [34] have also been

demonstrated to have tumor-selective cytotoxicity using the same

mechanism to target cells with diminished IFN activity. Clinical

Figure 4. Overexpression of IRF5 and/or IRF7 partially rescued CRL5810 cells from cytolytic effect of VSV. A. Protein expression levels
of STAT1, IRF5 and IRF7 were analyzed by western blots in IRF stable transfected CRL5810 cells. Anti-flag antibody was applied to detect transfected
IRF protein levels, while IRF5- and IRF7-specific antibodies were used for total IRF protein expression. B. Overexpression of IRF5 and/or IRF7 partially
increased CRL5810 cells’ resistance to VSV infection with the most increase in the combined trasfection. * P,0.02, ** p,0.001.
doi:10.1371/journal.pone.0028683.g004
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trials of intravenous administration of NDV (PV701) proved its

initial oncolytic effects in several solid tumors [35]. In addition,

VSV strains with M protein mutations (AV1 and AV2) triggered

more robust antiviral response because of their defects in the

ability to shutdown IFN signaling; these mutants are selectively

destroyed in IFN-responsive cells at a lower therapeutic dose while

remaining highly lytic in cancer cells [9]. Expression of immune

stimulating proteins such as interleukin-2 (IL-4) or IFNb in

genetically engineered VSV has also been generated to promote

viral cytolytic responses [5,6]. Hence, boosting anti-viral responses

in normal cells will enhance oncolytic selectivity in IFN-

nonresponsive tumors.

Although a reduced antiviral response may be a common

feature of a broad range of cancers, the oncolytic efficacy of

naturally occurring RNA viruses may still be relatively low, as

some tumors manifest robust innate immunity responses that

inhibit viral replication and spread. To overcome this obstacle,

damping of cellular IFN responses in cancer cells by IFN-

antagonist, such as influenza NS1 or inhibition of IFN-stimulating

kinase (mTORC1) have been demonstrated to be effective

strategies to augment therapeutic viral activity [36,37]. Another

study showed that down-regulation of IFNAR1 sensitized bladder

cancer cells to VSV-induced cell death [32]. In this report we

eliminated IFN signaling using specific siRNAs to essential IRFs,

which potentiated cytolysis killing by VSV. Therefore small

molecule manipulation of the innate immune response could, in

the future, modulate the cellular response to oncolytic RNA

viruses to make them more effective.

The abrogated IFN response in more than 80% of human

cancers favors the selective viral replication and cytotoxicity in

those tumor cells and makes them ideal targets for oncolytic virus

treatment [9]. Our results support the use of a diminished innate

Figure 5. Disruption of IFN pathway increases Beas2B cells’ sensitivity to VSV. A. Abrogation of IRF5 and/or IRF7 induction by siRNAs upon
polyI:C treatmentwas shown by western blot. Fold changes of IRF5 and IRF7 expression after polyI:C treatment were indicated. Si(-): control siRNA. B.
IRF5 and IRF7 are important factors that determine viral sensitivity of the cells. Inhibition of these 2 genes resulted in loss of protection from VSV
infection with the most cytotoxicity increase in the combination knockdown. * P,0.03, ** p,0.001.
doi:10.1371/journal.pone.0028683.g005
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immune response due to epigenetic silencing by promoter

methylation of IRF5 and IRF7 as a theranostic strategy for

oncolytic virus VSV treatment of lung tumors. Because not all of

the lung cancer patients may benefit from VSV oncolytic viral

therapy due to relatively normal function of the IFN pathway in

some cancer cells, using IRF-promoter methylation as theranostic

method for developing ISG-promoter related biomarkers is

capable of assessing the susceptibility of each specific cancer case.

Its absence limits the successful application of oncolytic therapy,

causing delay of other more effective treatment and unnecessary

side effects in VSV resistant patients [38]. Screening individual

patients using those ISG biomarkers is necessary as only those

individuals with defective innate immune system will benefit from

VSV treatment. These ISG biomarkers will not only determine

cells’ innate immunity status and sensitivity to oncolytic viruses

such as VSV but also provide future possibilities for IFN pathway

manipulation to make resistant tumors more vulnerable to

oncolytic virus killing by targeting these key ISGs.

Materials and Methods

Cell culture
Beas2B cell line was derived from immortalization of normal

human bronchial epithelial cells (NHBE) with SV40-adenovirus

E1a hybrid virus. Beas2B cells were used as normal control cells as

they retain many properties of NHBE including potential for

terminal differentiation; they are believed to represent the normal

progenitor cells for lung carcinomas [39]. Beas2B cells were grown

with LHC-9 media (Invitrogen, Carlsbad, CA) in a 37uC, 5%

CO2 incubator in dishes precoated with fibronectin (BD

Biosciences, San Jose, CA), type I collagen and Bovine Albumin

Fraction V (Invitrogen, Carlsbad, CA). Lung cancer cell lines

CRL5928 and CRL5869 were obtained from ATCC, Manassas,

VA and the remaining cell lines were kind gifts of Dr. Anil Wali.

All the lung cancer cell lines were cultured in RMPI1640 media

with 10% fetal bovine serum (Invitrogen, Carlsbad, CA)) in a

37uC, 5% CO2 incubator.

Primary lung cancer tissue collection
Twenty fresh frozen primary non-small-cell lung carcinoma

(NSCLC) tissue samples and buffy coats from the same lung

cancer patients were obtained from The Ontario Tumour Bank,

Toronto, Ontario, Canada. This included 12 adenocarcinomas

and 8 squamous cell carcinoma tissues. Detailed information of

those samples is listed in Table S1.

5-aza-dC and polyI:C treatment
5-aza-dC (Sigma-Aldrich, Inc., Sainte Louis, MO) treatment

was done followed the protocol described earlier [14]. Polyinosi-

nic:polycytidylic acid (polyI:C) (Amersham Biosciences Corp.,

Piscataway, NJ) was diluted according to manufacture’s instruction

and 100 m/ml polyI:C was applied on Beas2B and lung cancer

cells for 24 hours. The untreated control cells were changed with

fresh media for the same period of time before total RNA and

protein were harvested.

Quantitative RT-PCR
Total RNA was extracted from each experiment using the

QIAGEN RNeasy Kit (QIAGEN, Inc., Valencia, CA). Two mg

total RNA was reverse transcribed into cDNA using Superscript II

(Invitrogen, Carlsbad, CA). Q-RT-PCR was performed using

SYBR Green PCR Detection kit (PE Biosystems, Warrington,

U.K.) as described previously [14]. The primer sets used are listed

in Table S2. The housekeeping gene GAPDH was used as a

normalizing control.

Western blots
Western blots were performed as described [15] using 50 mg of

cell extracts. Primary antibodies used in our study were rabbit anti-

IRF5 and chicken anti-OAS1 (Abcam Inc., Cambridge, MA);

rabbit anti-STAT1, rabbit anti-IRF7 and mouse anti-a-tubulin

(Santa Cruz Biotechnology, Inc. Santa Cruz, CA); rabbit antipho-

spho-STAT1 (Ser727) (Cell Signaling Technology, Inc., Beverly,

MA) and mouse anti-flag (Sigma-Aldrich, Inc., Sainte Louis, MO).

PCR amplification, cloning and sequencing of bisulfite
modified genomic DNA

Genomic DNA for lung cancer cell lines, primary lung cancer

patient tissues, and buffy coat DNAs from those patients were

prepared using QIAamp DNA kit (QIAGEN, Inc., Valencia, CA).

Genomic DNA (0.5 mg) was denatured and bisulfite converted

using EZ DNA methylation-GOLD kit (Zymo Research, Orange,

CA). The bisulfite modified genomic DNA was suspended in 10 ml

of water and 2 ml of DNA was amplified by PCR with two nested

PCR reactions. The annealing temperature was 56uC for the first

PCR and 58uC for the second PCR. The two sets of primers for

IRF7 are:

F1 59 GTAAGGGTTTTTGTCGTAGTAGACGT-

TAG;

R1 59 AACGTAATAATTCATACCTATAATCC-

CAAC;

F2 59 GGTTATAGGTGTGATTGTAGGTGTG;

R2 59 CCCTAAACTATAATAAAATAACTC-

CATCTC.

The two sets of primers for IRF5 are:

F1 59 TGATTGGAAGGCGATTTAGG;

R1 59 AAAATCCCAAACCGACCGAA;

F2 59 AGTGGGGAAGTATTTTATTTTTTTT;

R2 59 CCCCTAAACAACTACTACTAAACTCC.

The PCR products were subjected to double-strand DNA

sequencing using primer F2.

VSV sensitivity assay
Cells were seeded in 96 well plates at a density of 1226104 cells

per well and cultured overnight in the presence or absence of

IFNa (Biosource International, Inc., Camarillo, CA. 1000 U/ml).

The cells were then infected with a low dose (multiplicity of

infection, MOI = 0.05) or high dose (MOI = 5.0) of VSV (Indiana

strain) for 1 hr. Virus-induced cytopathicity was determined the

next day by modified version of MTT assay as described

previously [15]. Results were expressed as relative values of cell

viability compared to control uninfected cells (set to 100).

Manipulation of IFN pathway by IRF overexpression or
siRNA disruption

pCMV-IRF7, pCMV-IRF5 and control vector pcDNA3.1 were

stably transfected into CRL5810 cells followed by 200 mg/ml

G418 selection as described previously [15]. SiRNAs targeting

IRF5 and IRF7 and control siRNA were transfected into Beas2B

and CRL5928 cells using siRNA transfection reagent (all from

Santa Cruz Biotechnology, Inc. Santa Cruz, CA). Forty-eight

hours later, the siRNA transfected cells were treated with 100 mg/

IRF Epigenetic Silencing Increases VSV Sensitivity
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ml polyI:C for an additional 24 hours before western blots were

used to examine protein expressions of several ISGs. VSV

sensitivity assays were performed on both IRF-overexpressed

and siRNA- transfected cells.

Supporting Information

Table S1 Information about collected lung cancer tissue
samples.
(DOC)

Table S2 List of primer sets used in Q-RT-PCR.
(DOC)
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