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Abstract

Temporal integration in the visual system causes fast-moving objects to leave oriented ‘motion streaks’ in their wake, which
could be used to facilitate motion direction perception. Temporal integration is thought to occur over ~100 ms in early
cortex, although this has never been tested for motion streaks. Here we compare the ability of fast-moving (‘streaky’) and
slow-moving fields of dots to mask briefly flashed gratings either parallel or orthogonal to the motion trajectory. Gratings
were presented at various asynchronies relative to motion onset (from —200 to 4700 ms) to sample the time-course of the
accumulating streaks. Predictions were that masking would be strongest for the fast parallel condition, and would be weak
at early asynchronies and strengthen over time as integration rendered the translating dots more streaky and grating-like.
The asynchrony where the masking function reached a plateau would correspond to the temporal integration period. As
expected, fast-moving dots caused greater masking of parallel gratings than orthogonal gratings, and slow motion
produced only modest masking of either grating orientation. Masking strength in the fast, parallel condition increased with
time and reached a plateau after 77 ms, providing an estimate of the temporal integration period for mechanisms encoding
motion streaks. Interestingly, the greater masking by fast motion of parallel compared with orthogonal gratings first
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reached significance at 48 ms before motion onset, indicating an effect of backward masking by motion streaks.
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Introduction

Visual perception may seem compellingly real and immediate,
but it does not arise instantaneously. The neurons underlying our
visual experience operate on an integrate-and-fire principle, and so
it takes time for their response to build up. Within their integration
period, information is accumulated, and the eventual response is a
function of the summed inputs over that time span. There are
advantages to integrating information over time. One obvious
benefit is that a weak signal is more likely to be detected, as its sum
over the integration period may exceed a neuron’s threshold, even
though the instantaneous signal may be weak and sub-threshold.
This 1s particularly useful for detecting static spatial signals, as they
effectively accumulate greater intensity over longer periods of
integration. Temporal integration, which is thought to occur over
about 100 ms in early visual cortical neurons [1-4], is one of the
main reasons that we are still able to see when light levels are low
or visual signals are faint.

Apart from its obvious advantages, there are disadvantages to
temporal integration. For one, it restricts the temporal
resolution of the neuron. Because all activity within the
integration period is summed into a single response that is
monotonically related to the summed activity, discrete stimulus
events within the integration period are not distinguished by
that neuron. The only factor that counts in determining the
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response is the summed input at the end of the integration
period. This is known as Bloch’s law [5]. It means, for example,
that two brief signals of duration ¢ are equivalent to a single
signal of duration 2¢. Another problem is that any movement of
the stimulus during the integration period will lead to blurring
of the summed image. On a small scale, this is a problem even
when the stimulus is perfectly still, as microsaccades will cause a
degree of blurring in the image. The problem is obviously
exacerbated if the stimulus itself is in motion, as the moving
stimulus will be smeared along the axis of motion. For example,
a translating point source of light will produce a line when
integrated over time.

Although temporal blurring is usually regarded as a negative
consequence of temporal integration, it has recently been
suggested that the visual system could exploit it as a useful
direction cue in motion processing. Geisler [6] coined the term
‘motion streaks’ to describe the trail left by moving stimuli as a
consequence of temporal integration in the visual system. The
streaks only exist in the neural representation of the stimulus — not
in the physical stimulus — but nonetheless may be useful. Geisler
suggested a model in which the streak is detected by orientation-
selective neurons and then combines with output from the motion
system to improve directional acuity. A good deal of recent data
from both psychophysics and neurophysiology supports this model
[7-14]. It is now clear that motion streaks, although generally not
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perceived, do contribute to motion perception, and can interact
with form processes.

To date, all of the published data relating to motion steaks
has focused on the spatial or spatiotemporal domain. In this
study, we address specifically the temporal domain. We will
measure the temporal integration period for motion streaks by
using fast-moving ‘streaky’ fields of dots to mask briefly flashed
gratings, with the gratings presented at various asynchronies
relative to motion onset (see Figure 1. At very short
asynchronies, before the dots have translated far, there is little
accumulated orientation information to mask the target grating
and thresholds therefore should be low and close to unmasked
baseline thresholds. As the asynchrony increases, however, the
oriented streaks will lengthen and provide a more effective
orientation mask, causing grating detection thresholds to rise.
Thresholds should reach a plateau when the asynchrony
matches the temporal integration period, as beyond this point
the oriented streak information will not accumulate any further.
We predict that masking will be strongest for fast motion
parallel to the target grating, as fast motion will leave long
motion streaks that will effectively mask the orientation of the
parallel target grating.

Results

Masking threshold elevations

Masking threshold elevations (individual results and group
means, with + 1 standard error bars) for all four conditions (slow/
fast motion mask X parallel/orthogonal target grating), are plotted
in Figure 2 as a function of the asynchrony between the target and
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the onset of the motion mask. Threshold elevation is measured in
decibels, as per Equation 1:

E=20log,, (&> (1)
T.
where E is threshold elevation, 7,, is the masked threshold, and 7,
is the unmasked threshold.

For negative asynchronies (indicating the grating was presented
prior to the motion mask) all conditions produce broadly similar
levels of masking. Masking levels also appear similar across
conditions for asynchronies greater than 500 ms (indicating the
grating was presented after the motion mask). Importantly, the
masking functions diverge during the period when the motion
mask is present, with masking being strongest in the fast parallel
condition. This effect confirms our prediction, and is consistent
with the presence of long motion streaks interfering with the
detection of an iso-oriented target grating. Consistent with our
reasoning that this effect is due to iso-orientation masking, when
the target grating was oriented orthogonally to the motion streaks
(fast orthogonal condition), masking was greatly attenuated, by
about 8-10 dB.

To confirm these masking effects among the four conditions, the
group mean data were analyzed in a two-way repeated-measures
ANOVA. To do this, we first averaged the threshold elevations
within each of the four conditions during the period when the
mask was present (i.e., asynchronies from 0-500 ms). The
ANOVA showed significant main effects of speed, F{1,3)=126.2,
p=0.002, and orientation, [{1,3)=49.9, p=0.006, and, more

Figure 1. A schematic diagram of the temporal masking experiment. Probe orientation was defined relative to the direction of motion,
either parallel with the motion trajectory or orthogonal to it. Four motion directions were randomly interleaved to help prevent adaptation.
Participants’ task was to judge whether the grating appeared in one of two motion displays, upper or lower. The upper and lower windows always
contained the same motion direction on a given trial, and various test asynchronies from the full set of 21, ranging from —190 to +690 ms relative to

motion onset, were randomly interleaved in blocks of trials.
doi:10.1371/journal.pone.0028675.g001
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Figure 2. Masking elevations of a brief target grating from unmasked baseline as a function of presentation time relative to the
onset (0 ms) of a 500 ms motion mask. The plot shows the means of four observers, plotted with + 1 standard error bars. To capture any effects
of backward and forward masking, target gratings were presented as early as 190 ms before the motion mask began (indicated by negative timing),
as well as up to 190 ms after the motion mask ended. Results are shown for fast and slow motion masks, and for target gratings parallel and

orthogonal to the motion direction.
doi:10.1371/journal.pone.0028675.9g002

importantly, a significant interaction between speed and orienta-
tion, £1,3)=126.8, p=0.002 (see Figure 3). All conditions
produced threshold elevations significantly greater than O (see
Table 1). Pairwise comparisons between the slow motion masking
conditions showed these were not significantly different from each
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other, {3)=1.85, p=0.16, and the two orthogonal conditions (fast
vs. slow) also did not differ, #3)=2.11, p=.13. However, fast
parallel masking was significantly greater than fast orthogonal,
#(3)=32.99. p<0.001, and also than slow parallel, #3)=38.07,
p<0.001.
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Figure 3. Results from a repeated-measures one-way ANOVA
analysis of the averaged threshold elevations for each
condition during the masking period. Error bars show +1
standard error.

doi:10.1371/journal.pone.0028675.9003

Masking time-course

The main aim of this experiment was to demonstrate an accrual
of masking over time that was both orientation- and speed-
dependent. The dependencies on orientation and speed are clear
from the masking functions in Figure 2 and are confirmed in the
ANOVA: masking is strongest for fast motion masks and parallel
target gratings. The key contrast to reveal the effect of motion
streaks is the difference between the fast parallel and the fast
orthogonal conditions. Figure 4a shows this contrast for the group
mean data for seven subjects; any effect of masking significantly
greater than zero can be attributed to the presence of motion
streaks aligned with the target grating. To determine significance,
we used a bootstrapping procedure to define 90% confidence
intervals, plotted here as the gray shaded area flanking the data
points. This procedure involved resampling the data of each
subject 2000 times to obtain a population distribution of
bootstrapped means for each subject. Then, for each iteration,
the four bootstrapped means from each subject were averaged into
a group mean, producing a population of 2000 group means.
These were then ranked and the means bounding the central 90%
of the population defined the confidence limits. This allows easy
directional tests of significance as any masking elevation where the
lower confidence limit exceeds zero is significant at the 0.05 level.

The two distinct aspects of the streak-dependent masking
function (formed by subtracting fast orthogonal from fast parallel
conditions) in Figure 4a are the steep rise in masking around

Table 1. T-values for single-sample t-tests comparing
threshold elevations to a test value of 0 for each of the
masking conditions, averaging across four subjects.

Parallel Orthogonal
Fast 24.63 (0.001) 13.62 (0.004)
Slow 8.76 (0.012) 10.02 (0.008)

P-values are in brackets. Tests were two-tailed, and p-values are Bonferroni-
corrected for multiple comparisons.
doi:10.1371/journal.pone.0028675.t001
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motion onset (0 ms) and the steep fall around motion offset.
Between the rise and fall there is a period of sustained masking
throughout the motion mask period. We are primarily concerned
with the steep rise in masking around motion onset attributable to
the increasing elongation of streaks throughout the period of
temporal integration. Our rationale was that this rise in masking
would saturate at a point corresponding to the temporal
integration limit for motion streaks.

To determine the point at which the rise in masking reaches a
plateau, we took the first derivative of the streak-specific masking
function, as shown in Figure 4b. This analysis reveals the changes
in slope across the masking function and allows us to define the
plateau point as the target asynchrony at which the steeply rising
section around 0 ms reduces to a slope not significantly different
from zero. Similarly, we can easily find the beginning of the steep
rise in masking by determining the asynchrony where the slope
first increases significantly above zero. The slopes plotted in
Figure 4b are flanked by 90% confidence intervals (generated by
bootstrapping), so that points with a lower confidence limit above
zero are significantly above zero at the 0.05 level.

Using this approach, we determined the period of temporal
integration implied by the steep initial rise in masking. In
Figure 4b, the series of significantly positive slopes centered
around motion onset begins between the 3" and 4 points of the
function. By linearly interpolating between the lower confidence
intervals, we find that the point where the positive slope first rises
significantly above zero is at —48 ms. The same interpolation
procedure shows that the positive slope decreases to a value not
significantly different to zero between the 8" and 9" points at
+29 ms. Together, this range defines a temporal integration
period of 77 ms. By applying the same analysis at the end of the
motion mask period (to the upper confidence intervals), the period
of rapidly declining masking indicated by negative slopes ranged
from 402 ms to 506 ms, a period of 104 ms.

Discussion

Masking data

The important point for our purposes is that there is a strong
interaction between speed and orientation. The orientation effect
for the fast ‘streaky’ motion mask is large, with target grating
thresholds showing 10 dB more masking when they are oriented
parallel with the direction of motion than when oriented
orthogonally. This is the critical comparison for our streak
hypothesis, as streaks should only be present in fast motion masks,
and the masking effect should only occur when the test grating is
parallel to the streaks. There is no orientation effect of masking at
low speeds, consistent with there being no oriented content in the
slow motion dots. This agrees with our previous data and those of
Geisler [6] that the slow motion speed we chose is below the
threshold for producing motion streaks.

We had expected that there would be an elevation of the fast
orthogonal condition over both slow motion conditions because
high temporal frequencies suppress low temporal frequencies and
static stimuli such as the test grating, and do so across all
orientations [15-19]. Even low temporal frequency patterns that
are well above threshold can be rendered invisible by this process
(examples include motion-induced blindness [20,21] and adapta-
tion-induced blindness [22]). Although the fast orthogonal
condition appears to be consistently higher than the slow
conditions, this difference did not reach significance.

An interesting point to note is that there is a considerable
unoriented component to masking (~10 dB) which does not
appear to be tuned for orientation or speed (see Figures 2 and 3
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Figure 4. Masking specific to motion streaks - differences and first derivative. a) The masking component specific to motion streaks
plotted as a function of the grating target’s asynchrony relative to motion onset. The plot shows group means (n=7), flanked by 90% confidence
intervals, of the difference between the fast parallel and fast orthogonal conditions. This contrast reveals the streak-specific masking component
because while both conditions contain fast translating dots (and therefore motion streaks), masking occurs only in the parallel condition where target
and mask are iso-oriented. b) The first derivative of the streak-specific masking component, calculated using the three-point method, plotted in panel
A, flanked by 90% confidence intervals. The sustained increase in masking in panel A around 0 ms is indicated by the four consecutive positive slopes
around 0 ms. The points either side of this series of four points are not significantly different from zero. Linearly interpolating between the lower
confidence intervals, this elevated series of points is significant between —48 and +29 ms, indicating a temporal integration period of 77 ms.

doi:10.1371/journal.pone.0028675.9004

and Table 1). This is consistent with previous findings on masking
of gratings by moving stimuli [7,23]. The mechanism for this is
not clear, although it may relate to cross-orientation suppression
[24—29], which is known to be isotropic (i.e., not tuned for
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orientation). Interestingly, though, there is little temporal-
frequency tuning evident in the unoriented masking seen here:
the difference between fast and slow orthogonal conditions is not
significant.
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Time course of motion streak masking

Streak-dependent masking strength increased over a period of
77 ms: this provides an estimate of the temporal integration period
for motion streaks. Geisler assumed an integration period of
100 ms when calculating his critical blob speed [6], and other
authors using psychophysical procedures have found similar
estimates [4,30,31]. Our estimate of the temporal integration
period of 77 ms is somewhat shorter than these estimates. There
are a couple of important differences between these studies and
our own that could potentially explain this difference: one
concerns the luminance of the stimulus display and the other is
methodological. To take the first point, the stimuli used in
Geisler’s study had a much lower mean luminance than ours
(1.36 cd/m? vs. 33.7 cd/m?, a difference of 1.4 log units), and it is
known that the temporal integration period is longer at low
luminance. Indeed, the integration period declines log-linearly as a
function of illumination by roughly 20 ms per log unit from about
100 ms at 0 log Trolands to about 25 ms at 4 log Trolands [32], a
rate that squares with our observation of a 75 ms integration
period at high luminance and Geisler’s assumed 100 ms period at
a luminance 1.4 log units lower. Note however that most
psychophysical experiments are done at luminances similar to
ours, and vision in real-world contexts usually contains luminances
that are at least this high, and so our slightly shorter estimate of the
temporal integration period is probably more appropriate in most
cases.

The second important difference between our study and others
that have estimated temporal integration is methodological.
Traditionally, the temporal integration limit was estimated using
a threshold-versus-duration function. As embodied in Bloch’s law
[5], the threshold-versus-duration function initially shows a
linearly declining detection threshold as stimulus duration
increases until an elbow is reached where the function flattens
out to constant zero slope (or a slightly negative one) for further
increases in duration. Traditionally, psychophysical studies
estimating temporal integration periods have used threshold-
versus-duration functions and taken the elbow point to define the
limit of integration, the point at which all available signal has been
accumulated and longer stimulus durations cannot further
improve performance. Snowden and Braddick [4] found the
‘elbow’ in this function for motion stimuli to occur at ~ 100 ms.
However, this method may over-estimate the integration period.
The reason is that in any noisy system, as stimulus duration
increases, probability summation over time will improve the
likelihood of detection, and thereby continue to produce declining
thresholds beyond the physiological temporal limit [33]. This
confounding effect makes it difficult to define the elbow point of
the threshold-versus-duration and therefore the temporal integra-
tion period itself.

An alternative method which eliminates the effect of probability
summation employs a ‘two flash’ paradigm of constant total
stimulus duration to estimate the temporal impulse response
function of a linear filter. The temporal impulse response function
describes the activity of a filter over time in response to a single
pulse of input. This approach, developed within the framework of
linear systems theory, assumes an initial linear filter followed by
non-linear threshold mechanism which is triggered once a given
activity level is exceeded. Because the filter is linear, knowing its
temporal impulse response function allows its output to any
arbitrary input to be found by summing the convolution of the
stimulus at each instant with the response function. In the two-
flash paradigm, the interval between the brief flashes is varied but
the total stimulus duration remains constant, thereby controlling
probability summation. These studies reveal two types of impulse
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response function: a ‘sustained’ response which is monophasic, and
a ‘transient’ response which is biphasic [34]. The appropriate
function to characterize the build-up of motion streaks from our
translating Gaussian blobs is the sustained function, since the
orientation-tuned units detecting the streaks exhibit this kind of
response [31,35]. Estimates of the sustained impulse response
function suggest it has a half-width of about 40 ms [34,36], which
agrees well with the full-width estimates from the present streak
masking study of 77 ms. Note that the full-width of the sustained
temporal impulse response function is in effect a temporal
integration estimate because the threshold mechanism can be
triggered at any moment during the temporal impulse response
period.

In Figure 5a we show a sustained impulse response function
plotted using an equation taken from Manahilov et al. [36] and
using the parameters they found best described the impulse
response function for a spatial frequency of 2 cyc/deg. This
frequency is appropriate to our stimuli because we have previously
shown that our streak stimuli have a peak spatial frequency near 2
cyc/deg [23]. The model consists of a linear temporal filter, which
has a temporal impulse response with excitatory and inhibitory
components, each approximated by a cascaded low-pass leaky
integrator and is described by the following equation:

h(t) = A{u(®)[t1(n1 — DY~ (t/1))" " exp(—1/71)
— Ku(®)[ta(na— 1))~ (t/12)"2 exp(—1/72)}

where u(f) is the unit step function, 7; and 7 are the time
constants of the two components, 71 and n; are the number of the
cascaded low-pass stages of each component, 4 is a sensitivity
factor and K is a transience factor. In our case we are dealing with
a sustained impulse response and so the transience factor is set to
zero and the equation simplifies to a single-phase impulse
characterized by the parameters of 7; and nj, as shown in
Figure 5a. The function plotted in Figure 5a has parameters
71 = 5.8 ms and n; =9, taken from Manahilov et al’s Table 1.
The key point to note is that this impulse response function has
a half-width of about 40 ms, and a significant overall elevation
spanning about 70 ms or so. The sustained temporal impulse
response function is therefore considerably shorter than psycho-
physical estimates of the temporal integration period of around
100 ms [4] and closer to the estimate we obtained here of 77 ms.
In Figure 5c, we show the result of convolving the fast translating
stimulus with the impulse response function shown in panel A to
produce an image of the linear filter’s output to the translating dots
(ie., the neural streak image). The resulting streak stimulus is
temporally smeared along the axis of motion and we then Fourier
analysed it to reveal its spatial properties. First, the Fourier
amplitude spectrum was filtered using a sliding log Gabor filter.
The filter had a l-octave spatial bandwidth and was oriented
orthogonally to the steaks with a narrow orientation bandwidth
(1°). The filter’s peak was shifted successively from the minimum to
the maximum frequency in the amplitude spectrum to obtain the
distribution of streak energy across spatial frequency. As shown in
Figure 5d, the streak image exhibits a narrow spatial passband
(across the elongations) peaking at 1.6 cyc/deg. Second, using the
log Gabor filter with a peak at 1.6 cyc/deg and a l-octave
bandwidth, we rotated the filter around the Fourier amplitude
spectrum in 1-degree steps so obtain the steak orientation tuning.
As shown in Figure e, the orientation tuning is approximately
Gaussian in shape, with the best-fitting Gaussian having a
standard deviation of 22°. Given these orientation and spatial
frequency characteristics of the streak stimulus, it is not surprising
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Figure 5. a) A sustained impulse response function defined by Manahilov et al’s (2003) equation (see equation 1, main text). The function plotted
here has the following parameters: n; =9; t; = 5.8ms - the values Manahilov et al found best described sustained impulse responses at a frequency of
2 cyc/deg. At half-height, the impulse response has a full width of 41 ms. b) A single frame taken from the sequence of frames defining the fast
translating blobs. c) The temporally smeared version of the blob stimulus that results from passing the fast translating blob image in panel b through
the temporal impulse shown in panel a (i.e., performing a convolution integral). The output shown in panel c is the ‘streaky’ image that can be
assumed to emerge following a simple linear filtering stage characterized by a sustained impulse response. d) The spatial tuning of the streak image
in panel c. The figure shows the output of a sliding log Gabor filter computing the spatial energy at each spatial frequency from the minimum
frequency to 12 cyc/deg in the direction orthogonal to the streaky elongations (i.e., vertically, in this case). The log Gabor had a spatial bandwidth of 1
octave and a narrow orientation bandwidth (1°) oriented to sample vertically across the image shown in panel c. The peak frequency occurs at 1.6
cyc/deg and falls to half-height at 3.3 cyc/deg. e) The orientation tuning of the image in panel c at peak frequency. The data were obtained by
rotating the log Gabor filter (1 octave spatial bandwidth, peak at 1.6 cyc/deg) in one-degree steps. Grey symbols show the filter output and the black

line is the best-fitting Gaussian function (standard deviation=22.2°).
doi:10.1371/journal.pone.0028675.g005

that it provided an appropriate mask for the target grating used in
the experiment reported here which was iso-oriented with streaks
and had a very similar spatial frequency of 1.54 cyc/deg.

Adaptation, and forward and backward masking

In Figure 2 there appears to be a gradual rise in masking
strength of about 3 dB for fast, parallel motion that occurs after
the initial steep rise around the time of motion onset. It is likely
that this gradual rise in masking is a consequence of orientation
adaptation. In the fast parallel condition, where there are
elongated motion streaks present in the motion mask, there would
be a gradual accrual of orientation adaptation throughout the
period of the motion mask that would not be present in the other
conditions. Adaptation is well known to raise contrast thresholds,
and can do so following very brief exposure to the adaptor such as
the 500 ms motion stimulus used here [37-39], provided the test
stimulus is brief (as ours was). By adapting the orientation channel
that is used to detect the target grating, contrast detection
thresholds would be expected to rise, and to do so increasingly as
the target asynchrony increases from 0 to 500 ms. For this reason,
we believe the gradual rise in masking after the steep initial onset
in the fast parallel condition can be attributed to a modest
adaptation effect.

@ PLoS ONE | www.plosone.org

The data in Figure 4a exhibit features that square well with what is
known about forward and backward masking obtained using other
paradigms [40-—43]. Apart from the broad central band of threshold
elevation coinciding with the motion mask (0-500 ms), there are small
shoulders of threshold elevation in Figure 4a just prior to motion onset,
and just after motion offset. The narrow band of threshold elevation
for targets presented prior to the motion mask can be ascribed to
backward masking [40]. Backward masking can occur for a rather
wide range of stimulus onset asynchronies but has been found to be
strongest for target onsets about 80 to 100 ms before mask onset [44]
(see Figure 2a), consistent with the peak observed in our data at
—90 ms. There is also a narrow band of threshold elevation for
targets presented after the motion mask, which is consistent with
forward masking [45]. Forward masking occurs for a narrower timing
range, being most effective for targets presented between 5 and 35 ms
after mask offset [44] (see Figure 2f), with a peak effect at an of ISI
20 ms. These observations are very consistent with our data, which
show a peak forward masking effect at 520 ms—20 ms after the offset
of the motion mask. Neurophysiological recordings [46,47] strongly
suggested that forward and backward masking are related to
suppression of, respectively, transients associated with target onset
and target offset, a suggestion subsequently confirmed i recordings
from awake behaving primates [48].
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Masking may not only explain the shoulders of elevation shortly
before and after the onset of the motion mask, it may also explain
the slight rise and fall in masking strength over the course of the
motion mask period. Geremek and Spillman [49] conducted a
study of masking that varied the spatial configurations between a
target and an adjacent mask. Although the spatial focus of this
paper is very different to our own, a key similarity was that they
manipulated mask duration while keeping the target duration
constant. This manipulation demonstrated that masking strength
increased with masker duration up to two to three hundred
milliseconds, consistent with earlier nuerophysiological data by
Macknik and Livingstone [44]. A similar pattern can be seen in
our own data. In Figure 4a, starting at the offset of the motion
mask (i.e., at 500 ms, where there is no post-target mask) and
moving to the left (so that the duration of the post-target masking
period increases), the streak masking effect increases for about two
hundred milliseconds or so beyond which it would be expected to
stabilize for any further increases in masking duration. The fact
that the streak masking effect also rises from the beginning of the
motion mask period (i.e., 0 ms and greater) must be due to another
factor. One possibility is that it is due to an increase in streak
adaptation over the mask period raising thresholds for the parallel
target grating, as noted above. Another possibility is that it is
simply due to a trade-off between forward masking early in the
mask period and backward masking later in the mask period.
Indeed, a very similar rise-and-fall pattern of data can be seen in
Macknik and Martinez-Conde’s [50] masking data (see Figure 8)
for a brief target presented within a mask period of 300 ms (not so
different to our mask duration of 500 ms).

Turning to Figure 4b, it is interesting that significant masking by
fast parallel motion was evident 48 ms before mask onset,
indicating an effect of backward masking by motion streaks.
Although there is a general increase in detection thresholds in all
conditions just before mask onset (see Figure 2), the pre-mask
elevation in Figure 4b reveals a specifically orientation- and speed-
dependent (i.e., streak related) masking effect. It may seem
surprising that the streak information, which takes time to
accumulate, can effectively mask stimuli presented before motion
onset. However, previous studies on backward masking of static
grating stimuli [51] have shown that the time course of backward
masking i3 strongly orientation-dependent so that iso-oriented
targets and masks (such as the streak masking of gratings used
here) produce much stronger and earlier masking effects than
cross-oriented masks.

The estimate of the temporal integration period at offset
(104 ms) is considerably longer than the integration period seen at
onset (77 ms). In principle, the masking function at onset should
conform to the integral of the temporal impulse response function,
and the masking function at offset should be the mirror reversal of
the integral. However, there are at least two factors that may
contribute to the observed asymmetry. The first factor is the
adaptation effect noted above, which may delay the masking
function’s return to baseline (broadening the apparent integration
period at offset). The second factor is forward masking. It is clear
from Figure 4a that thresholds remain significantly elevated for the
two points immediately following the offset of the motion mask.
This would also delay the masking function’s return to baseline
and broaden the estimated integration period at offset.

To summarize our findings, we have used motion streaks to
mask iso-oriented grating targets presented at various onset
asynchronies. In doing so, we have demonstrated the time course
of motion streaks. We show that motion streaks accrue over a
period of about 77 ms, gaining strength as maskers over this
period, before leveling off for longer asynchronies. We attribute
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this time period to the temporal extent of a sustained impulse
response in early linear filters and show that our estimated streak
period agrees with recent modeling of temporal impulse response
functions. The effect of the sustained temporal response on a
translating dot pattern is to smear it along the direction of
translation, producing an elongated “streaky” image with a tight
spatial and orientation tuning. The period of accrual of motion
streaks estimated by our masking approach (~77 ms) is slightly
shorter than suggested by earlier temporal integration studies.
However, these earlier studies used the threshold-versus-time
approach which may have slightly overestimated the period of
temporal integration in early visual cortex. We believe the linear
filter model is more parsimonious approach to estimating temporal
integration.

Materials and Methods

Participants

Participants were four experienced psychophysical observers, all
of whom had normal or corrected-to-normal vision. An additional
three experienced observers, naive to the purpose of the
experiment, participated in the fast parallel and orthogonal
conditions for the main time-course analysis.

Ethics statement

This research was approved by the University of Sydney’s
Human Ethics Research Committee (project no. 10186). All
subjects participated voluntarily and gave informed written
consent.

Apparatus and stimuli

Stimuli were programmed in Matlab version 7.4 using the
Psychophysics Toolbox [52,53]. Participants viewed the stimuli
from a distance of 57 cm on a Mitsubishi DiamondView 22-inch
CRT monitor with a screen resolution set to 1024 x 768 pixels
and a vertical refresh rate of 100 Hz, controlled by a MacPro
computer with a dual-core Intel Xeon processor. A Cambridge
Research Systems Bits++ digital-to-analogue converter was used to
provide 14-bit resolution in order to enable precise measurement
of low contrast thresholds. The monitor was gamma-corrected in
software to achieve linearity of output.

The mask stimulus was a drifting random dot display of 500 ms
duration, with each frame composed of 80 Gaussian blobs with a
standard deviation (SD) of 0.08 degrees, giving a dot diameter
(defined as 4 x dot SD) of 0.32 degrees. Half of the dots were dark
and half were light, drifting with 100% coherence on a mid-grey
background. Maximum and minimum dot luminances were 67.3
and 0.26 c¢d/m? and background luminance was 33.7 cd/m?. The
dots drifted with a speed controlled by manipulating the pixel step
size on each video frame. Two speeds were compared, a fast speed
of 13.02°/s that is well above Geisler’s critical streak speed of one
dot-width per 100 ms [6], and a slow speed of 1.63°/s, that is well
below (note that we have also empirically tested these speeds; [9]).
The initial position of each dot was randomly determined and all
dots wrapped around the aperture. Motion stimuli (the ‘mask’)
were presented within virtual apertures 4.88° in diameter that
were centered on points located 3.81° above and below a white
fixation cross (see Figure 1). During the test phase, the fixation
cross changed to black and the ‘target’ stimulus (a low-contrast
sine wave grating) appeared in either in the upper or lower test
aperture.

The target stimulus was a grating briefly presented either
parallel or orthogonal to the direction of motion at various onset
asynchronies relative to the onset of the motion mask. The target
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grating was shown for three video frames with the contrast of each
frame sampled from a Gaussian temporal profile that was centered
on the middle frame and had a standard deviation of 10 ms. The
grating had a spatial frequency of 1.54 cyc/deg which was chosen
because it approximately matched the spatial scale of the streaks
left by the dark and light blobs (see Figure 1, which shows a scaled
version of the on-screen stimuli). The target asynchronies relative
to motion onset ranged from 200 ms before the motion to 700 ms
after motion onset. Note that as the motion mask lasted 500 ms,
the final asynchronies tested points after motion offset. A total of
21 asynchronies were tested, from —190 to +690 ms.

Procedure

Conditions were blocked by speed (fast or slow mask) and
orientation (parallel or orthogonal) and stimuli were viewed
binocularly. For a given condition of trials (e.g., slow orthogonal), a
subset of seven of the 21 target onset asynchronies was chosen, and
during that block, the masking motion was randomly interleaved
among four directions (45°, 135°, 225" and 315°) to minimize
motion adaptation affecting the results. In a spatial two-interval,
two-alternative forced-choice task, the subject had to indicate
whether the grating appeared in the upper or lower aperture, and
contrast thresholds for grating detection were determined using
QUEST adaptive staircases [54], modified to use cumulative
Gaussian psychometric functions and converge on a threshold
value of 75% correct performance. In a given block, one QUEST
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was used for each of the target onset asynchronies, and three runs
of each block were undertaken. The data from the three QUESTS
for each asynchrony were pooled and fitted with a cumulative
Gaussian psychometric function, the mean of which defined the
target detection threshold for that asynchrony. This procedure was
repeated for the remaining two subsets of target onset asynchrony,
which completed all measurements for a given condition (e.g., slow
orthogonal). The remaining three conditions were tested in the
same manner. All conditions, and subsets of target asynchronies,
and the three repetitions of those, were all conducted in
randomized order. Detection thresholds were also made for
grating targets without the presence of masking motion to provide
an unmasked baseline. The dependent variable was threshold
elevation due to masking: that is, the target detection threshold in
the masked conditions divided by the threshold in the unmasked
control condition, expressed in decibels, as in Equation 1.
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