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Abstract

Background: Host genetic factors may be important determinants of HIV-1 sexual acquisition. We performed a genome-
wide association study (GWAS) for host genetic variants modifying HIV-1 acquisition and viral control in the context of a
cohort of African HIV-1 serodiscordant heterosexual couples. To minimize misclassification of HIV-1 risk, we quantified HIV-1
exposure, using data including plasma HIV-1 concentrations, gender, and condom use.

Methods: We matched couples without HIV-1 seroconversion to those with seroconversion by quantified HIV-1 exposure
risk. Logistic regression of single nucleotide polymorphisms (SNPs) for 798 samples from 496 HIV-1 infected and 302 HIV-1
exposed, uninfected individuals was performed to identify factors associated with HIV-1 acquisition. In addition, a linear
regression analysis was performed using SNP data from a subset (n = 403) of HIV-1 infected individuals to identify factors
predicting plasma HIV-1 concentrations.

Results: After correcting for multiple comparisons, no SNPs were significantly associated with HIV-1 infection status or
plasma HIV-1 concentrations.

Conclusion: This GWAS controlling for HIV-1 exposure did not identify common host genotypes influencing HIV-1
acquisition. Alternative strategies, such as large-scale sequencing to identify low frequency variation, should be considered
for identifying novel host genetic predictors of HIV-1 acquisition.
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Introduction

HIV-1 interacts with many host factors during the process of

infection and replication. However, there is only one confirmed

example of a host factor variant that modifies HIV-1 infection

outcomes: CCR5- D32, a variant in the co-receptor for HIV-1

cellular entry has been shown to increase host resistance to HIV-

1 infection and HIV-1 disease progression [1–3]. While, CCR5-

D32 is relatively infrequent or absent in many populations, its

existence supports the need to broadly evaluate the human

genome for other host genetic variants that influence HIV-1

acquisition.
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To date, broad evaluations for host genetic factors have been

most successful with identifying predictors of HIV-1 control in

infected individuals with recent genome-wide association studies

(GWAS) [4–6] identifying single nucleotide polymorphisms (SNPs)

in the Human Leukocyte Antigen (HLA) complex associated with

plasma HIV-1 set point, and disease non-progression [7], as well

as genes outside HLA associated with disease progression [8].

Studies looking for host genetic variation associated with HIV-1

acquisition have been more challenging. Candidate variation has

been evaluated in HLA, chemokines/chemokine receptors,

mediators of the innate, and adaptive immune responses, and

factors thought to underlie intracellular viral restriction in diverse

epidemiologic contexts (reviewed in reference [9]). To date, no

specific gene or variant has been found to consistently influence

HIV-1 acquisition/resistance across these diverse studies. Recent-

ly, a GWAS evaluated common SNPs across the human genome

comparing HIV-1 seropositive to seronegative Malawians and

found no common SNPs associated with HIV-1 infection [10].

However, interpretation of studies of HIV-1 acquisition is

complicated by the fact that levels of HIV-1 exposure are difficult

to quantify, and yet modify risk of HIV-1 sexual transmission by

up to 300-fold [11]. Lack of HIV-1 exposure quantification could

therefore result in reduced power to detect relevant common

variants due to misclassification in assigning HIV-1 acquisition

phenotypes (e.g., HIV-1 susceptible individuals with low HIV-1

exposure and therefore at low risk of HIV-1 acquisition who,

without quantitative assessment of exposure, are misclassified as

HIV-1 resistant).

The principal determinant of HIV-1 sexual transmission risk,

and therefore primary HIV-1 exposure factor, is the plasma HIV-

1 RNA level in the transmitting partner [12,13]. Other

epidemiologic, biologic and behavioral factors (e.g., circumcision

status of male uninfected partners, and frequency of unprotected

sex between partners) also contribute to this risk [11,14–16]. Thus,

accurate quantification of the level of HIV-1 exposure and

associated HIV-1 sexual transmission risk requires data from both

sexual partners.

Studies of HIV-1 serodiscordant couples (one partner HIV-1

infected and the other HIV-1 uninfected) offer unique advantages

for identifying factors associated with HIV-1 acquisition. In

particular, prospective collection of specimens and data from both

sexual partners facilitates quantification of HIV-1 exposure risk,

and confirmation of HIV-1 transmission linkage between partners.

Therefore, this study design allows HIV-1 uninfected individuals

with little to no HIV-1 exposure to be excluded from the analysis.

To date, no GWAS for host genetic factors underlying HIV-1

acquisition has been performed in a cohort of HIV-1 serodiscor-

dant couples. Here we report use of specimens and data from

African heterosexual HIV-1 serodiscordant couples in a GWAS

for host genetic predictors of HIV-1 acquisition and set point

plasma RNA levels.

Methods

Study Cohort
Study participants were selected from two cohorts of African

HIV-1 serodiscordant heterosexual couples:

1) The Partners in Prevention HSV/HIV Transmission Study

enrolled 3408 African HIV-1 serodiscordant couples at 14

sites in East and Southern Africa, and followed them

quarterly for up to 24 months to evaluate the efficacy of

herpes simplex virus type-2 (HSV-2) suppression to reduce

HIV-1 transmission to their heterosexual HIV-1 uninfected

partners [17,18]. HIV-1 infected partners in this trial were

required to be dually-infected with HSV-2 with a CD4 count

$250 cells/mm3; there was no eligibility criterion related to

HSV-2 serostatus of the HIV-1 uninfected partner. The

primary analysis for this trial found acyclovir suppression

reduced plasma HIV-1 level of the HIV-1 infected partners

by a mean of 0.25 log10 copies/ml, but did not reduce the risk

of HIV-1 transmission [18].

2) The Couples Observational Study (COS) used a similar

recruitment process to enroll 485 HIV-1 serodiscordant

couples from Soweto, South Africa and Kampala, Uganda

without restriction on CD4 count or HSV-2 serostatus of the

HIV-1 infected partner; these couples were followed

quarterly for up to 12 months.

In both cohorts, HIV-1 serostatus in the initially HIV-1

uninfected partner was assessed by dual HIV-1 rapid assays and

HIV-1 seroconversions confirmed by ELISA, and Western blot or

RT-PCR [18]. Plasma HIV-1 env and gag sequencing of both

partners were compared with those consistent with transmission

linkage within the partnership classified as ‘‘linked’’ [18,19].

Seroconverting partners were also followed after seroconversion to

document plasma HIV-1 RNA set point and CD4 counts.

Among all participants recruited at both COS study sites and at

the 10 Partners in Prevention HSV/HIV Transmission Study sites

at which consent for host genetic studies had been obtained, a total

of 863 individuals were selected for genotyping. Procedures used

to identify these individuals are described below.

Sample selection
In order to identify HIV-1 non-seroconverting and serocon-

verting partners with similar ranges of HIV-1 exposure we

identified epidemiologic factors predicting HIV-1 transmission.

Baseline data from linked transmitting and non-transmitting

couples identified in the Partners in Prevention HSV/HIV

Transmission Study was used to develop a Cox proportional

hazards model identifying HIV-1 exposure factors associated with

HIV-1 transmission: gender, age, male circumcision, HIV-1

infected partner plasma RNA level, and unprotected sex.

Seroconverting couples in either cohort were matched to two

non-seroconverting couples based on baseline status for each HIV-

1 exposure factor. To augment power to detect genotypes

associated with host resistance to HIV-1 we also included

additional HIV-1 uninfected individuals with all HIV-1 exposure

factors in high-risk strata.

To facilitate comparisons of HIV-1 exposure levels we used the

regression coefficients of the Cox prediction model to develop an

exposure score that ranged from 0 (lowest exposure) to 7 (highest

exposure) (Table 1). The cumulative risk of HIV-1 infection for

individuals with an exposure risk score $2 was 31-fold greater

than for those with an exposure risk ,2 (4.99% vs 0.16%).

Among the 863 individuals identified for genotyping through

this process, 512 (59%) were HIV-1 infected (384 [75%] prevalent

and 127 [25%] incident HIV-1 infections) and 352 (41%)

remained HIV-1 uninfected despite documented HIV-1 exposure.

Table 2 provides a breakdown of the sample selection by HIV-1

infected and uninfected status.

Genotyping
Genomic DNA was extracted from 1 ml archived whole blood.

All samples were genotyped using Illumina HumanHap 1M-Duo

(np135) Bead Chips [20], which feature more than 1 million SNPs

including 21 directly genotyped variants that have been identified

in previous studies as associated with HIV-1 susceptibility [4].

GWAS for HIV-1 Acquisition
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SNPs with a call frequency of ,99%, with minor allele frequency

,1% or with .5% missing results were excluded leaving 990,115

SNPs for association analysis. Bonferroni correction for multiple

testing used a P value cutoff of 5.161028 for genome-wide

significance.

Candidate SNP subset
As a subanalysis, we evaluated 21 candidate SNPs previously

implicated in HIV-1 infection that were present on the 1M-Duo

chip platform. We report uncorrected p-values for these 21 SNPs.

Statistical analysis
Sample exclusions. A total of 25 samples were excluded

based on genotyping quality control steps (twelve samples failed

genotyping, eleven had genotype inconsistent with epidemiologically

assigned gender, and two failed cryptic relatedness require-

ments). Population structure was evaluated using a modified

EIGENSTRAT method [21], the first principal component

(eigenvector) discriminated individuals based on whether they

were from Southern African (South Africa and Botswana) or

Eastern African (Kenya, Uganda and Tanzania) study sites

(Figure S1); at this step, eight samples were removed as

population outliers.

Finally, in order to capture all HIV-1 infected individuals for

genotyping, the initial matching for HIV-1 exposure included all

seroconverting couples. Thus, some HIV-1 uninfected partners

were selected for genotyping by matching to HIV-1 exposure

scores of unlinked seroconverting couples; many of these HIV-1

uninfected partners had HIV-1 exposure risk scores,2. However,

since all couples with linked transmission had HIV-1 exposure

scores $2, we took this as an HIV-1 exposure cutoff and excluded

from analysis 32 HIV-1 uninfected individuals with exposure

score ,2.

Analysis of specific HIV-1 phenotypes. 1) HIV-1

susceptibility analysis: We evaluated genotypes for all HIV-1

seropositive individuals, including prevalent HIV-1 infections

Table 1. Identification of HIV-1 exposure factors through a predictive model of HIV-1 transmission.

Parameter
P-value
(linked infections) Parameter estimate Hazard Ratio Exposure Score

Any unprotected sex ,0.001 0.60 1.82 1

Male uninfected partner uncircumcised 0.028 0.59 1.81 1

Uninfected partner age,25 yrs 0.022 0.56 1.74 1

Infected partner plasma viral RNA (,10,000 copies/ml – baseline)

10–50,000 copies/ml ,0.001 1.32 3.75 2

50–100,000 copies/ml ,0.001 2.25 9.46 4

.100,000 copies/ml ,0.001 2.00 7.38 4

Baseline data from non-transmitting and linked transmitting couples from the Partners in Prevention HSV/HIV Transmission Study (N = 3360) was used to develop a
predictive Cox regression model of HIV-1 transmission. An exposure risk score based on model regression coefficients was developed to quantify exposure risk and
confirm that participants selected for GWAS testing who had not seroconverted did have HIV-1 exposure.
doi:10.1371/journal.pone.0028632.t001

Table 2. Summary of Sample Selection for Genotyping.

Total couples genotyped
(% Exposure with score
$5)

Total
individuals
(% East Africa)

Prevalent
HIV-1+
(% East Africa)

Seroconverters
(% East Africa)

HIV-1
Uninfected
(% East Africa)

Participants from couples associated with seroconversion 127 (50) 254 (74.8%) 127 (74.8%) 127 (74.8%) –

Participants from
non-seroconverting couples

257 (43) 514 (75.9%) 257 (75.9%) – 257 (75.9%)

Unmatched
HIV-1 uninfected individuals

– 95 (82%) 0 0 95 (82%)

Total individuals for genotyping 863 (76.2%) 384 (75.5%) 127 (74.8%) 352 (77.6%)

Excluded Individuals

Failed genotyping 12 3 1 8

Gender mismatch 11 5 1 5

Cryptic relatedness 2 0 1 1

Exposure score,2 32 – – 32

Population outlier 8 2 2 4

Total participants included in
HIV-1 acquisition analysis

798 (76.1%) 374 (75.7%) 122 (75.4%) 302 (76.8%)

Total participants included in
HIV-1 set point analysis

403 (74.7%) 293 (74.4%) 110 (75.5%) –

doi:10.1371/journal.pone.0028632.t002
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(partners who were HIV-1 infected at enrollment), and incident

infections (partners HIV-1 seronegative at enrollment who became

infected during follow-up). These were compared to genotypes for

all HIV-1 exposed, seronegative individuals (HIV-1 exposures

scores $2). We also compared genotypes of HIV-1 seropositive

individuals to the subset of all HIV-1 uninfected individuals with

all baseline HIV-1 exposure characteristics in the highest risk

strata. For both of these analyses, we performed standard logistic

regression, additive genetic model, in PLINK (version 1.07)

[22,23], using gender, age and the individual coordinates of six

EIGENSTRAT eigenvectors as covariates.

2) Plasma RNA set point analysis: Similar to previous analyses

[24] we defined the plasma HIV-1 RNA set point among

individuals with prevalent infection (partner who was HIV-1

infected at enrollment) as the average log10 plasma RNA level after

excluding RNA measurements taken at or after the initiation of

antiretroviral therapy (ART) or when CD4 count was ,200 cells/

mm3. We required RNA measurements to be stable, with

measurements for each individual visually inspected for notable

discrepancies (e.g., no plasma HIV-1 RNA measurements from

each individual differing by .1 log copies/ml); we required a

minimum of 2 reliable and consistent measurements per

individual. For individuals with incident infection (e.g., HIV-1

seroconversion during follow-up) an estimated date of HIV-1

infection was established based on a combination of HIV-1

serology and plasma HIV-1 RNA PCR results, with HIV-1 set

point calculated as the average of all log10 plasma HIV-1 RNA

measurements taken 4 months or more after the estimated date of

infection [25]. For all analyses, plasma HIV-1 RNA levels below

the limit of detection (240 copies/mL) were set to 120 copies/mL.

For this analysis, we performed linear regression for set point using

age, gender, acyclovir randomization, seroprevalent vs. serocon-

verter status and five EIGENSTRAT eigenvectors as covariates.

Ethical Review
All individuals whose samples were evaluated through this

genotyping provided informed consent for storage of samples for

future research including genetic studies. Human subject review

and approval for this analysis was obtained at the University of

Washington and at local and affiliated institutional review boards

for study sites where participants were enrolled. The Partners in

Prevention HSV/HIV Transmission Study was registered with

ClinicalTrials.gov (#NCT00194519).

Results

Genome-wide common variation associated with HIV-1
acquisition

After quality control, 798 samples remained for analysis (496

from HIV-1 infected and 302 from HIV-1 uninfected individuals).

Table 3 shows epidemiological and clinical characteristics of these

individuals.

Table 3. Epidemiologic Characteristics of Individuals in HIV-1 Acquisition Analysis.

HIV-1 Infected Partners

Characteristic
Prevalent
HIV-1 infected Incident HIV-1 infected All

Number 374 122 496

% Female 205 (55%) 55 (45%) 260 (52%)

% recruited from East African sites 283 (76%) 92 (75%) 375 (76%)

Median age [range] (years) 32 [18–67] 30 [18–72] 31 [18–72]

Baseline plasma HIV-1 RNA level or plasma HIV-1 set point (median log10 copies/ml) 4.62 4.49 n/a

Baseline plasma HIV-1 RNA level of
HIV-1 infected partner (median log10 copies/ml)

n/a 4.26 n/a

Median CD4 count at enrollment (cells/ul) 413 n/a n/a

Transmission linkage confirmed* n/a 86 (70%) n/a

HIV-1 Uninfected Partners

Characteristic
Matched
HIV-1 uninfected

Additional unmatched
HIV-1 uninfected All

Number 223 79 302

% Female 110 (49%) 41 (52%) 151 (50%)

% recruited from East African sites 168 (75%) 64 (81%) 375 (77%)

Median age [range] (years) 31 [18–70] 28 [19–66] 30.5 [18–70]

Baseline HIV-1 exposure characteristics

Highly exposed (risk score $5) 13 (5.8%) 77 (97.5%) 90 (29.8%)

Baseline plasma HIV-1 RNA of

HIV-1 infected partner (median log10 copies/ml) 4.52 5.14 4.83

% male uncircumcised 62.8% 76.3% 66.2%

% age ,25 years 65% 76% 67.9%

% reporting unprotected sex 24.7% 95% 43%

*Based on plasma virus sequencing HIV-1 env and gag of both transmitting and seroconverting partner-pairs.
doi:10.1371/journal.pone.0028632.t003

GWAS for HIV-1 Acquisition
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In the multivariate regression analysis, no single SNP reached

genome-wide significance of p,5.161028 (Figure 1). Further-

more, a meta-analysis based on the two separate analyses for

Eastern and Southern African recruited individuals was consistent

with the results from the pooled analysis. An annotated list of all

SNPs with p,161025 based on the pooled analysis of Eastern and

Southern recruited Africans is provided (Table S1). Among the 21

SNPs available on the 1M-Duo chip platform that have previously

been implicated with HIV-1 acquisition, none were GWAS

significant; only two were significant at a p,0.05 threshold with

both of these having effects in the opposite direction from the

original findings: for rs2070729-IRF1 the G allele was linked to

increased susceptibility (p = 0.01) in contrast to the original study,

[26], and for rs1800451-MBL2 the A allele was linked to reduced

susceptibility (p = 0.02) in contrast to prior studies [27–32]

(Table S2).

Comparison of the 496 HIV-1 infected individuals to 90 HIV-1

uninfected individuals having the higher HIV-1 exposure risk

scores (.5 risk score) did not identify SNPs reaching genome-wide

significance.

Genome-wide common variation associated with HIV-1
set point

Among the 496 HIV-1 infected individuals in our cohort, 403

(81%) met the requirements for stable HIV-1 set point including

293 (73%) prevalent and 110 (27%) incident infections (Table 4).

Comparison of log10 plasma HIV-1 levels of prevalent and

incident infections showed no statistically significant difference

between them (p = 0.14), so both groups were combined for

subsequent analyses. The overall median plasma HIV-1 level for

individuals included in this plasma HIV-1 set point analysis was

4.53 log10 copies/ml. The median plasma HIV-1 level of males

(n = 180) was 4.57 log10 copies/ml compared to females (n = 223)

4.51 log10 copies/ml (p = 0.57). Linear regression performed on

these 403 HIV-1 infected individuals for the 990,115 SNPs that

passed quality control found no single SNP reaching genome-wide

significance (Figure 2). An annotated list of all markers obtaining a

P-value less than 161025 was generated using WGAviewer

software [16] (Table S3).

Discussion

We found no common SNPs associated with HIV-1 acquisition

at genome-wide significance. This result is consistent with a recent

GWAS of Africans recruited from a high-risk setting [10]. Our

study is the first to select participants based on HIV-1 exposure

levels ensuring that HIV-1 uninfected individuals had documented

risk for HIV-1 acquisition. Furthermore, we also found that,

among the subset of African HIV-1 infected participants with

stable plasma HIV-1 level (combining individuals with incident

and chronic HIV-1 infection), no SNPs on the 1M-Duo chip were

associated at genome-wide significance with plasma HIV-1 set

point. This is also similar to recent findings from a GWAS for

determinants of plasma HIV-1 set point in an African-American

cohort [6].

Three important limitations to this analysis must be considered

in interpreting our findings. First, our overall sample size (n = 798

individuals passing quality control criteria) had sufficient power to

detect host genetic variants with large effect sizes: e.g., variants

with minor allele frequencies of 5% or 20% having a genotype

relative risk greater than 3.2 and 2.1, respectively. A larger cohort

would be needed to evaluate for host genetic factors associated

with smaller genotype relative risks. However, it is possible that

lower levels of linkage disequilibrium, particularly within the

MHC region in African populations, reduced our ability to

identify MHC genetic variants potentially associated to plasma

HIV-1 set point in this cohort. This was apparent in a previous

analysis for host genetic determinants of set point viral load in an

African-American cohort [6]. Although two of the top four SNPs

(rs10484434 and rs11755492 –Table S3) in our analysis for

determinants of set point are located physically close to the MHC

region, there is no evidence that these SNPs tag causative variants

within the MHC for our cohort. Additional studies and meta-

analyses of these SNPs may provide further information on

whether these SNPs may have a weak association with set point

Figure 1. Manhattan plot for analysis of HIV-1 acquisition. -log10(p) is plotted for all SNPs against physical location of each SNP in the genome
(listed by chromosome number 1 through 22, and X and XY). The threshold for genome-wide significance (P = 5.161028) is indicated.
doi:10.1371/journal.pone.0028632.g001

GWAS for HIV-1 Acquisition
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that we were not powered to detect. Finally, in addition to

reducing our power to detect host genetic association with set

point, the lower levels of linkage disequilibrium in African

populations might have reduced our power to detect weaker host

genetic associations with HIV-1 acquisition.

Second, the set of common variants evaluated for association

with HIV-1 outcomes is based on HapMap data derived from

common variation in West African (Yoruban) populations and

likely does not capture detailed host variation across diverse

subSaharan African populations [33–35]. Our analysis of

population structure did provide clear discrimination of persons

of Southern African and Eastern African origin (Figure S1a and

S1b), However, improved databases of common host genetic

variation in East and Southern African populations are becoming

available through the recently completed 1000 genomes project

[36]. Nevertheless, the capacity to indirectly capture overall host

variation through linkage disequilibrium will still be lower in

African populations due to lower levels of linkage disequilibrium

present in African populations [35,37].

Finally, recent studies suggest that low frequency or rare host

variation that cannot be readily captured through GWAS analysis

is an important source of factors contributing to human disease

causation [38,39]. Such causal rare variation can only be captured

through large-scale genome sequencing efforts.

A unique component to our analysis was our use of clinical and

behavioral factors from HIV-1 serodiscordant couples to quantify

overall HIV-1 exposure risk. This study design provides unique

advantages for controlling for epidemiological modifiers of HIV-1

acquisition – both explicitly for factors that are known to influence

HIV-1 acquisition (which we have done through the exposure

matching), and implicitly for any unidentified exposure factors

shared within the partnership. While consanguinity of partners is a

potential source of bias in this approach, across all samples, our

analysis found only 2 pairs of samples with cryptic relatedness, and

one sample from each cryptically related pair was excluded from

the analysis. Consistent with previous epidemiologic analyses of

HIV-1 transmission risk performed in this and other cohorts

[12,13,15,40], plasma HIV-1 RNA in the HIV-1 infected partner

has the greatest impact on estimated HIV-1 exposure level.

Although we also included additional factors from the HIV-1

uninfected partner (e.g., history of any unprotected sex, circum-

cision status of male HIV-1 uninfected partners, and age,35 years

for HIV-1 uninfected female partners) in our exposure risk

quantification, these factors contribute to a much smaller degree to

Table 4. Epidemiologic Characteristics of HIV-1 Infected Partners in HIV-1 Set Point Analysis.

Characteristic of HIV-1 Infected Participants for HIV-1 Set Point Analysis Prevalent HIV-1 Infected Incident HIV-1 infected All

Number 293 110 403

% Female 176 (60%) 47 (42.7%) 223 (55.3%)

% recruited from East African sites 218 (74%) 83 (75%) 301 (75%)

Median age [range] (years) 31 [18–67] 30 [18–54] 31 [18–67]

Baseline plasma HIV-1 RNA or plasma HIV-1 set point (median log10 c/ml) 4.57 4.49 4.53

Baseline plasma HIV-1 RNA level of HIV-1 infected partner (median log10 c/ml) n/a 4.17 n/a

Median CD4 count at enrollment (cells/ul) 436 n/a n/a

doi:10.1371/journal.pone.0028632.t004

Figure 2. Manhattan plot for analysis of plasma HIV-1 set point. -log10(p) is plotted for all SNPs against physical location of each SNP in the
genome (listed by chromosome number 1 through 22, and X and XY). The threshold for genome-wide significance is indicated.
doi:10.1371/journal.pone.0028632.g002

GWAS for HIV-1 Acquisition
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HIV-1 transmission risk. We also did not adjust our findings for

the direction of transmission (male-to-female versus female-to-

male) since a recent per contact analysis for HIV-1 transmission

risk in this cohort found that, after adjusting for plasma HIV-1

levels, the relative risk for male-to-female versus female-to-male

transmission was 1.03 (p = 0.93) [41]. Our HIV-1 exposure risk

score correlated well with overall proportion acquiring HIV-1

infection, with those having exposure scores $2 having a 31-fold

increased risk of HIV-1 infection. However, our overall analysis

included individuals with a range of HIV-1 exposure levels with

limited power to evaluate only those HIV-1 uninfected individuals

at the highest HIV-1 exposure levels. Finally, we also did not

account for longitudinal changes in exposure risk (e.g., HIV-1

infected partners initiating antiretroviral therapy resulting in

reduced plasma HIV-1 levels, or behavioral changes related to

frequency of sex or use of condoms). Thus, it remains an open

question whether the search for genomic factors underlying HIV-1

acquisition might benefit from identifying individuals with extreme

transmission phenotypes, e.g., those who remain HIV-1 seroneg-

ative despite persistently high HIV-1 exposures.

In summary, our GWAS comparing HIV-1 infected individuals

to HIV-1 uninfected individuals with documented HIV-1 exposure

risk did not identify host genetic factors strongly modifying risk of

HIV-1 acquisition. Future studies of HIV-1 acquisition and set point

determination may benefit from use of larger sample sizes,

identification of extreme transmission phenotypes, and large-scale

sequencing technologies to capture rare and previously unchar-

acterized common variants in these African cohorts.

Supporting Information

Figure S1 Plot of PC1 versus PC2 population substruc-
ture after removal of outliers. After removing the eight

outlier samples, EIGENSTRAT was re-run to obtain the

eigenvectors for use as covariates in association analysis. Graphical
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