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Abstract

Depth zonation of fauna on continental margins is well documented. Whilst increasing hydrostatic pressure with depth has
long been considered a factor contributing significantly to this pattern, discussion of the relative significance of decreasing
temperature with depth has continued. This study investigates the physiological tolerances of fed and starved specimens of
the bathyal lysianassoid amphipod Stephonyx biscayensis at varying temperature to acute pressure exposure by measuring
the rate of oxygen consumption. Acclimation to atmospheric pressure is shown to have no significant interaction with
temperature and/or pressure effects. Similarly, starvation is shown to have no significant effect on the interaction of
temperature and pressure. Subsequently, the effect of pressure on respiration rate is revealed to be dependent on
temperature: pressure equivalent to 2000 m depth was tolerated at 1 and 3uC; pressure equivalent to 2500 m depth was
tolerated at 5.5uC; at 10uC pressure equivalent to 3000 m depth was tolerated. The variation in tolerance is consistent with
the natural distribution range reported for this species. There are clear implications for hypotheses relating to the observed
phenomenon of a biodiversity bottleneck between 2000 and 3000 metres, and for the potential for bathymetric range shifts
in response to global climate change.
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Introduction

The deep sea is one of the largest habitats on Earth. Phenotypic

[1,2] and genetic [3] clines with depth are evident in deep-sea

organisms, which appear biochemically adapted to specific depth

regimes [4,5]. A compilation of 34 regional case histories and

additional studies by Carney [6] indicates that deep-sea zonation

patterns are widespread, with continental slope fauna clearly distinct

from shelf fauna above and abyssal plain fauna below. High species

turnover consistently indicates biodiversity bottlenecks at a shelf-

slope transition between the shelf break and 1000 m, and a slope-

abyss transition between 2000 and 3000 m. Subsequently, consid-

erable research has focused on the physiological constraints to

species bathymetric distributions (reviewed by [6,7]).

Hydrostatic pressure (0.1 MPa = 10 m depth) effects on living

systems initially result from thermodynamic shifts in chemical

reaction rates [7]. Significant effects of hydrostatic pressure have

been shown by pressure research on isolated biochemical systems,

focusing on enzymatic proteins and lipoprotein membranes [6].

Denaturation of proteins resulting from pressure induced confor-

mational change is well known [7] and adaptation to the high

pressure and low temperature conditions prevailing in the deep sea

is required [4,5]. Temperature also acts as a thermodynamic

parameter with decreasing temperature decreasing chemical

reaction rates; rates change by a factor of two to three for each

10uC temperature change [6]. Successful adaptation to low

temperature and high pressure habitats involves increased enzyme

concentration, adoption of enzymes with greater efficacy and

inclusion of modulator compounds that facilitate enzyme reactions

([8–11] and references cited therein). Increased hydrostatic

pressure and decreased temperature also reduce the fluidity of

bio-membranes necessitating homeoviscous adaptations in mem-

brane structure and composition [12,13]. In the absence of these

adaptations, the effects of high pressure and low temperature are

sufficient to affect biological processes at all levels of organisation

[7,9]. These effects appear to contribute to limited thermal

tolerance through oxygen-limitation, i.e. by reducing oxygen

supply (for review see [14]). Given the analogous effects of low

temperature and high pressure it has recently been proposed that

pressure effects on oxygen supply similarly determine tolerance to

pressure (e.g. [15]). Since respiratory rate has previously been used

as an indicator of metabolic rate in marine ectotherms (see [14])

decreases in oxygen consumption are suggested to indicate

decreasing metabolism resulting from reduced oxygen supply,

reflecting an inability to tolerate exposure conditions. Anaerobic

processes are not stable over time as the product (lactate) requires

subsequent oxidation before removal as CO2 and water [16], and

consequently survival under these conditions is time limited [14].

To the authors knowledge no organism-level study has

extensively examined the interaction of hydrostatic pressure and
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temperature effects on a deep-sea species across and beyond the

entire range experienced within the known natural distribution.

This study tests the hypothesis that the bathymetric range of the

necrophagous bathyal amphipod species Stephonyx biscayensis

(Chevreux, 1908) is constrained by temperature and hydrostatic

pressure. This species is common at depths between 500 and

2000 m across the North-East Atlantic Ocean from Iceland to the

Cape Verde Islands (M.H. Thurston, personal communication)

and has also been reported from 494 m depth in the Gulf of

Mexico and from 549 to 900 m in the Caribbean Sea [17]. In light

of the food storage behaviour of other necrophagous lysianassoid

amphipod species [18] and the potential for considerable variation

in respiration rate with time elapsed since the consumption of

food, the effect of starvation on respiration rates of specimens

exposed to these thermal and hyperbaric conditions is also

investigated. Results indicate that the pressure tolerance of this

species is temperature dependent and are discussed with respect to

the depth tolerance of this species, the phenomenon of a

biodiversity bottleneck between 2000 and 3000 m, and the

potential for bathymetric range responses to ocean warming.

Materials and Methods

All experiments were conducted in accordance with the legal

requirements of the United Kingdom. The use of Crustacea is

unregulated in the United Kingdom and subsequently does not

require ethics approval by a specific committee.

Sampling and maintenance
Adult specimens of the scavenging amphipod species Stephonyx

biscayensis were collected on 29th June and 23rd July 2009 from

depths of 1528 m (48u53.84N, 11u08.36W) and 1765 m

(48u23.81N, 10u18.99W) in the Whittard submarine canyon,

using a baited (mackerel) trap deployed from RRS James Cook on

cruise JC36 [19]. Animals had direct access to the bait and the

trap was neither insulated or pressure retaining. No mortality was

observed based on several hundred specimens retrieved from the

trap and on subsequent days. Animals were maintained at

atmospheric pressure, ambient salinity (35.2), and temperature of

5.5uC (the temperature at the first trap site; Fig. 1), and 24-h

darkness. Upon return to the National Oceanography Centre,

Southampton, animals were transferred to a recirculating

aquarium at atmospheric pressure, ambient salinity (32.7),

temperature of 8uC (the temperature at the mid-depth of the

species’ bathymetric distribution; Fig. 1), and 24-h darkness.

Respiration rate
Oxygen consumption rates (MO2) of individual animals were

used to assess acute respiratory response to pressure following a

minimum of 3 hours exposure to experimental temperatures.

Experimentation was conducted within 1 week of capture

(unacclimated to atmospheric pressure and fed), after 2 months

food deprivation (acclimated to atmospheric pressure and starved),

and within 1 week of feeding (cod) subsequent to 2 months food

deprivation (acclimated to atmospheric pressure and fed).

Experimental pressures (0.1, 5, 10, 15, 20, 25 or 30 MPa) and

temperatures (1, 3, 5.5 or 10uC) were selected to represent those

found across and beyond the natural distribution of the species.

Due to cruise time constraints experiments with unacclimated

animals were restricted to the two temperatures closest to that of

the sample site: i.e. 3 and 5.5uC. Five individuals were exposed to

each experimental combination. Animals were sampled randomly

and were not reused in the experiments; each specimen was

exposed to a single combination of experimental conditions. A

total of 70 unacclimated and fed animals, 140 acclimated and

starved animals, and 140 acclimated and fed animals were used in

experimental treatments.

Oxygen consumption rates were measured using an adaptation

of previously described protocols [20,21]. In brief, an individual

was isolated in a 2.5 ml transparent plastic vial filled with oxygen

saturated, filtered seawater. The vial was closed underwater to

ensure the absence of air bubbles and was placed inside a

temperature acclimated experimental pressure vessel (see Fig. 1 in

[22]) filled with previously incubated freshwater. Pressurisation of

the experimental vessel was continuous and acute, taking less than

10 seconds, and was achieved using a Maximator M72 manual

air-driven liquid pump. The pressure vessel was submerged in a

water bath controlled by a Haake EK20 chiller and a Haake

DC10 heater to maintain constant temperature. After 10 minutes

the experimental vessel was removed from the water bath and the

pressure was released instantaneously. The plastic vial was

inverted three times to ensure that the oxygen concentration of

the seawater was homogenous. The lid was carefully removed to

avoid spilling water and the percentage oxygen saturation of the

water in the vial was assessed using an oxygen microoptode

connected to a Microx TX3 array (PreSens, Germany); oxygen

measurements were made within 45 seconds of depressurisation. A

single animal was used per incubation. Individuals were not

restrained by the vials and displayed no immediate behavioural

response to isolation in the vial, i.e. animals remained immobile.

Subsequent to enclosure of the vial in the pressure chamber no

observation of animal behaviour was possible.

To eliminate any bias due to bacterial oxygen demand or

calibration, individual respiration rates (MO2) were obtained by

comparison with control chambers (no animals) exposed to the

same experimental conditions. Respiration rates are therefore an

average for the 10 minutes during which the organisms were

exposed to experimental conditions. Oxygen saturation did not fall

below 50% saturation under any treatment, minimising the

potential for any hypoxic exposure effect [23]. All specimens

survived experimental treatment.

Figure 1. Temperature at depth in the Whittard submarine
canyon, Gulf of Biscay. Temperature was sampled by ROV on 17th

July 2009. Temperatures within the known bathymetric range of the
lysianassoid amphipod Stephonyx biscayensis are indicated by a heavier
line. Depths of amphipod trap deployments and the corresponding
temperatures are indicated by open circles.
doi:10.1371/journal.pone.0028562.g001

Pressure Effects on a Deep-Sea Amphipod
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The absence of correlation between body size and weight-

specific oxygen consumption has been reported for deep-sea

amphipods and attributed to species-specific metabolic character-

istics and adaptation to low food supply [24]. Subsequently, no

restriction of weight range or correction for body weight was

made. General linear model ANOVA of wet masses of animals

under each experimental treatment indicated no significant

differences (F69,280 = 1.32, p = 0.063), i.e. there was no significant

potential for size-scaling respiration effects between treatments.

Although discussion continues, it has been concluded previously

that serious errors of interpretation concerning whole animal rates

can result from using forms of standardisation other than wet mass

(e.g. [25]). Additionally, rates of oxygen consumption available for

comparison in pressure literature are predominantly derived using

wet mass (e.g. [20,21,24–27]). Total wet mass of animals was

determined to the nearest 0.01 mg after thorough blotting, before

animals were returned to the aquarium. Wet mass ranged from

67.80 mg to 297.63 mg. Individual respiration rates were

expressed as mmol O2 g21 h21.

Data were not normally distributed (Kolmogorov-Smirnov

test, p,0.05) however ‘‘the assumption that data are normally

distributed is not very important…The analysis of variance is

quite robust to non-normality – in other words, its outcome and

interpretation are not affected by the data being non-normal…

this is particularly the case where experiments are large (there

are many treatments) and/or samples of each treatment are

large. It is also the case where samples are balanced’’ ([28], 194).

‘‘Only very skewed distributions would have a marked effect on

the significance level of the F-test or on the efficiency of the

design’’ ([29], 407). In the present study there are many

treatments, the samples are balanced, and the distributions were

not very skewed. In contrast the consequences of heterogeneous

variances are significant (see e.g. [28], 181–3). Square root

transformation was necessary to achieve homoscedasticity

(Levene’s test, p.0.05). General linear model three-way

ANOVA was used to compare respiration rates under different

combinations of factors. Where no significant interaction is

reported between three factors, this method enables examina-

tion of interactions between pairs of factors by pooling all levels

of the third factor, and without conducting additional tests

[28,29]. Subsequently, where no significant interaction is

reported between pairs of factors, further pooling is used to

examine the effect of individual factors, again without additional

tests [28,29]. The post-hoc multiple comparisons Holm-Sidak

test was used to determine which treatments produced

differences [29].

Results

Acclimation, temperature and pressure effects on
respiration rate

Comparing mean MO2 of unacclimated and fed animals to

mean MO2 of acclimated and fed animals (3 and 5.5uC only;

n = 140) indicated that acclimation had no significant effect on the

relationship between the effects of temperature and pressure

(F6,112 = 1.58, p = 0.159). The effect of pressure was dependent on

temperature (Fig. 2; F6,112 = 2.41, p = 0.032). However, no

treatments were significantly different relative to the MO2 at

atmospheric pressure. Both the effect of pressure and the effect of

temperature were independent of acclimation (F6,112 = 1.17,

p = 0.325 and F1,112 = 0.31, p = 0.589 respectively). The effect of

acclimation as an individual factor, when all levels of both other

factors were pooled, was to significantly increase MO2 by 18%

(F1,112 = 6.52, p = 0.012).

Starvation, temperature and pressure effects on
respiration rate

Comparing mean MO2 of acclimated and starved animals to

mean MO2 of acclimated and fed animals (n = 280) indicated that

starvation had no significant effect on the relationship between the

effects of temperature and pressure (F18,224 = 1.32, p = 0.176). The

effect of pressure was temperature dependent (Fig. 3A;

F18,224 = 7.31, p,0.001). MO2 of animals at 1uC remained

relatively stable from 0.1 MPa to 20 MPa before decreasing

significantly at 25 MPa. Similarly, MO2 of animals at 3uC
remained relatively stable from 0.1 MPa to 20 MPa before

decreasing significantly at 25 MPa. In contrast, MO2 of animals

at 5.5uC remained relatively stable from 0.1 MPa to 25 MPa

before decreasing significantly at 30 MPa. Further, MO2 of

animals at 10uC remained relatively stable from 0.1 MPa to

25 MPa before increasing significantly at 30 MPa.

The effect of pressure was independent of starvation

(F6,224 = 1.34, p = 0.241). However, the effect of temperature

depended on starvation (Fig. 3B; F3,224 = 5.29, p = 0.002). The

MO2 of starved animals remained relatively stable from 1uC to

3uC and to 5.5uC before increasing significantly at 10uC. In

contrast, the MO2 of fed animals increased significantly from 1uC
to 3uC, increased significantly to 5.5uC, and remained relatively

stable to 10uC.

Discussion

Methodological considerations
Measurement of acute respiratory response was both necessary

as a result of technological constraints, and expedient in assessing

the organism’s ability to tolerate acute exposure to extreme

environmental conditions. Long-term maintenance of organisms

at high pressure is possible (reviewed by [7]). However, assessing

the respiratory rate of small organisms in high-pressure aquaria is

impractical. The approach taken in this study also avoids multiple

acute pressure changes made in earlier investigations of respiratory

response to hydrostatic pressure (e.g. [27]) and should thus

increase confidence in results. Critically, observations from acute

experimental exposure represent maximum responses that can be

Figure 2. Acclimation, temperature and pressure effects on the
rate of oxygen consumption of Stephonyx biscayensis. In the
absence of an effect of acclimation to atmospheric pressure on the
interaction of temperature and pressure effects, unacclimated and
acclimated treatments were pooled. The effect of temperature on the
relationship between pressure and mean (61 s.e.) rate of oxygen
consumption (MO2) of fed Stephonyx biscayensis is shown (10
individuals per data point); treatments are offset for clarity and no
treatments differ significantly from 0.1 MPa.
doi:10.1371/journal.pone.0028562.g002

Pressure Effects on a Deep-Sea Amphipod
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expected to these environmental conditions and therefore this

method can be used to assess the tolerance ranges expected for the

species (e.g. [20,21]).

Although respiratory rates measured in acute exposures may be

higher than routine rates [e.g. 27] they are internally consistent

and thus allow comparison of treatment effects. It has been

previously indicated that patterns of pressure effects are the same

regardless of acclimation pressure [27]. The absence of acclima-

tion interaction effect in this study is consistent with this,

suggesting that although rates of individuals acclimated to

atmospheric pressure may not accurately represent rates of those

acclimated to in situ pressure, the patterns of starvation,

temperature, and pressure effects reported here are representative

of individuals acclimated to higher pressures. The absence of

statistically significant decreases in respiration rate in pooled

unacclimated/acclimated data may result from greater variance,

attributable to a larger acclimation than starvation effect (18% and

12% respectively).

Respiration rate of the deep-sea mysid Gnathophausia ingens has

been reported to decrease over time following acute pressure

change (inferred from [27]). However, this reduction has been

attributed to a transient increase in the activity of animals

immediately following treatment, before activity declined to a

more constant rate [27]. With the exception of pooled starved and

fed treatments at 10uC and 30 MPa no significant increase in

oxygen consumption is evident in the present study. Although it is

possible that the duration of the experimental exposure may not be

sufficient for observation of an activity response, the difference in

the response of study species is likely to result from the difference

in habits: G. ingens is bathypelagic whereas S. biscayensis is benthic.

Subsequently, it is anticipated that little variation in mean

respiration rate would be observed over time in S. biscayensis.

Starvation, pressure and temperature effects on
metabolic rate

As expected [11], respiration rates recorded during this study are

within the range reported for other lysianassoid amphipod species at

comparable temperatures (,0.1 to 25.8 mmol O2 g21 h21; see

Table 5 in [24]), including rates measured in situ in the deep sea at

3uC (0.9 to 9.4 mmol O2 g21 h21; [30]). The standard deviations

are also similar to those reported elsewhere for shallow-water

lysianassoids at atmospheric pressure and under chronic exposure to

hydrostatic pressure, and for other deep-sea crustaceans both at

atmospheric and in situ pressure [25,26,30,31]. The observed

increase in respiration rate in response to starvation is consistent

with effects reported for the Antarctic lysianassoid Waldeckia obesa

[32] and is likely to result from the batch reactor digestion model

and behavioural adaptation to food limitation reported for other

deep-sea lysianassoids, e.g. decreased metabolic rates allow ingested

and stored energy to support mature specimens of Eurythenes gryllus

for an estimated 9–22 months [18,33].

Effects of low temperatures and high pressures on physiological

processes have previously been observed to be analogous [34]. In

vitro evidence indicates that critical enzyme functionality can be

maintained under different pressure and temperature regimes by

changes in the amino acid sequence in the enzyme, or by the

inclusion of stabilizing compounds in the intracellular milieu [5].

Accumulation of higher levels of lipid has also been observed,

counteracting pressure and temperature induced decrease in

membrane fluidity [35]. According to this model, the observed

decreases in respiratory rates of Stephonyx biscayensis at high

hydrostatic pressure and low temperature indicate decreased

metabolism resulting from reduced oxygen supply in the absence

of such adaptations. The absence of decrease in oxygen consump-

tion rates at higher temperature indicates no reduction in oxygen

supply, revealing that the elevated temperature enables tolerance of

higher pressure, at least in the short term. This suggests that the

effects of temperature and pressure are cumulative.

The combinations of temperature and hydrostatic pressure used

during this study were chosen to represent the environmental

conditions found in and around the natural distribution of this

species. The levels at which physiological impairment occurs

(hydrostatic pressure greater than 20 MPa at temperatures of 1uC
and 3uC) are consistent with the limit of the natural distribution

range reported for S. biscayensis and with conditions found at

sampling sites in the Whittard submarine canyon (Fig. 1). This

contrasts with the response of the amphipod Eurythenes gryllus,

reported from surface layer depths of both polar regions to 7800 m

in the Atacama Trench [36], which has been found to maintain

approximately constant rates of oxygen consumption at hydro-

static pressures from 1 to 325 atm (1 atm = 0.1 MPa) at 2uC [37].

That the natural distribution of S. biscayensis coincides with the

physiological impairment observed under acute experimental

exposure to temperature and hydrostatic pressure suggests these

factors may constrain the lower bathymetric limit of this species.

Figure 3. Starvation, temperature and pressure effects on the
rate of oxygen consumption of Stephonyx biscayensis. (A) Fed
and starved treatments were pooled in the absence of a starvation
effect on the interaction of temperature and pressure effects.
Subsequently the effect of temperature on the relationship between
pressure and mean (61 s.e.) rate of oxygen consumption (MO2) of
Stephonyx biscayensis acclimated to atmospheric pressure is shown (10
individuals per data point). (B) Similarly, pressure treatments were
pooled in the absence of a pressure effect on the interaction of
starvation and temperature effects. Subsequently the effect of
starvation on the relationship between temperature and mean (61
s.e.) MO2 of Stephonyx biscayensis acclimated to atmospheric pressure is
shown (35 individuals per data point). Treatments are offset for clarity
and those differing significantly from 0.1 MPa (A) or 5.5uC (B) are
indicated by an asterisk.
doi:10.1371/journal.pone.0028562.g003

Pressure Effects on a Deep-Sea Amphipod
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Indeed, a congeneric species (Stephonyx mytilus) is reported from 2482

to 2635 m depth at Galapagos vent sites and East Pacific Rise 13uN
vent sites [38] where temperatures are typically elevated above

those of the surrounding deep sea. It does not appear that pressure

exerts an influence on the upper bathymetric limit of S. biscayensis,

however it is possible that temperatures higher than those examined

(i.e. .10uC) may constrain the range of this species. Although not

reported for S. biscayensis, polar emergence is documented in the

panoceanic lysianassoid amphipod Eurythenes gryllus [36], suggesting

that the upper bathymetric limit of some lysianassoid species may be

defined by temperature. Other ecological factors may also influence

the upper limits to species’ distributions, e.g. bathymetric environ-

mental gradients may foster biological interactions such as

competition with and predation by species restricted to shallower

water (see [39] and references cited therein).

Whilst temperature has long been regarded as the principal

factor restricting the latitudinal distribution of marine inverte-

brates (for review see [14]), hydrostatic pressure has been seen as

one of the key factors limiting the lower limits of species’ depth

distributions [4,5]. The interaction of hydrostatic pressure and

temperature effects identified in this and other studies (e.g. [20–

22]) supports a significant role for temperature within depth

adaptation models, and provides a clear indication that effects of

high hydrostatic pressure and low temperature are combined.

Identification of a consistent biodiversity bottleneck between 2000

to 3000 m (see [6]) lead us to hypothesise that the physiological

constraints imposed by the combined effects of high hydrostatic

pressure and low temperature contribute to the limitation of

bathymetric distribution in many species, with passage to deeper

water requiring further adaptation to the prevailing deep-sea

conditions. This appears consistent with hypotheses of deep-sea

colonisation by shallow water invertebrates, indicated by onshore-

offshore evolutionary dynamics (see [40] and references cited

therein) and the relatedness of extant shallow- and deep-water taxa

(e.g. [41]). Recent studies have emphasised this bottleneck for

other crustaceans in an evolutionary context [20,42].

Increases in depth range have been observed in North Sea fishes

in response to climate change [43,44] and it has recently been

proposed that shallow-water invertebrates may be able to

penetrate greater depths as continental shelf waters warm [20].

Increases of between 0.5 and 1.0uC are predicted to occur at

depths beyond 2000 metres in some parts of the northern

hemisphere by 2100 (see Fig. 10.7 in [45]). Further increases in

deep ocean temperature are predicted beyond 2100 since the

ocean will eventually warm up reasonably uniformly by the

amount of the global average surface temperature change [46].

Multi-model means of oceanic warming under the moderate

greenhouse gas growth scenario predict this to be between 1 and

2uC across most of the oceans for the period 2080–2099 relative to

the period 1980–1999 [45]. The interaction of temperature and

hydrostatic pressure demonstrated in this study by the absence of

physiological impairment at 25 MPa at 5.5uC suggests that

projected increases in bathyal temperatures may facilitate

penetration of deeper water by this species. Although the

importance of latitudinal shifts on ecosystem dynamics has been

stressed as migrations to higher latitudes follow shifts of climate

envelopes [47,48], little consideration has been made of the

possible interactions that may result from bathymetric shifts in the

ranges of individual species. However, to fully assess the potential

of organisms to increase depth penetration future studies will need

to elucidate pressure tolerances throughout the various critical

stages in ontogeny, e.g. for crustaceans embryogenesis, larval/

adult moult, feeding and mating, and in a range of taxa.
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