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Abstract

The geometry of polynomials explores geometrical relationships between the zeros and the coefficients of a polynomial. A
classical problem in this theory is to locate the zeros of a given polynomial by determining disks in the complex plane in
which all its zeros are situated. In this paper, we infer bounds for general polynomials and apply classical and new results to
graph polynomials namely Wiener and distance polynomials whose zeros have not been yet investigated. Also, we examine
the quality of such bounds by considering four graph classes and interpret the results.
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Introduction

Numerous graph polynomials have been extensively studied and

applied interdisciplinarily, see, e.g., [1–4]. Early contributions in

this area deal with studying the well known independence

polynomial [5] and chromatic polynomial [6]. Other graph

polynomials such as the Omega polynomial and Cluj polynomial

have been studied in [7]. Apart from this research, polynomials

have been also employed in biologically driven disciplines. For

instance, Emmert-Streib [8] tackled the challenging problem of

calculating knot polynomials of secondary structure elements of

proteins algorithmically. Related work can be also found in [8].

Interestingly, the development of so-called topological indices such

as the well-known Wiener index [9] has triggered exploring graph

polynomials too. For instance, Yan et al. [10] examined how the

Wiener index changes under certain graph operations and

extended their results to Wiener polynomials. Zadeh et al. [11]

also investigated Wiener-type invariants of some graph operations.

But note that the first paper exploring the change of the Wiener

number upon operations on graphs has been contributed by

Polansky and Bonchev [12]. Further, formulas for the Wiener

polynomial of k-th power graphs have been investigated [13]

when considering special graph classes such as paths, cycles and

hypercubes (see also Theorem (1)).

In general, graph polynomials have been developed for

measuring combinatorial graph invariants and for characterizing

graphs. The latter problem has been studied in structural

chemistry where the polynomials have been derived from chemical

graphs [1,3]. There, graphs have been characterized by several

graph polynomials [14] to solve problems in the Hückel-molecular

orbital theory and in the theory of aromaticity, see [3,15]. Another

intriguing field deals with investigating graph measures derived

from the zeros of a graph polynomial. Seminal work has been

done by Lovász et al. [16] as they explored the meaning of the

largest eigenvalue of trees. Particularly they found that the leading

positive eigenvalue of the characteristic polynomial can be used as

a measure for detecting branching of trees. Related concepts of

branching based on using the eigenvalues of a graph have been

studied by Randić et al. [17] and Bonchev [18].

Later, Randić et al. [17] surveyed further eigenvalue-based

measures such as the sum of the positive eigenvalues, the

multiplicity of the zero eigenvalue and other spectral indices

[17,19]. Also, Dehmer et al. [20] recently developed novel spectral

measures that turned to be unique for several graph classes.

Altogether this shows that graph polynomials and their zeros have

been a valuable source for investigating various problems in

discrete mathematics and related areas.

Apart from the research described above, the zeros of some

graph polynomials have been also explored, see, e.g., [21–23]. In

this sense, Woodall [23] explored the zeros and zero-free regions

of chromatic and flow polynomials. Also, the zero distribution of

chromatic and flow polynomials of graphs and characteristic

polynomials of matroids have been examined by Jackson [21].

Finally Brešar et al. [24] examined the zeros of cube polynomials

under certain structural conditions of the underlying graphs.

Other results about the zeros of known graph polynomials have

been recently reported by Ellis-Monaghan et al. [4].

The main contribution of this paper is twofold: First, we prove

inclusion radii representing upper bounds for the zeros of general

complex polynomials. Note that most of these statements can also

be applied if the polynomials possess real coefficients as the moduli

of the coefficients appear in the corresponding bounds. Second, we

apply these and classical results to locate the zeros of special

Wiener and distance polynomials, see [25–27]. This results in disks

in the complex plane or intervals where the zeros of these

polynomials lie. To our best knowledge, the location of zeros of the

Wiener and distance polynomial has not been studied yet. Apart

from proving results for special polynomials, i.e., the polynomials

represent special graph classes, it is easy to generalize the results

for other (general) graph polynomials by using the tools we will

provide in this paper. Besides further developing the mathematical

apparatus, we evaluate the quality of the zero bounds by
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generating four large graph classes and interpret the numerical

results.

Results

The main contribution of this paper is to locate the zeros of

special graph polynomials which have been proven useful in

mathematical chemistry and discrete mathematics, see [3,14,25].

A thorough overview of the underlying theory called analytic theory

of polynomials can be found in [28,29]. Note that the problem of

finding bounds for the zeros of complex and real polynomials has

been tackled by numerous authors, e.g., see [28,30–34]. However,

the existing research shows that the usefulness and performance of

many such bounds has not been demonstrated yet. For this, we

compare our bounds in the section ‘Numerical Results’ and

demonstrate that some of the new bounds are optimal.

We now start by reproducing some important definitions and

results we are going to use in our analysis.

Mathematical Preliminaries
In this section, we introduce some mathematical preliminaries

[25–27,35,36]. Let G~(V , E) be a finite simple graph and let

A~(aij) be its adjacency matrix. I denotes the identity matrix.

Then,

PG,A(z) :~ det (A{zI), ð1Þ

is the characteristic polynomial of G. Straightforwardly, we obtain

the distance polynomial defined by

PG,D(z) :~ det (D{zI), ð2Þ

where D is the distance matrix of G. By expanding the

determinant, we yield

PG,D(z)~znzan{2zn{2z � � �za1zza0: ð3Þ

We see that an{1 is always equal to zero [26]. Denote by r(G) the

diameter of G and d(G,i) is the number of pairs of G having

distance i, d(G,1)~jEj. Then the Wiener polynomial [25,27] (also

called Hosoya polynomial [37]) can be defined as

WG(z) :~
Xr(G)

i~1

d(G, i)zi: ð4Þ

Further properties of WG(z) have been reported in [27]. Next, we

reproduce some results due to Sagan et al. [27] and K r
^

ivka [26]

giving concrete expressions for Wiener- and distance polynomials

for special graph classes.

Theorem 1 Let Pn, Cn and Qn be the path graph, cycle graph and n-

dimensional cube. It holds

WPn (z)~(n{1)zz(n{2)z2z � � �zzn{1, ð5Þ

WC2n
(z)~(2n)(zzz2z � � �zzn{1)znzn, ð6Þ

WC2nz1
(z)~(2nz1)(zzz2z � � �zzn), ð7Þ

WQn (z)~2n{1f(1zz)n{1g: ð8Þ

Theorem 2 Let Kn and Sn be the complete graph and the star graph on

n vertices. It holds

PKn,D(z)~(zz1)n(z{nz1), ð9Þ

PSn,D(z)~(zz2)n{2½z2{1{(n{2)(2zz1)�: ð10Þ

To introduce the problem of locating the zeros of polynomials,

we state the following definitions.

Definition 1 Let

f (z)~
Xn

i~0

aiz
i,an=0,ai[ ,i~0,1, . . . ,n, ð11Þ

be complex polynomial. The set

K(z0, r) :~fz[ jjz{z0jƒrg, ð12Þ

represents a circle with central point z0 and radius r. Further, we define

K̂K(z0, r) :~fz[ jjz{z0jvrg: ð13Þ

Definition 2 If all zeros of f (z) lie in the set given by Equation (12), r

is called the inclusion radius. In the simplest case, r is a function of all

coefficients, i.e., r~r(a0,a1, . . . ,an).

Note that a more general question namely deriving bounds

depending on pz1 coefficients for p zeros of f (z) has been tackled

by Montel [28,38]. Other variants of bounds and extensions of the

results due to Montel can be also found in [28].

Known Inclusion Radii
In this section, we state some classical and known results for

locating the zeros of arbitrary complex-valued polynomials.

Theorem 3 (Cauchy [28]) Let

f (z)~
Xn

i~0

aiz
i,an=0,i~0,1, . . . ,n, ð14Þ

be complex polynomial. All zeros of f (z) lie in K(0,1zM1), where

M1 :~ max
0ƒjƒn{1

aj

an

����
����: ð15Þ

Theorem 4 (Fujiwara [39]) Let

f (z)~
Xn

i~0

aiz
i,an=0,i~0,1, . . . ,n, ð16Þ

be complex polynomial. For l1, � � � ,lnw0 and
Pn

j~1
1
lj

ƒ1, all zeros of

f (z) lie in
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K 0,1z max
1ƒjƒn

jan{j jlj

janj

� �1
j

 !
: ð17Þ

Theorem 5 (Enestrom-Kakeya [40]) Let

f (z)~anznzan{1zn{1z � � �za0,ai[IR,i~0,1, . . . ,n, ð18Þ

be a polynomial with real coefficients satisfying

a0§a1§ � � �§anw0: ð19Þ

Then, no zeros of f(z) lie in K̂K(0,1).

Theorem 6 (Dehmer [41]) Let

f (z)~anznzan{1zn{1z � � �za0,anan{1=0,

be a complex polynomial. All zeros of f (z) lie in the closed disk

K 0,
1zw

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(w{1)2z4M2

q
2

0
@

1
A, ð20Þ

where

w :~
an{1

an

����
���� and M2 :~ max

0ƒjƒn{2

aj

an

����
����: ð21Þ

Besides locating the zeros of polynomials, it is often important to

determine the number of positive or negative zeros of polynomials

with real coefficients. In this light, we state the famous Descartes

Rule of Signs, see [28,34].

Theorem 7 Let f(z) be a real polynomial. The number of positive zeros

of f (z) either equals the number of sign changes within the sequence of

coefficients or is less than it by a multiple of two.

Novel Inclusion Radii
Theorem 8 Let

f (z)~anznzan{1zn{1z � � �za0,anan{1=0,

be a complex polynomial. All zeros of f (z) lie in the closed disk

K 0,
1zm

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m{1)2z4M3

q
2

0
@

1
A, ð22Þ

where

m :~
an{an{1

an

����
���� and M3 :~ max

1ƒjƒn

an{j{an{j{1

an

����
����,a{1 :~0:ð23Þ

Proof: Defining H(z) :~(1{z)f (z) and assuming jzjw1 yields

jH(z)j~j{anznz1z(an{an{1)znz � � �z(a1{a0)zza0j, ð24Þ

§janjjzjnz1
{½jan{an{1jjzjnz � � �zja1{a0jjzjzja0j�, ð25Þ

§janj jzjnz1
{
jan{an{1j
janj

jzjnzM3½jzjn{1 � � �zjzjz1�
� �� 	

, ð26Þ

~janj jzjnz1
{ mjzjnzM3jzjn{1

Xn{1

i~0

1

jzji

( )" #
, ð27Þ

wjanj jzjnz1
{ mjzjnzM3jzjn{1

X?
i~0

1

jzji

( )" #
, ð28Þ

~janj jzjnz1
{ mjzjnzM3jzjn{1 jzj

jzj{1

� �� 	
, ð29Þ

~
janjjzjn

jzj{1
jzj2{jzj(1zm)z(m{M3)
h i

: ð30Þ

We set

F (z) :~z2{z(1zm)z(m{M3), ð31Þ

and conclude jH(z)jw0 if F (jzj)w0. To solve F (jzj)w0, we yield

z1,2 :~
mz1

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m{1)2z4M3

q
2

, ð32Þ

and see that

mz1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m{1)2z4M3

q
2

w1: ð33Þ

Altogether, we obtain

jf (z)jw0 if F (jzj)w0, ð34Þ

and, finally

jf (z)jw0 if jzjw mz1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m{1)2z4M3

q
2

: ð35Þ

By using Inequality (33), it is evident that the zeros with jzjƒ1 lie

in the closed disk represented by Equation (22) too. The theorem is

proven for H(z). But all zeros of f (z) are zeros of H(z). Hence, the

theorem also holds for f (z). %

Theorem 9 Let

f (z)~anznzan{1zn{1z � � �za0,an=0,

be a complex polynomial. Define

Zeros of Wiener and Distance Polynomials
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m :~
an{an{1

an

����
���� and M3 :~ max

1ƒjƒn

an{j{an{j{1

an

����
����: ð36Þ

All zeros of f (z) lie in the closed disk K(0, max (1,d)) where d
denotes the positive root of the equation

znz2{(1zm)znz1z(m{M3)znzM3~0: ð37Þ

Proof: Defining H(z) :~(1{z)f (z) yields again

jH(z)j§janj

jzjnz1
{
jan{an{1j
janj

jzjnzM3½jzjn{1 � � �zjzjz1�
� �� 	

,
ð38Þ

~janj jzjnz1
{ mjzjnzM3

jzjn{1

jzj{1

� �� 	
, ð39Þ

~
janj
jzj{1

½jzjnz2
{jzjnz1(1zm)zjzjn(m{M3)zM3�: ð40Þ

We set

F (z) :~znz2{znz1(1zm)zzn(m{M3)zM3, ð41Þ

and see jH(z)jw0 if F (jzj)w0. In both cases, i.e., m{M3§0 and

m{M3v0, F (z) has two sign changes in its sequence of

coefficients. By applying Theorem (7) and observing F (1)~0
and F(0)w0, we conclude that F (z) has exactly two positive zeros.

Let d be the zerow1 and limz?z? F (z)~z?. Altogether, we

obtain

jf (z)jw0 if F (jzj)w0, ð42Þ
and, finally

jf (z)jw0 if jzjw max (1,d): ð43Þ

The proof for H(z) is complete. But all zeros of f (z) are zeros of

H(z). Hence, the theorem also holds for f (z). %

The next theorem is based on using the Hölder inequality [42].

Theorem 10 Let

f (z)~anznzan{1zn{1z � � �za0,anan{1=0,

be a complex polynomial. Let p,qw1 such that
1

p
z

1

q
~1 and define

m :~
an{an{1

an

����
���� and h1 :~

Xn

j~1

an{j{an{j{1

an

����
����
p

,a{1 :~0: ð44Þ

All zeros of f (z) lie in the closed disk K(0,d) where dw1 denotes the largest

positive root of the equation

(zq{1)(z{m)q{h
q
p
1~0: ð45Þ

Proof: We start with H(z) :~(1{z)f (z) and obtain

jH(z)j§janj jzjnz1
{ mjzjnz

Xn

j~1

an{j{an{j{1

an

����
����jzjn{j

( )" #
: ð46Þ

By applying the well-known Hölder inequality [42] toPn
j~1

an{j{an{j{1

an

����
����jzjn{j

and jzjw1, we further infer

jH(z)j§janj

jzjnz1
{ mjzjnz

Xn

j~1

an{j{an{j{1

an

����
����
p� �1

p Xn

j~1

jzj(n{j)q

 !1
q

8<
:

9=
;

2
4

3
5,
ð47Þ

~janj jzjnz1
{ mjzjnzh

1
p
1

jzjnq
{1

jzjq{1

� �1
q

8<
:

9=
;

2
4

3
5, ð48Þ

wjanj jzjnz1
{ mjzjnzh

1
p
1

jzjn

(jzjq{1)
1
q

 !( )" #
, ð49Þ

~
janj

(jzjq{1)
1
q

jzjnz1
(jzjq{1)

1
q{mjzjn(jzjq{1)

1
q{jzjnh

1
p
1

� 	
, ð50Þ

~
janjjzjn

(jzjq{1)
1
q

(jzjq{1)
1
q jzj{mð Þ{h

1
p
1

� 	
: ð51Þ

Hence, jH(z)jw0 if

(jzjq{1)
1
q jzj{mð Þ{h

1
p
1w0, ð52Þ

or

(jzjq{1) jzj{mð Þq{h
q
p
1w0: ð53Þ

Define

F (z) :~(zq{1) z{mð Þq{h
q
p
1: ð54Þ

We see easily that the largest positive zero d of F (z) is w1. This

implies jH(z)jw0 if F (jzj)w0 and, hence, jzjwd. Thus, we

proved the theorem for H(z). But all zeros of f (z) are zeros of

H(z). %

Corollary 1 Let

f (z)~anznzan{1zn{1z � � �za0,anan{1=0,

be a complex polynomial. p,qw1 and
1

p
z

1

q
~1. If m~0

(see Theorem(10)), all zeros of f (z) lie in the closed disk K(0,d) where

dw1 denotes the largest positive root of the equation
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(zq{1)zq{h
q
p
1~0: ð55Þ

Proof: Set m~0 in Equation (54). %

The following theorem holds for polynomials with real

coefficients and was proven to be optimal by using several graph

classes (see section ‘Numerical Results’).

Theorem 11 Let

f (z)~anznzan{1zn{1z � � �za0,ai[IR,anan{1=0,

be a polynomial with real coefficients. Define

m :~
an{an{1

an

����
���� and h2 :~

1ffiffiffi
2
p (

Xn

j~1

an{j{an{j{1


 �2
)
1
2: ð56Þ

All zeros of f (z) lie in the closed disk K(0,d) where dw1 denotes the largest

positive root of the equation

(z2{1)(z{m)2{
2h2

2

janj2
~0: ð57Þ

Proof: Define H(z) :~(1{z)f (z). We obtain

jH(z)j§janj jzjnz1
{

1

janj

�
jan{an{1jjzjnzf

j(an{1{an{2)zn{1z � � �z(a1{a0)zza0j
�� ð58Þ

~janj

jzjnz1
{

1

janj
jan{an{1jjzjnz

Xn

j~1

(an{j{an{j{1)zn{j

�����
�����

( )" #
:
ð59Þ

Now, we use De Bruijn’s inequality [42] given by

Xn

j~1

ajzj

�����
�����
2

ƒ

1

2

Xn

j~1

a2
j

Xn

j~1

jzj j2z
Xn

j~1

z2
j

�����
�����

" #
, ð60Þ

where aj[IR and zj[ . Applying this inequality to j
Pn

j~1 (an{j{

an{j{1)zn{j j yields

j
Xn

j~1

(an{j{an{j{1)zn{j jƒ

1ffiffiffi
2
p (

Xn

j~1

(an{j{an{j{1)2)
1
2

Xn

j~1

jzj(n{j)2
z
Xn

j~1

z(n{j)2

�����
�����

" #1
2

,

ð61Þ

ƒ

1ffiffiffi
2
p

Xn

j~1

(an{j{an{j{1)2

 !1
2

2
Xn

j~1

jzj(n{j)2

" #1
2

, ð62Þ

~h2

ffiffiffi
2
p jzj2n

{1

jzj2{1

" #1
2

: ð63Þ

By using the last inequality and assuming jzjw1, we further obtain

jH(z)j§janj

jzjnz1
{

1

janj
jan{an{1jjzjnzh2

ffiffiffi
2
p jzj2n

{1

jzj2{1

" #1
2

8<
:

9=
;

2
4

3
5,

ð64Þ

wjanj jzjnz1
{

1

janj
jan{an{1jjzjnzh2

ffiffiffi
2
p jzjn

(jzj2{1)
1
2

" #( )" #
,ð65Þ

~
janj

(jzj2{1)
1
2

jzjnz1
(jzj2{1)

1
2{mjzjn(jzj2{1)

1
2{

1

janj
h2

ffiffiffi
2
p
jzjn

� 	
,

ð66Þ

~
janjjzjn

(jzj2{1)
1
2

(jzj2{1)
1
2(jzj{m){

1

janj
h2

ffiffiffi
2
p� 	

: ð67Þ

Thus, jH(z)jw0 if

(jzj2{1)
1
2(jzj{m){

1

janj
h2

ffiffiffi
2
p

w0, ð68Þ

or

(jzj2{1)(jzj{m)2{
2h2

2

janj2
w0: ð69Þ

Again, we define

F (z) :~(z2{1)(z{m)2{
2h2

2

janj2
, ð70Þ

and easily observe that its largest positive zero d is w1. Finally,

jH(z)jw0 if F (jzj)w0 and, hence, jzjwd. Thus, we completed the

proof for H(z). As the zeros of f (z) are zeros of H(z), the proof of

the theorem is complete. %

Now, we easily obtain the following corollaries.

Corollary 2 Let

f (z)~anznzan{1zn{1z � � �za0,ai[IR,

be a polynomial with real coefficients. All zeros of f (z) lie in the closed disk

K(0,d) where dw1 denotes the largest positive root of the equation

(z2{1)(janjz{jan{1j)2{2h2
2~0: ð71Þ

Proof: The statement follows from applying the steps of the

proof of Theorem (11) to f (z) (instead of starting with

H(z) :~(1{z)f (z). %

Zeros of Wiener and Distance Polynomials
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Corollary 3 Let

f (z)~anznzan{1zn{1z � � �za0,ai[,anan{1=0,an{1=2an,

be a polynomial with real coefficients. All zeros of f (z) lie in the closed disk

K 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

ffiffiffi
2
p

:h2

janj
1{m

0
BBB@

1
CCCA

2
vuuuuuut

0
BBBB@

1
CCCCA: ð72Þ

Proof: Using Inequality (67) and jzjw1 yields

jH(z)jw janjjzjnz1

(jzj2{1)
1
2

(jzj2{1)
1
2{m(jzj2{1)

1
2{

1

janj
h2

ffiffiffi
2
p� 	

: ð73Þ

Now, jH(z)jw0 if

(jzj2{1)
1
2{m(jzj2{1)

1
2{

1

janj
h2

ffiffiffi
2
p

w0, ð74Þ

or

jzjw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

ffiffiffi
2
p

:h2

janj
1{m

0
BBB@

1
CCCA

2
vuuuuuut : ð75Þ

It holds anan{1=0. Then, m=1 iff an{1=2an. %

Corollary 4 Let

f (z)~anznzan{1zn{1z � � �za0,ai[IR,anan{1=0,

be a polynomial with real coefficients. If m~0, all zeros of f (z) lie in the

closed disk

K 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

2h2
2

janj2

s !
: ð76Þ

Proof: Set m~0 in Inequality (73). The rest of the proof is

analogous to the proof of Corollary (3). %

Location of Zeros of Graph Polynomials
By using the tools presented in the previous section, we are now

able to derive results for locating the zeros of Wiener and distance

polynomials.

Bounds for Concrete Graph Polynomials
We start by considering the polynomials provided in section

‘Mathematical Preliminaries and Known Results’ (see Theorem

(1)).

Corollary 5 WPn
(z), WC2n

(z), WC2nz1
(z) and WQn

(z) do not

possess positive zeros.

Proof: As there are no sign changes in the sequences of the

coefficients of WPn
(z), WC2n

(z) and WC2nz1
(z), the assertion

follows immediately by applying Theorem (7). To prove the

statement for WQn
(z), we easily see that

WQn (z)~2n{1f(1zz)n{1g~2n{1
Xn

i~1

n

i

� �
zi: ð77Þ

Again by applying Theorem (7), WQn (z) does not possess positive

zeros. %

Remark 12 The number of negative zeros of these graph polynomials can

be determined by applying Theorem (7) to f ({z). Particularly,

WQn
({2)~0 if n is even.

Next, we apply the Theorem of Eneström-Kakeya [40] and

obtain the following corollary.

Corollary 6 WPn
(z) and WC2n

(z) do not possess zeros in K̂K(0,1).

To derive a more detailed statement for the zeros of WC2nz1
(z),

we firstly state a lemma.

Lemma 1 Let

f (z)~aznzazn{1z � � �za,a=0, ð78Þ

be a complex polynomial. All zeros of f (z) lie on the unit circle.

Proof: Clearly, we have

f (z)~a
1{znz1

1{z
~a P

n

i~1
(z{vi), ð79Þ

where v denotes the (nz1)-th root of unity. The lemma is proven.

%

Corollary 7 All zeros of WC2nz1
(z) lie on the unit circle.

By applying the classical result due to Cauchy (see Theorem (3)),

we obtain

Corollary 8 All zeros of WPn
(z), WC2n

(z) and WC2nz1
(z) lie in

K(0,n), K(0,2nz1) and K(0,2nz2), respectively.

By applying Theorem (6), we also yield

Corollary 9 All zeros of WPn
(z), WC2n

(z) and WC2nz1
(z) lie in

K 0,
3

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4(n{1)

p
2

 !
, ð80Þ

K 0,
3

2
z

ffiffiffiffiffiffiffiffiffiffiffiffi
1z8n
p

2

� �
, ð81Þ

and

K 0,1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4(2nz1)

p
2

 !
, ð82Þ

respectively.

For nw3, we yield

3

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4(n{1)

p
2

vn, ð83Þ

since it is equivalent to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4(n{1)

p
v2n{3, ð84Þ

and

n2{4nz3w0: ð85Þ
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This inequality is satisfied for nw3 and, hence, the inclusion

radius given by Equation (80) is always an improvement of jzjƒn

(see Corollary (8)). This relation can be proven analogously for the

other zero bounds too (see Equation (81), (82) and Corollary (8)).

As for WQn
(z) no special conditions for its coefficients hold,

Eneström-Kakeya’s Theorem is not applicable. Theorem (3) and

Theorem (6) give general zero bounds for WQn
(z).

Corollary 10 All zeros of WQn
(z) lie in

K 0,1z max
1ƒjƒn{1

n

j

� �� �
, ð86Þ

and

K 0,
1zn

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n{1)2z4 max

1ƒjƒn{2

n

j

� �� �s

2

0
BBBB@

1
CCCCA, ð87Þ

respectively.

We notice that the maximum of
n

j

� �
is achieved for the

middle binomial coefficient
n

tn=2s

� �
.

Theorem (11) turned out to be feasible for various graph classes

(see section ‘Numerical Results’). Hence, we apply this statement

to some of the Wiener polynomials of Theorem (1). Note that the

bound given by Theorem (11) represents a so-called implicit

bound as the bound value is a root of a concomitant polynomial,

see, e.g., Equation (57).

Corollary 11 All zeros of WC2n
(z) lie in the closed disk K(0,d) where

dw1 denotes the largest positive root of the equation

(z2{1)(z{1)2{4~0: ð88Þ

It is d ¼: 2:08987.

Corollary 12 All zeros of WC2nz1
(z) lie in the closed disk K(0,d)

where dw1 denotes the largest positive root of the equation

(z2{1)z2{1~0: ð89Þ

It is d ¼: 1:27202.

Corollary 13 All zeros of WQn
(z) lie in the closed disk K(0,d) where

dw1 denotes the largest positive root of the equation

(z2{1)(z{(n{1))2{

n{
n

n{2

 ! !2

z
n

n{2

 !
{

n

n{3

 ! !2
2
4

z � � �z
n

2

 !
{

n

1

 ! !2

zn2

3
5

~(z2{1)(z{(n{1))2{ 2
2n

n

 !
{2

2n

n{1

 !
{(n{2)2

" #
~0:

Before applying the results from the previous section to the

special distance polynomials presented in Theorem (2), we state a

simple lemma.

Lemma 2

PKn,D(z)~znz1z
Xn{1

j~0

n

j

� �
z

n

jz1

� �
(1{n)

� 	
zjz1z(1{n), ð90Þ

PSn,D(z)~znzbn{1znz1z � � �zb1zzb0, ð91Þ

where

bn{1 :~
n{2

n{3

� �
2zu, ð92Þ

bn{2 :~
n{2

n{4

� �
22z

n{2

n{3

� �
2uzw, ð93Þ

..

.

b2 :~2n{2z
n{2

1

� �
2n{3uz

n{2

2

� �
2n{4w, ð94Þ

b1 :~2n{2uz
n{2

1

� �
2n{3w, ð95Þ

b0 :~2n{2w, ð96Þ

u :~4{2n, ð97Þ

w :~1{n: ð98Þ

Proof: We start with PKn,D(z)~(zz1)n(z{nz1), see Theo-

rem (1). By performing direct calculations, we get

PKn,D(z)~(zz1)nzz(1{n)(zz1)n ð99Þ

~ 1z
n

1

� �
zz � � �z

n

n{1

� �
zn{1zzn

� �
z

z(1{n) 1z
n

1

� �
zz � � �z

n

n{1

� �
zn{1zzn

� �
, ð100Þ

~znz1z
Xn{1

j~0

n

j

� �
z

n

jz1

� �
(1{n)

� 	
zjz1z(1{n): ð101Þ

Now, consider PSn,D(z)~(zz2)n{2½z2{1{(n{2)(2zz1)�. In

order to infer Equation (91), we observe
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(2zz)n{2~
Xn{2

j~0

n{2

j

� �
2n{2{jzk: ð102Þ

Also,

z2{1{(n{2)(2zz1)~z2zuzzw, ð103Þ

where u~4{2n and w~1{n. If we now define

a0 :~2n{2
n{2

0

� �
~2n{2, ð104Þ

a1 :~2n{3
n{2

1

� �
, ð105Þ

..

.

an{3 :~21
n{2

n{3

� �
, ð106Þ

an{2 :~20
n{2

n{2

� �
~1, ð107Þ

we yield

PSn,D(z)~(zz2)n{2½z2{1{(n{2)(2zz1)�, ð108Þ

~(zn{2zan{3zn{3z � � �za1zza0)(z2zuzzw), ð109Þ

~znz(an{3zu)zn{1z(an{4zan{3uzw)zn{2

z � � �z(a0za1uza2w)z2,

z(a0uza1w)zza0w: ð110Þ

With the definitions stated in Lemma (2) and ai, 0ƒjƒn{2
expressed above, we obtain

PSn,D(z)~znzbn{1znz1z � � �zb1zzb0: ð111Þ

%

To finalize this section, we now apply some of the classical and

new results to the special distance polynomials stated in Lemma

(2). Note that these polynomials only possess real zeros as the

underlying matrices are symmetric (see Definition (2)). We state

the results exemplarily by only considering PKn,D(z).

Using Theorem (3) yields

Figure 1. A graph G[[GG4.
doi:10.1371/journal.pone.0028328.g001

Figure 2. A graph G[[GG4.
doi:10.1371/journal.pone.0028328.g002

Figure 3. A graph G[[GG4.
doi:10.1371/journal.pone.0028328.g003

Figure 4. A graph G[[GG4.
doi:10.1371/journal.pone.0028328.g004
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Corollary 14 All zeros of PKn ,D(z) lie in the interval ½{a,a�, where

a: ~1z max max
0ƒjƒn{1

n

j

� �
z

n

jz1

� �
(1{n)

����
����,n{1

� 	
: ð112Þ

Applying Theorem (6) yields

Corollary 15 All zeros of PKn ,D(z) lie in the interval ½{a,a�, where

a: ~
1

2
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z4:max max
0ƒjƒn{2

n

j

 !
z

n

jz1

 !
(1{n)

�����
�����,n{1

" #vuut :

ð113Þ

Finally we apply Theorem (11) and obtain

Corollary 16 All zeros of PKn ,D(z) lie in the interval ½{d,d� where

dw1 denotes the largest positive root of the equation

(z2{1)z2{ (1{
n

n{2

 !
z

n

n{1

 !
(1{n)

" #
)2z � � �

"

z(
n

0

 !
z

n

1

 !
(1{n)�{(1{n))2z(1{n)2

" #
~0:

ð114Þ

It is evident that by using Lemma (2), similar statements can be

derived for PSn,D(z).

Numerical Results
In this section, we evaluate the quality of the zero bounds

presented in the previous sections. Note that this problem is

challenging when no sharpness results are available. That means

given several bounds and classes of polynomials, we have to judge

what kinds of bounds are best for a particular class. To solve this

problem analytically might be feasible for bounds which are based

on the same concept, e.g., zero bounds as functions of all

coefficients which can be calculated explicitly (explicit bounds).

But if we consider bounds defined on different concepts, a

comparison is often difficult without determining the bounds for

concrete polynomials.

To tackle this problem for some zero bounds presented in this

paper, we use special graph classes whose graph polynomials and

their real and complex-valued zeros can be directly calculated. To

generate these graph classes, we have used the well-known Nauty

package, see [43]. The package Nauty is a program for computing

automorphism groups of graphs and digraphs, written in a highly

portable subset of the language C. This package also includes a

Table 1. Comparison of the bounds for G1.

n Bound Mean St. Deviation Count best

10 Maximum root 2.007014 0.0 657

Cauchy (Theorem (3)) 7.408803 6.486541 0

Theorem (6) 5.110194 3.261665 0

Theorem (8) 4.220755 2.376921 0

Theorem (9) 3.709663 1.915489 108

Theorem (11) 3.592285 1.845886 547

Fujiwara (Theorem (4)) 6.012736 4.584253 2

11 Maximum root 2.028913 0.0 1806

Cauchy (Theorem (3)) 8.236638 7.515486 0

Theorem (6) 5.300828 3.440242 0

Theorem (8) 4.343894 2.487811 0

Theorem (9) 3.835794 2.027818 468

Theorem (11) 3.749178 1.992102 1315

Fujiwara (Theorem (4)) 6.170153 4.732012 23

12 Maximum root 2.063067 0.0 5026

Cauchy (Theorem (3)) 9.129134 8.615679 0

Theorem (6) 5.494651 3.611637 0

Theorem (8) 4.473329 2.594855 0

Theorem (9) 3.967472 2.136432 1514

Theorem (11) 3.910585 2.131267 3446

Fujiwara (Theorem (4)) 6.333819 4.874544 62

13 Maximum root 2.103169 0.0 13999

Cauchy (Theorem (3)) 10.06646 9.773008 0

Theorem (6) 5.684568 3.772948 0

Theorem (8) 4.599854 2.689574 0

Theorem (9) 4.095588 2.231771 5087

Theorem (11) 4.068939 2.259367 8684

Fujiwara (Theorem (4)) 6.488192 5.005889 220

doi:10.1371/journal.pone.0028328.t001

Table 2. Comparison of the bounds for G2.

n Bound Mean St. Deviation Count best

7 Maximum root 2.751998 0.0 853

Cauchy (Theorem (3)) 5.471599 3.603993 0

Theorem (6) 4.665022 2.360952 1

Theorem (8) 4.461638 1.919881 1

Theorem (9) 3.870582 1.459967 11

Theorem (11) 3.71606 1.351209 839

Fujiwara (Theorem (4)) 6.887799 5.225005 4

8 Maximum root 3.641017 0.0 11117

Cauchy (Theorem (3)) 6.74994 4.194339 0

Theorem (6) 5.762259 2.535831 1

Theorem (8) 5.460469 2.016927 1

Theorem (9) 4.876477 1.553454 298

Theorem (11) 4.74001 1.457854 10811

Fujiwara (Theorem (4)) 8.955896 6.841888 9

9 Maximum root 4.970174 0.0 261080

Cauchy (Theorem (3)) 8.22829 4.572521 0

Theorem (6) 7.135768 2.561838 1

Theorem (8) 6.780506 1.999698 1

Theorem (9) 6.198375 1.535316 12046

Theorem (11) 6.083267 1.460323 248967

Fujiwara (Theorem (4)) 11.705689 8.867751 68

doi:10.1371/journal.pone.0028328.t002
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suite of programs called gtools for efficiently generating and

processing small non-isomorphic graphs (stored in graph6 format)

with various constrains, such as the number of vertices, edges,

maximum/minimum vertex degree, connectedness, etc. Now we

define the graph classes as follows:

N G1: Unicyclic graphs with 10, . . . ,13 vertices. jG1j~21488.

N G2: Connected graphs with 7, . . . ,9 vertices. jG2j~273050.

N G3: Bicyclic graphs. with 9, . . . ,12 vertices. jG3j~41216.

N G4: Trees with 13, . . . ,16 vertices. jG4j~31521.

Note that a tree is a connected graph without cycles, or a

connected graph with exactly jEj~jV j{1 edges. A unicyclic

graph is a connected graph with exactly one cycle, or a connected

graph with exactly jEj~jV j edges. Analogously, a bicyclic graph is

a connected graph with exactly two cycles, or a connected graph

with exactly jEj~jV jz1 edges. These simple types of graphs have

often been used in mathematical chemistry and as underlying

structure of chemical compounds. From these characterizations,

the most important structural properties of our graph classes are

known. Some characteristic graphs from the graph classes G1, G2,

G3 and G4 are depicted in Figure (1)–(4).

The numerical results are presented in Table (1)–Table (4). n

denotes the number of vertices. The mean and standard deviation

have been calculated based on the values for the particular graph

class. ‘Count best’ stands for the number of graphs for which the

particular bound is the best one among all considered bounds.

Among the bounds presented in this paper, we also calculated the

bound due to Fujiwara [39], see Theorem (4). The first line in each

group is ‘Maximum root’, which stands for the statistics regarding

the maximum root of distance polynomial computed with 10 digit

precision. Note that these values are used for the comparison with

other bounds and ‘Count best’ is exactly the number of graphs in

the group. Because of ties, the sum of the numbers in the column

‘Count best’ does not need to match up with ‘Count best’ for

‘Maximum root’ row.

It is not surprising that Cauchy’s bound (see Theorem (3)) often

gives non-feasible values if M1 is large. An example for this is the

polynomial f (z) :~z3z4z2z1000zz99, M1~1000. Then Cau-

chy’s bound (see Theorem (3)) gives the closed disk K(0,1001).
That means the inclusion radius equals 1001 but, in fact, the

largest modulus of the zeros of f (z) (maximum root) is

zmax ¼: 31,616. This proves that the resulting bound value is not

in accordance with the real location of the zeros of this given

polynomial.

Table 3. Comparison of the bounds for G3.

n Bound Mean St. Deviation Count best

9 Maximum root 2.22706 0.0 797

Cauchy (Theorem (3)) 7.298504 6.051353 0

Theorem (6) 5.279362 3.200967 0

Theorem (8) 4.4397 2.362881 0

Theorem (9) 3.924488 1.895787 134

Theorem (11) 3.796987 1.811045 658

Fujiwara (Theorem (4)) 6.537748 4.913553 5

10 Maximum root 2.180459 0.0 2678

Cauchy (Theorem (3)) 8.143751 7.218366 0

Theorem (6) 5.447246 3.437328 0

Theorem (8) 4.525308 2.522573 0

Theorem (9) 4.014815 2.061737 609

Theorem (11) 3.918314 2.016088 2045

Fujiwara (Theorem (4)) 6.60265 5.032024 24

11 Maximum root 2.182083 0.0 8833

Cauchy (Theorem (3)) 9.025023 8.296308 0

Theorem (6) 5.631895 3.627826 0

Theorem (8) 4.638066 2.639716 0

Theorem (9) 4.130523 2.179354 2737

Theorem (11) 4.069533 2.173708 6029

Fujiwara (Theorem (4)) 6.732582 5.180786 67

12 Maximum root 2.209132 0.0 28908

Cauchy (Theorem (3)) 9.9542 9.412301 0

Theorem (6) 5.820146 3.793567 0

Theorem (8) 4.761158 2.739752 0

Theorem (9) 4.2557 2.279321 10390

Theorem (11) 4.228459 2.306858 18211

Fujiwara (Theorem (4)) 6.882458 5.316112 302

doi:10.1371/journal.pone.0028328.t003

Table 4. Comparison of the bounds for G4.

n Bound Mean St. Deviation Count best

13 Maximum root 2.013052 0.0 1301

Cauchy (Theorem (3)) 9.120055 8.891774 0

Theorem (6) 5.368856 3.55083 0

Theorem (8) 4.326742 2.506002 0

Theorem (9) 3.821249 2.051564 392

Theorem (11) 3.773694 2.058365 882

Fujiwara (Theorem (4)) 6.045571 4.656 22

14 Maximum root 2.047998 0.0 3159

Cauchy (Theorem (3)) 10.015765 10.009886 0

Theorem (6) 5.550602 3.709817 0

Theorem (8) 4.450377 2.604708 0

Theorem (9) 3.946445 2.151 1164

Theorem (11) 3.926453 2.188239 1929

Fujiwara (Theorem (4)) 6.188467 4.773453 59

15 Maximum root 2.077108 0.0 7741

Cauchy (Theorem (3)) 10.922225 11.134163 0

Theorem (6) 5.722803 3.863504 0

Theorem (8) 4.566722 2.699576 0

Theorem (9) 4.063896 2.245945 3166

Theorem (11) 4.070977 2.312517 4384

Fujiwara (Theorem (4)) 6.317809 4.882851 179

16 Maximum root 2.10139 0.0 19320

Cauchy (Theorem (3)) 11.862751 12.311891 0

Theorem (6) 5.88555 4.013454 0

Theorem (8) 4.674308 2.791324 0

Theorem (9) 4.17225 2.337896 8904

Theorem (11) 4.206391 2.433625 9917

Fujiwara (Theorem (4)) 6.42628 4.974219 477

doi:10.1371/journal.pone.0028328.t004
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Interestingly, the implicit bounds given by Theorem (9) and

Theorem (11) clearly outperform the other zero bounds. These

statements show even better performance than the bound given by

Theorem (6) that has been proven better than other classical

results, see [31,44]. Finally we observe (see Table (1)–Table (4))

that Theorem (11) is the best for all graph classes. In particular, we

see that the concomitant polynomial of Theorem (11) has degree

four. This is a great advantage in practice, since we can use explicit

formulas for the largest root of polynomial of degree four and

establish sharp upper bounds for the largest root of a distance

polynomial.

Generally, we point out that this paper does not deal with

calculating the zeros of complex or real polynomials numerically,

see [45]. This problem and the task we dealt with in our paper can

not compared directly as locating the zeros of a polynomial, e.g., to

determine zero bounds does not necessarily require to compute

the zeros numerically. For example, Cauchy’s bound (see

Theorem (3)) and other explicit ones can be determined

immediately without using any algorithms, e.g., the method due

to Lehmer-Schur to calculate zeros explicitly. Also, many

problems do not require to calculate all zeros explicitly as

estimations for the zeros are often adequate, e.g., when

determining a bound of the largest eigenvalue of a characteristic

polynomial, see [16]. But in fact, the analytical methods such as

bounds can be useful for using numerical approaches properly as

the bound values could be used as starting values.

Summary and Conclusion
In this paper we have explored the location of zeros of special

graph polynomials. Apart from locating the zeros of chromatic and

flow polynomials [21,23], this problem has not yet been

investigated extensively for other types of graph polynomials. In

this study, we applied classical and new results to locate the zeros

of Wiener and distance polynomials representing special graph

classes, see [25–27]. Clearly, similar statements can be easily

obtained for general forms for these polynomials. Also, further

theorems can be established by using suitable inequalities from the

mathematical literature.

We point out that some of the gained zero bounds might be

more practicable than existing results. For example, the root of the

concomitant polynomial of Theorem (11) that has degree four can

be determined much easier (by hand) than the root of an algebraic

equation having degree n. Interestingly, this bound turned out to

be optimal for the considered graph classes. Note that zero-free

regions for these polynomials could be easily obtained. We will

tackle this problem as future work.

The next step was to evaluate the quality of the obtained zero

bounds. This is crucial as some practical applications require sharp

inclusion radii. Generally, to evaluate the quality of zero bounds

relates to determine the bounds by using concrete polynomials or

classes thereof. Clearly, it might be difficult to compare explicit

and implicit bounds analytically. Thus to derive statements for

their optimality, the bounds must be calculated explicitly. In this

study, we tackled the problem by using the graph classes G1, . . . ,G4

and found that Theorem (9) and Theorem (11) are optimal (see

Table (1)–Table (4)). As future work, we will perform further

studies to explore the optimality of zero bounds. Also, we want to

study this problem theoretically and derive optimality statements

for certain graph classes.

The meaning of the complex zeros of the Wiener polynomial is

not yet understood. To tackle this problem in the future, it would

be interesting to use also directed networks for exploring

relationships between the complex zeros and certain structural

properties of the underlying directed networks, e.g., the information

flow. Apart from this problem, it would be worthwhile to explore

the zero distribution of the Wiener polynomial. A starting point to

do so could be employing the seminal work of Schmidt and Schur

[34,46].
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