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Abstract

We developed and validated a two-gene signature that predicts prognosis in previously-untreated chronic lymphocytic
leukemia (CLL) patients. Using a 65 sample training set, from a cohort of 131 patients, we identified the best clinical models
to predict time-to-treatment (TTT) and overall survival (OS). To identify individual genes or combinations in the training set
with expression related to prognosis, we cross-validated univariate and multivariate models to predict TTT. We identified
four gene sets (5, 6, 12, or 13 genes) to construct multivariate prognostic models. By optimizing each gene set on the
training set, we constructed 11 models to predict the time from diagnosis to treatment. Each model also predicted OS and
added value to the best clinical models. To determine which contributed the most value when added to clinical variables,
we applied the Akaike Information Criterion. Two genes were consistently retained in the models with clinical variables: SKI
(v-SKI avian sarcoma viral oncogene homolog) and SLAMF1 (signaling lymphocytic activation molecule family member 1;
CD150). We optimized a two-gene model and validated it on an independent test set of 66 samples. This two-gene model
predicted prognosis better on the test set than any of the known predictors, including ZAP70 and serum b2-microglobulin.
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Introduction

Gene expression profiling studies of CLL using microarray

technology have examined differential gene expression with

respect to a wide variety of prognostic factors, including the

somatic mutation status of the immunoglobulin heavy chain

variable region (IGHV) genes, clinical stage, cytogenetic abnor-

malities, and others [1,2,3,4,5,6,7]. These studies have shown that

CLL cases share a characteristic gene expression profile, and that

prognostic subtypes are distinguishable by small subsets of genes.

Gene expression profiling results also have yielded lists of genes

that are potential biomarkers of prognosis, many of which have

shown promise in the clinical setting. For example, expression of

ZAP70 has been found to correlate with unmutated IGHV somatic

mutation status and a poor clinical outcome [3,4,8,9,10,11]. These

studies have focused on different prognostic factors. Thus, it is not

surprising that they have identified independent sets of potential

biomarkers, which need to be validated in order to be clinically

useful. Towards this goal, in a previous study we developed and

validated predictive models of prognosis in untreated CLL

patients. We first produced a quantitative real-time polymerase

chain reaction assay on microfluidics cards (MF-QRT-PCR) using

a panel of candidate biomarkers linked to IGHV somatic mutation

status. These markers were selected by re-analyzing raw data from

previously published microarray studies [1,2,3,4,12]. We then

applied this assay to untreated CLL patient samples, and

demonstrated that we could predict IGHV somatic mutation status

with 90% accuracy based on the expression of as few as three

genes [13].

In the current study, we sought to develop and validate

predictive models based on a wide range of reported clinical,

cytogenetic, and molecular prognostic markers, including IGHV

somatic mutation status. We began by re-analyzing previously

published microarray studies [5,6,7,14,15,16,17,18]. Our study

group was 131 previously-untreated CLL patients for whom

samples were available for analysis. We first identified the best

clinical models to predict time-to-event outcomes, i.e., time-to-

treatment (TTT) and overall survival (OS), in a training set of 65

samples. We then sought to identify individual genes or

combinations of genes, in the training set, in which expression

was related to prognosis. By performing extensive cross-validation

of both univariate and multivariate models to predict TTT, we
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identified four sets of genes, ranging from 5 to 13 genes that could

be used to construct multivariate prognostic models. By applying

statistical methods to optimize each of these four sets of genes on

the training set, we constructed 11 models to predict the interval

between diagnosis and first treatment. Each model also predicted

OS and added value to the best clinical models. To determine

which genes contributed the most value when added to the clinical

variables, we applied the Akaike Information Criterion [19]. Two

genes were consistently retained in the models in the presence of

the clinical variables: SKI (v-SKI avian sarcoma viral oncogene

homolog) and SLAMF1 (signaling lymphocytic activation molecule

family member 1; CD150). We then optimized a two-gene

predictive model and validated its performance in an independent

test set of 66 CLL patient samples. This model was validated

successfully, and predicted prognosis on the test set better than any

of the existing clinical predictors.

Results

Patient characteristics
The characteristics of 131 previously untreated CLL patients

are summarized in Table 1. We collected the following clinical

and laboratory parameters: age at diagnosis, gender, Rai stage,

bulky lymphadenopathy (splenomegaly $8 cm below the costal

margin or lymph nodes $5 cm), white blood cell (WBC),

prolymphocyte, and platelet counts, hemoglobin level, serum

lactate dehydrogenase (LDH) and b2-microglobulin levels,

hypogammaglobulinemia, CLL score [20], surface immunoglob-

ulin (IG) light chain isotype, CD38, IGHV somatic mutation

status, ZAP70 protein expression, and cytogenetic complexity

(defined as $3 abnormalities). With the exception of the WBC

count, there were no statistically significant differences between

the 65 samples used for the training set and the 66 samples used

for the validation set. The median time from diagnosis to sample

collection for the 131 patients was 28 months (range 1–211

months); there was no significant difference (p = 0.77) in time

from diagnosis to sample collection between the training set

(median 26 months) and the test set (median 29 months,

Table 1).

Clinical Predictors of TTT and OS in CLL
A flow diagram of the complete statistical analysis is presented

in Figure S1. We first sought to identify the best clinical models

to predict time-to-event outcomes in the training set of 65

samples assayed on cards A and B. In order to determine the best

model that we could construct from pre-existing markers, we

analyzed all of the clinical and laboratory variables listed in

Table 1. We performed time-to-event analyses using two

different starting points: time of diagnosis and time of sample

collection. We also used two different endpoints: TTT and OS.

Based on these starting and endpoints, we constructed four

models. We found that the best model to predict the time from

diagnosis to treatment incorporated the (log) serum LDH level,

IG light chain isotype, and platelet count. We refer to the

numerical predictions from this model as the ‘‘clinical score’’.

The best model to predict time from sample collection to

treatment incorporated the IGHV somatic mutation status, IG

light chain isotype, platelet count, WBC count, and (log) serum

b2-microglobulin level. The best model to predict OS from

diagnosis incorporated age at diagnosis and IGHV somatic

mutation status. The best model to predict OS from sample

collection incorporated age at diagnosis, IGHV somatic mutation

status, and (log) serum b2 microglobulin level. After we

constructed these clinical models, we assessed how MF-QRT-

PCR assay data might add to the accuracy of the predictions.

(The complete computer scripts used to analyze the data are

available at http://bioinformatics.mdanderson.org/Supplements/

Microfluidics/Prognosis.) [21].

Identification of Gene Markers of Prognosis (Feature
Selection)

Our next goal was to identify individual genes or combinations

of genes that were related to prognosis in the training set. We

began by re-analyzing the data from cards A and B in light of the

updated clinical data, but focused on genes that had been chosen

for inclusion on the validation card C. In order to identify robust

prognostic markers of TTT, we performed four univariate

analyses (one gene at a time) on the training data from the 65

patients assayed on cards A and B. We performed analyses using

two starting points: diagnosis and sample collection. We

incorporated gene expression either as a continuous predictor of

outcome or as a dichotomous variable. In univariate models, we

found at least 15 genes that predicted TTT (Table 2). For the

most part, the same genes were significant predictors under all four

conditions: time from diagnosis, gene expression as a dichotomous

variable; time from diagnosis, gene expression as a continuous

variable; time from sample collection, gene expression as a

dichotomous variable; time from sample collection, gene expres-

sion as a continuous variable.

We also used the training data to cross-validate univariate and

multivariate models to predict TTT. We repeatedly and randomly

selected 50 of the 65 training samples and used them to fit

univariate models. Genes for which the geometric mean of the

four univariate p-values was ,0.03 were selected for inclusion in a

multivariate model that combined continuous gene expression

levels to predict the time from diagnosis to treatment or time from

sample collection to treatment. We used AIC to decide which

genes to retain in the best multivariate models (Table 2). We

identified two genes retained in $25% of the cross-validation

multivariate models to predict time from diagnosis to treatment,

SKI and SLAMF1. Six genes, SKI, CD14, NT5C2, OAS3, NRIP1,

and SLAMF1, were retained in $25% of the cross-validation

multivariate models to predict time from sample collection to

treatment.

We repeated this analysis using OS as the outcome instead of

TTT (Table S1). The ability of individual genes to predict OS

was weak, with only four genes (CD14, WSB2, TNFRSF8, and

NT5C2) being significant in $10% of the cross-validation

univariate models. In general, significance levels for the ability to

predict OS were lower than those for TTT because there were

many fewer events. After a median follow up of more than 8 years

(101 months, range 10–271 months) from diagnosis, out of 131

patients 109 had required treatment and 31 had died (Table 1). It

is possible with additional follow-up that we would be able to

predict OS. In this analysis, we did not take into account clinical

covariates that are associated with prognosis in previously

untreated CLL patients. Thus, we repeated the analysis in order

to determine which genes added predictive power to the best

clinical models, described above. After accounting for known

clinical factors, we found no single gene that added to our ability to

predict either TTT or OS. However, the genes SLAMF1, NRIP1,

SKI, NT5C2, FGFR1, CD14, and CRY1 showed borderline

statistical significance in the training set, depending on the start

time (diagnosis or sample collection) or endpoint (treatment or

survival). This finding suggested that appropriate combinations of

gene expression might provide prognostic value that added to the

existing clinical variables.

SKI and SLAMF1 Predict Time-to-Treatment in CLL
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Building Gene-Based Models of Prognosis
By evaluating the number of times a gene was selected as significant

in the cross-validation analyses performed above, we identified four

sets of genes, containing 5, 6, 12, or 13 genes, that could be used to

construct multivariate prognostic models (Figure 1). Starting with

each of these sets of genes, we constructed Cox proportional hazards

models to predict the time from diagnosis to treatment. We used both

AIC and BIC to build optimal models that used the fewest number of

genes from each set. We repeated the process starting from the time of

sample collection. This process produced 11 different models

(Table 3), each of which was highly significant for predicting the

time from diagnosis to treatment on the training set.

Table 1. Clinical and Laboratory Features.*

All Patients
(n = 131)

Training
(n = 65)

Test Set
(n = 66) p value{

Age at diagnosis (years) Median, years
(range)

56.7
(26.7, 80.9)

56.1
(26.7, 80.1)

58.5
(37.6, 80.9)

0.12

Gender Male, n (%)
Female, n (%)

81 (61.8)
50 (38.2)

42 (64.6)
23 (35.4)

39 (59.1)
27 (40.9)

0.59

Rai stage 0–2, n (%)
3–4, n (%)

102 (77.9)
29 (22.1)

54 (83.1)
11 (16.9)

48 (72.7)
18 (27.3)

0.21

Splenomegaly
(cm below costal margin)

,8 cm, n (%)
$8 cm, n (%)

126 (95.5)
5 (4.5)

63 (96.9)
2 (3.1)

63 (95.5)
3 (4.5)

0.99

WBC count{ #1506109/L, n (%)
.1506109/L, n (%)

118 (90.1)
13 (9.9)

63 (96.9)
2 (3.1)

55 (83.3)
11 (16.7)

0.02

Hgb (g/dL){ Median
(range)

12.9
(8.2, 17.4)

12.9
(10.0, 17.0)

12.9
(8.2, 17.4)

0.59

Prolymphocytes (% of WBC) Median
(range)

3.0
(0.0, 21.0)

4.0
(0.0, 21.0)

2.5
(0.0, 15.0)

0.19

Platelets (6109/L){ Median
(range)

168
(39, 476)

168
(39, 379)

169
(60, 476)

0.31

LDH (U/L){ Median
(range)

526
(274, 1818)

527
(338, 1313)

517
(274,1818)

0.10

b2M (mg/L){ (n = 130) ,4, n (%)
$4, n (%)

98 (75.4)
32 (24.6)

45 (70.3)
19 (29.7)

53 (80.3)
13 (91.7)

0.22

Serum Ig{ (n = 118) Decreased, n (%)
Normal, n (%)

69 (58.5)
49 (41.5)

30 (52.6)
27 (47.4)

39 (63.9)
22 (36.1)

0.26

CLL score (n = 113) Atypical, n (%)
Typical, n (%)

32 (28.3)
81 (71.7)

18 (31.6)
39 (68.4)

14 (25.0)
42 (75.0)

0.53

Surface IgL (n = 125) Kappa, n (%)
Lambda, n (%)

78 (62.4)
47 (37.6)

36 (60.0)
24 (40.0)

42 (64.6)
23 (35.4)

0.71

CD38{ (n = 124) Low, n (%)
High, n (%)

98 (79.0)
26 (21.0)

50 (83.3)
10 (16.7)

48 (75.0)
16 (25.0)

0.28

IGHV SM status (n = 130) Mutated, n (%)
Unmutated, n (%)

67 (51.5)
63 (48.5)

36 (55.4)
29 (44.6)

31 (47.7)
34 (52.3)

0.48

ZAP70 (n = 113) Positive, n (%)
Negative, n (%)

62 (54.9)
51 (45.1)

32 (59.3)
22 (40.7)

30 (50.8)
29 (49.2)

0.45

Karyotype{ (n = 94) Simple, n (%)
Complex, n (%)

82 (87.2)
12 (12.8)

41 (93.2)
3 (6.8)

41 (82.0)
9 (18.0)

0.13

Time of follow up from diagnosis Median, months
(range)

101.3
(9.6, 271.3)

109.2
(9.6–252.4)

93.1
(28.3–271.3)

0.46

Time from diagnosis to sample Median, months
(range)

27.5
(0.7–211.5)

26.0
(0.7–151.9)

29.2
(1.0–211.5)

0.77

Time from diagnosis to first treatment Median, months
(range)

28.8
(0.7, 211.5)

28.0
(0.7–198.3)

30.7
(1.0–211.5)

0.84

Overall survival at final follow up n (%) 100 (76.3) 45 (69.2) 55 (83.3) 0.10

Abbreviations: WBC, white blood cell; Hgb, hemoglobin; Prolymphs, prolymphocytes; LDH, serum lactate dehydrogenase; b2M, serum b2 microglobulin; serum Ig,
serum immunoglobulin levels; surface IgL, surface immunoglobulin light chain isotype; IGHV SM status, immunoglobulin heavy chain variable region gene somatic
mutation status.
*Rai stage, splenomegaly, WBC count, Hgb, Prolymphs, Platelets, LDH, b2M, serum Ig were determined at the time the sample was obtained. The CLL score, surface IgL,
IGHV SM status, ZAP70, and karyotype were determined on samples obtained before treatment was initiated.
{All p values were calculated using the two-sided Fisher’s Exact test except for age in years, which was calculated using the two-sided t-test, and time-to-event
parameters (log-rank test).
{The normal ranges are: WBC, 4–116109/L; Hgb, 14.0–18.0 g/dL, platelets, 140–4406109/L; LDH, 313–618 U/L; b2M, 0.7–1.8 mg/L; serum Ig, IgM 29–214 g/dL, IgA 74–
327 g/dL, IgG 624–1680 g/dL. Serum Ig are considered decreased (hypogammaglobulinemia) if $2 immunoglobulin fractions are below the normal range. CD38 is low
if ,30% of CD19+ cells express CD38, and high if $30% of CD19+ express CD38. Karyotypes are considered simple if the number of abnormalities is ,3, and complex if
the number is $3.

doi:10.1371/journal.pone.0028277.t001
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We used each model to compute a gene prognostic (GP) score

for each patient, as a linear combination of gene expression values

(Table S2). In general, the GP scores were strongly correlated

from one model to another. The GP scores were also highly

significant for predicting the time from sample collection to

treatment on the training set. We evaluated the GP scores from

each model for their ability to predict OS. As continuous variables,

the GP scores from all 11 models were significant for predicting

OS (Table 3).

Gene prognostic scores were independent of the best clinical

model of prognosis described above and, therefore, contributed

additional information (Table 3). To determine which genes in

each GP score contributed the most value when added to the

clinical variables, we again applied AIC to models that added the

gene sets to the clinical variables in order to predict time from

diagnosis to treatment or OS. The only genes that were

consistently retained in the models, in the presence of the clinical

variables, were SKI and SLAMF1. Both genes were expressed in all

Table 2. Ability of genes to predict time-to-treatment on the training set.

Cox proportional hazards Cross-validation

Log-rank p-values % of times selected

Time from Diagnosis Time from Sample Collection Diagnosis Sample

Dichotomous Continuous Dichotomous Continuous Univariate Multivariate

SKI 0.00070 0.00153 0.00054 0.00040 96.7 68.3 77.3

NT5C2 0.00327 0.00932 0.00045 0.00142 91.3 34.0 43.3

AICDA 0.00329 0.02869 0.00059 0.00595 83.7 13.3 14.3

SLAMF1 0.03603 0.00390 0.02166 0.00032 82.7 45.3 26.0

CD14 0.01806 0.01375 0.00229 0.00033 76.3 12.7 58.3

FGL2 0.05126 0.02619 0.00104 0.00050 75.7 18.3 23.7

NUDC 0.01311 0.01185 0.01277 0.00844 58.7 16.0 8.0

NRIP1 0.09115 0.01747 0.00887 0.00047 53.3 7.0 26.0

EGR3 0.11961 0.01697 0.02460 0.00120 47.0 15.0 9.7

OAS3 0.03989 0.01868 0.02203 0.00527 43.7 18.0 40.7

MLXIP 0.01028 0.00922 0.03763 0.02238 41.3 23.7 7.7

TPST2 0.02604 0.11673 0.00166 0.01538 39.3 8.7 6.7

GZMK 0.10461 0.47112 0.00425 0.01093 19.7 3.7 19.0

TRIB2 0.04825 0.03755 0.03220 0.03645 18.7 4.3 3.3

BLNK 0.21545 0.01056 0.17736 0.01136 15.3 10.7 9.7

ATF4 0.03024 0.04587 0.06964 0.14722 9.0 8.3 3.7

ZAP70 0.05281 0.72270 0.01290 0.20473 3.0 1.3 0.3

CCL5 0.31346 0.20183 0.11853 0.10792 2.7 2.7 2.7

FLNB 0.33042 0.16040 0.12236 0.07366 2.0 1.0 0.0

FGFR1 0.20586 0.13564 0.19548 0.22199 2.0 2.0 2.0

ZBTB20 0.32892 0.26458 0.08767 0.05625 1.0 0.7 1.0

GFI1 0.12424 0.27589 0.11658 0.23475 0.7 0.0 0.0

ATRX 0.53365 0.21520 0.23976 0.12142 0.3 0.3 0.3

SEPT10 0.84619 0.57552 0.61241 0.07739 0.3 0.0 0.3

LPL 0.30342 0.19845 0.19664 0.08380 0.3 0.0 0.0

WSB2 0.42500 0.97415 0.15628 0.38180 0.0 0.0 0.0

TNFRSF8 0.60838 0.69192 0.28498 0.52499 0.0 0.0 0.0

RIOK2 0.83187 0.30138 0.96935 0.16604 0.0 0.0 0.0

P2RX1 0.28422 0.20501 0.15201 0.06186 0.0 0.0 0.0

LDOC1 0.48194 0.97673 0.15223 0.62795 0.0 0.0 0.0

LASS6 0.72274 0.72844 0.48064 0.52066 0.0 0.0 0.0

CRY1 0.27369 0.44715 0.12731 0.23697 0.0 0.0 0.0

COBLL1 0.59439 0.53532 0.77744 0.86219 0.0 0.0 0.0

CD86 0.94053 0.82897 0.84059 0.18854 0.0 0.0 0.0

BCL7A 0.99125 0.79130 0.46758 0.57526 0.0 0.0 0.0

BANK1 0.98999 0.36153 0.60229 0.81261 0.0 0.0 0.0

ANXA2 0.55803 0.44614 0.79069 0.65462 0.0 0.0 0.0

doi:10.1371/journal.pone.0028277.t002
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samples, but at differing levels with respect to time from diagnosis

to treatment.

Training a Two-Gene Prognostic Model
Since SKI and SLAMF1 were the genes that were most consistently

retained as predictors of time from diagnosis to treatment in the

presence of clinical variables, we developed and tested a two-gene

model based on SKI and SLAMF1 for predicting TTT or OS. We

computed the GP score for the two-gene model from theDD-Ct values

for the genes SKI and SLAMF1 using the formula: GP score = 0.847

SKI+0.158 SLAMF1. To dichotomize the score, we defined a cutoff at

the median value (0.022) on the training samples. Scores greater than

the median were considered high; scores less than or equal to the

median were considered low. When applied to the training set, we

found that the GP score based on the two-gene model using SKI and

SLAMF1 effectively predicted both time from diagnosis to treatment

(p = 0.000127), and time from sample collection to treatment

(p = 9.0861026). The GP score also showed the correct trend to

predict OS from the time of diagnosis, (p = 0.0554).

Validation of a Two-Gene Prognostic Model
Based on these results, we sought to determine if the GP score

based on the two-gene model effectively predicted time from

diagnosis to treatment in an independent test set of 66 samples.

Figure 1. Cross-validation of gene predictors on the training set. (A) Histogram of the number of times each gene was statistically significant
among 300 assessments of univariate models. (B) Histogram of the number of times each gene was retained in a multivariate model to predict time-
to-treatment either from diagnosis or from sample collection (300 each). (C) Sorted probabilities that a gene was significant in a univariate model.
Gaps in the figure identify a six-gene and a twelve-gene subset. (D) Sorted probabilities that a gene was retained in a multivariate model. Gaps in the
figure identify a five-gene and a thirteen-gene subset.
doi:10.1371/journal.pone.0028277.g001
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We found that the two-gene model effectively predicted time from

diagnosis to treatment, both as a continuous score (p = 1.7861028)

and as a dichotomous variable (p = 6.4761026) (Figure 2). The

same GP score predicted OS after diagnosis on the validation

dataset as a dichotomous variable (p = 0.0182), but was only

marginally significant as a continuous variable (p = 0.0994).

Moreover, the same GP score also predicted time from sample

collection to treatment, both as a continuous variable (p = 0.00098)

and as a dichotomous variable (p = 0.00164).

Finally, we sought to determine if the two-gene model added to

the clinical model in an independent test set. Because we had

found previously that the clinical score was a poor predictor of

TTT in this data set, we re-fit the clinical model on the test set and

then compared it to the GP score. The GP score, derived from the

training data, remained the best predictor of TTT, although the

platelet count provided additional prognostic ability. We also

compared the GP score to individual clinical predictors. The GP

score was at least as effective as IGHV somatic mutation status at

predicting TTT, and the GP score more effectively predicted TTT

than any of the other variables in Table 1, including Rai stage,

gender, serum b2 microglobulin level, WBC count, CD38 or

ZAP70 expression, and cytogenetic complexity (Figure 3).

Discussion

The goal of this study was to develop and validate models of

gene expression that would contribute prognostic information to

predict TTT for patients with previously untreated CLL. This

study has yielded a two-gene model that adds prognostic

information independent of and in addition to known clinical data.

We analyzed all data using an extremely rigorous training and

validation design. Extensive model building, with cross-validation,

was applied to the training data set of 65 samples. To avoid over-

fitting, we tested only the best gene-expression-based model (the

model with SKI and SLAMF1) on an independent set of 66 samples

that had been assayed on a new printing (Card C) of the

microfluidics cards. The highly significant p-values on this

independent set provide powerful evidence supporting the clinical

utility of the two-gene model. We applied similar rigorous

statistical methods to the clinical data. For these analyses, we

used standard statistical methods, i.e., Cox proportional hazards

with stepwise AIC to choose the variables that should be retained

in the model. Somewhat surprisingly, the predictive model based

purely on the clinical variables did not validate; this result,

unfortunately, is one of the possible consequences whenever one

assesses combinations of many variables to construct predictive

models, and is the reason that separate training and validation

datasets are required. However, because numerous clinical factors

have been shown previously to be significant predictors of

prognosis in many studies of patients with CLL, we extended

our analysis to pose a greater challenge to the two-gene model.

Using the two-gene model that we learned from the training set

to make predictions (GP scores) on the validation set, we compared

the predictions from the two-gene model to each of the individual

clinical factors listed in Table 1. Even in this setting, the two

gene-model predicted TTT in the validation set better than all

other factors, except, possibly, for IGHV somatic mutation status.

While further studies will be necessary to determine whether

mutation status or the two-gene model is ultimately a better

predictor of TTT in CLL patients, our results on the independent

Table 3. Genes retained in multivariate models to predict time from diagnosis to treatment in the training dataset.

Gene Set M6 M6 M6,SAM{ M5 M6,SAM{
M5* M12 M6* M13 M12* M13*

Optimizer{ AIC BIC AIC AIC,BIC BIC AIC,BIC AIC,BIC

SKI Yes (c) Yes (c) Yes Yes (c) Yes (c) Yes (c) Yes (c) Yes (c) Yes (c) Yes (c) Yes

NT5C2 Yes Yes Yes Yes Yes Yes – Yes – Yes Yes

SLAMF1 – Yes (c) – – Yes (c) Yes (c) Yes (c) Yes (c) Yes (c) Yes (c) Yes (c)

CD14 – – Yes – Yes Yes – Yes – Yes Yes

FGL2 – – – – – – Yes Yes Yes Yes Yes

OAS3 – – – Yes – Yes – – – Yes Yes

NUDC – – – – – – Yes – Yes Yes Yes

MLXIP – – – – – – Yes – Yes Yes Yes

AICDA – – – – – – – Yes – Yes Yes

NRIP1 – – – – – – – – – Yes Yes

EGR3 – – – – – – – – – Yes Yes

BLNK – – – – – – – – Yes – Yes

TPST2 – – – – – – – – – Yes –

GZMK – – – – – – – – – – Yes (c)

Predicts OS?1 0.0234 0.0233 0.0036 0.0139 0.0094 0.0048 0.0383 0.0132 0.0473 0.0087 0.0307

Adds to CM?" 0.034 0.016 0.031 0.030 0.015 0.016 0.011 0.012 0.0046 0.0031 0.0027

Abbreviations: M, model; AIC, Akaike Information Criterion; BIC, Bayes Information Criterion; SAM, sample collection; CM, clinical model.
*Four different sets of genes were chosen as starting points, containing 5, 6, 12, or 13 genes.
{We applied stepwise forward-backward methods to each gene set to optimize either AIC or BIC.
{Two gene sets optimized predictions of the time from sample collection to treatment; all others looked at the time from diagnosis to treatment.
1Log rank P value to test, via Cox proportional hazards, if a continuous score derived to predict time-to-treatment also predicts overall survival.
"P-value computed from a chi-squared test of whether the continuous score adds value to the existing clinical predictors.
(c) Individual genes that remained significant when added to the existing clinical predictors.
doi:10.1371/journal.pone.0028277.t003
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validation set establish SKI and SLAMF1 expression as powerful

predictors of prognosis in previously untreated patients with CLL.

In order to identify candidate biomarkers of prognosis, we chose

genes that had been identified either in previous gene expression

profiling studies that we performed or from our review of the

literature. However, SKI was identified serendipitously. The goals

of our initial studies were to evaluate the MF-QRT-PCR assay

technology, and to develop statistical methods to normalize and

analyze the data [1,13,14]. Studies indicate that no single

housekeeping gene works well in all studies, and that better results

are obtained by using multiple housekeeping genes for normali-

zation [14,22]. Based on an initial experiment using samples

obtained from nine previously-untreated CLL patients (four with

unmutated and five with mutated IGHV), we selected eight

potential control genes that appeared to show little variability

across the samples, one of which was SKI [14]. However, in a

subsequent study of 29 CLL samples (14 mutated and 15

unmutated), SKI was found to vary significantly across the samples

[13]. Thus, it was eliminated from our list of endogenous control

genes, but was retained on Card A and included in our analysis as

a candidate biomarker of prognosis.

Our studies indicate that higher expression levels of SKI and

SLAMF1 mRNA are associated with a longer TTT in patients with

previously untreated CLL. SKI, located on chromosome 1p36.3,

encodes the nuclear protein homolog of the avian sarcoma viral (v-

ski) oncogene [23,24]. SKI is expressed ubiquitously at low levels in

adult and embryonic tissues [24,25]. During embryogenesis SKI

appears to regulate cellular differentiation, particularly of neural

tissues and skeletal muscle. In adult tissues, SKI participates in

diverse cellular functions including proliferation, differentiation,

cell cycle progression, and apoptosis. Ski also has been reported to

be relatively overexpressed in murine memory B cells compared

germinal center B cells, suggesting that it contributes to memory B

cell differentiation [26]. Depending upon the context, overexpres-

sion of SKI can result in either transformation or terminal

differentiation [25]. Thus, SKI can function either as a proto-

oncogene or as a tumor suppressor gene. These divergent

functions likely reflect its ability to interact with a variety of

transcription factor partners [25]. Consistent with its role as an

oncogene, SKI expression is increased in different cancer types,

including esophageal squamous cell carcinoma [27], melanoma

[28], and acute myeloid leukemias [29,30]. One of its most

important mechanisms of action is to negatively regulate TGF-b
signaling by interacting with Smad proteins and repressing their

transcriptional activity [31]. SKI also blocks differentiation by

inhibiting RARa signaling in some subtypes of acute myeloid

leukemia [29,30]. However, SKI may also function as a tumor

suppressor gene [23]. Shinagawa and colleagues demonstrated

that Ski-deficient heterozygous mice developed hematologic

malignancies, following challenge with a chemical carcinogen,

predominantly T-cell lymphomas, but also B-cell lymphoma and

myeloid leukemias [23]. They hypothesized that the tumor

suppressor activity of SKI results from its ability to mediate

transcriptional repression by other known tumor suppressors,

namely Mad and Rb, which interact with multiple target genes to

negatively regulate cell cycle progression. In this study, we found

that increased SKI expression is associated with a better outcome,

raising the possibility that it may function as a tumor suppressor

gene in some cases of CLL.

SLAMF1 (CD150) is one of a family of nine (SLAMF1–9)

glycoprotein receptors that belong to the IG supergene family, all

of which reside on chromosome 1q23 [32]. Members of this family

regulate hematopoietic stem cell differentiation, leukocyte adhe-

sion and activation, and humoral immune responses. In general,

members of this family act as self-ligands. Most, including

SLAMF1, are transmembrane proteins that contain tyrosine

residues within their cytoplasmic domains. These tyrosine residues

interact with adaptor proteins that connect the receptors to signal

transduction networks. One of the adaptors, SLAM-associated

protein (SAP), encoded by the SH2D1A gene, is mutated in

patients with X-linked lymphoproliferative syndrome [33,34,35].

SLAMF1 is expressed on thymocytes, memory T cells, B cell

Figure 2. Kaplan-Meier plots of the time from diagnosis to treatment stratified by the gene prognostic (GP) score (a linear
combination of the expression of SKI and SLAMF1) in (A) the training set and (B) the validation set.
doi:10.1371/journal.pone.0028277.g002
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subsets, mature dendritic cells and platelets [32,36,37]. Its

expression is rapidly induced on naı̈ve T cells and B cells after

activation [32,36,37]. It also serves as a cellular receptor for the

measles virus [32]. SLAM family members are required for

germinal center formation and for generation of humoral immune

responses and memory B cells [32,38,39]. Studies of SLAMF1

expression in human B-cell subsets have demonstrated that its

expression varies with stage of differentiation [38,40]. SLAMF1

expression increases during B-cell development [40]. However,

SLAMF1 expression by memory B cells may vary depending upon

the compartment studied. In human spleen, Good and colleagues

[38] found that SLAMF1 was absent from memory B cells. In

contrast, De Salort and colleagues [40] reported that SLAMF1

was highly expressed on memory B cells isolated from tonsil, but

showed bimodal expression on splenic memory B cells.

In a previous meta-analysis of three gene expression profiling

studies, we found that SLAMF1 was relatively overexpressed in

normal peripheral blood B cells compared to CLL cells [2,3,12].

We subsequently determined that SLAMF1 is relatively overex-

pressed in mutated compared to unmutated untreated CLL

patients [13]. Similarly, Mittal and colleagues [41] identified

SLAMF1 as one of 27 genes that was overexpressed in CLL cases

with cytogenetic markers of good prognosis (del(13q) and normal)

relative to cases with cytogenetic markers of poor prognosis

(del(11q) and +12), as assessed by fluorescence in situ hybridization

(FISH). Taken together, these findings suggest that signaling

through SLAMF1 may be dysregulated in CLL cells compared to

normal peripheral blood B cells, and that the degree of

dysregulation may be reflected in more aggressive clinical

behavior.

As a first step in this study, we constructed clinical models of

prognosis for our CLL study group. As expected, we found that

the best models incorporated combinations of well-known markers

of prognosis: age at diagnosis, WBC count, serum LDH and serum

b2 microglobulin levels, and IGHV somatic mutation status.

However, we were surprised to find that the best model to predict

TTT from the time of sample collection also incorporated the IG

light chain isotype. In particular, we found that patients with

somatically-mutated kappa-positive CLL had a statistically

significantly longer TTT (p = 0.00032) than the other three

subgroups, i.e., unmutated kappa-positive, mutated lambda-

positive, and unmutated lambda-positive CLL, which showed

similar TTTs (data not shown). Stated differently, patients with

somatically mutated lambda-positive CLL had a TTT that was

similar to CLL patients with unmutated IGHV. An early study,

which assessed surface IG expression by flow cytometry in

untreated patients with B-cell non-Hodgkin lymphomas found

that patients with lambda-positive CLL/small lymphocytic

lymphoma had shorter survival than patients with kappa-positive

CLL [42]. However, a much larger study performed several years

later found no difference in survival between newly-diagnosed

CLL patients whose cells expressed kappa compared to lambda

[43]. Neither study evaluated TTT and both were based on older

lymphoma classification schemes that lacked precision. Our

patient cohort contained an equal number of IG kappa and

lambda light chain expressing cases (62 cases each). The mutated

cases were almost evenly divided between kappa (33 cases) and

lambda (29 cases); the unmutated cases more often showed kappa

expression (44 kappa-positive vs. 18 lambda-positive, p = 0.064). A

similar kappa predominance among unmutated cases has been

described previously [44]. Unlike that study, we did not find a

lambda predominance in the mutated cases. One possible

explanation that could account for the shorter TTT that we

observed for somatically mutated lambda-positive CLL patients is

that our patient cohort might contain an excess of cases that use

IGHV families associated with a poor prognosis regardless of

mutation status, i.e., VH3-21, VH3-48, and VH3-53 [45,46]. Cases

that use these families also tend to show a lambda light chain bias.

However, of the 10 cases that used one of these IGHV families in

our patient cohort, only four were somatically mutated and

expressed lambda light chain. Thus, we are unable to account for

the association of lambda immunoglobulin light chain expression

and shorter TTT based on IGHV family use.

In summary, the goal of this study was to develop a clinically

useful assay based on the expression of a limited set of protein

coding genes to determine prognosis in patients with previously

untreated CLL. The two-gene signature that we have identified is

similar to other multi-gene panels (Oncotype DxH assays) that are

currently used to predict the likelihood of chemotherapy benefit

and recurrence risk in early stage breast cancer and the recurrence

risk in colon cancer (http://www.genomichealth.com/Oncoty-

peDX/Index.aspx). We believe this two-gene signature predicts

TTT at least as well as current markers of prognosis in untreated

CLL patients. Additional studies using this two-gene model

performed on larger patient cohorts will be helpful to further

assess clinical utility.

Materials and Methods

Ethics statement, sample collection, and RNA preparation
Samples were collected from 131 previously untreated CLL

patients at The University of Texas M.D. Anderson Cancer

Center (Houston, TX, USA) after obtaining written informed

consent. The study was approved by The University of Texas

M.D. Anderson Cancer Center Institutional Review Board and

conducted according to the principles expressed in the Declaration

of Helsinki. Clinical and routine laboratory data were obtained

from review of the medical records. Peripheral blood was collected

and processed as described previously [47]. Total RNA was

extracted using two rounds of guanidine isothiocyanate/ phenol:

chloroform extraction (TRIzolH Reagent, Life Technologies, Inc.,

Gaithersburg, MD) according to the manufacturer’s instructions.

Total RNA was further purified using RNeasy spin columns

(Qiagen, Valencia, CA) and its quality assessed by agarose gel

electrophoresis. Total RNA was reverse transcribed using random

hexamers and a First-Strand cDNA Synthesis kit (Amersham

Pharmacia Biotech, Inc., Piscataway, NJ). The cDNA was used for

all subsequent PCR assays.

Evaluation of the IGHV somatic mutation status
The somatic mutation status of the IGHV genes was assessed as

described previously, with minor modifications [47]. Briefly, we

amplified cDNA using a mixture of six 59 VH primers that amplify

all seven VH families and a 39 constant region primer (Cm) in the

presence of reaction buffer, deoxynucleotide triphosphates

(2.5 mM), and HotStar Taq DNA polymerase (Qiagen Sciences).

Following incubation at 94uC for 15 minutes cDNA was amplified

for 30 cycles (94uC for 1 minute, 56uC for 1 minute, and 72uC for

Figure 3. Kaplan-Meier plots of time from diagnosis to treatment in the validation set, showing the interactions between the SKI-
SLAMF1 score and (A) gender, (B) Rai stage, (C) WBC count, (D) serum b2-microglobulin level, (E) CD38, (F) IGHV somatic mutation
status, (G) ZAP70, (H) cytogenetic complexity, and (I) clinical score.
doi:10.1371/journal.pone.0028277.g003
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1 minute). In cases that failed to amplify using this strategy, we

used a mixture of VH Framework 1 primers and a 39 JH consensus

primer (59-AACTGAGGAGACGGTGACC-39) Two indepen-

dent PCR reactions were performed for each sample. The gel-

purified PCR products were sequenced directly using the 39 PCR

primer and an ABI 3700 or 3730 DNA Analyzer (Applied

Biosystems, Branchburg, NJ). In order to determine the degree of

IGHV somatic mutation, patient sequences were aligned with

germline sequences in VBASE II [48]. The somatic mutation

status was designated as unmutated if there were ,2% mutations

(.98% homology to germline sequences), or as mutated if there

were $2% mutations (#98% homology to germline sequences)

compared with germline sequences [49].

Assessment of ZAP70 protein expression
Expression of ZAP70 was assessed either by immunohistochem-

istry or flow cytometry. Immunohistochemical staining was

performed using routinely fixed and processed paraffin-embedded

tissue sections of bone marrow core biopsy and/or aspirate clot

specimens and a specific monoclonal antibody (Upstate Cell

Signaling Systems, Lake Placid, NY, USA) [8,11]. The flow

cytometry assay for ZAP70 was performed by the Chronic

Lymphocytic Leukemia Research Consortium laboratory as

described previously [50].

Design and production of the custom QRT-PCR
microfluidics card

We printed 384-well custom microfluidics cards (MF) with gene-

specific forward and reverse primers and TaqManH probes to

assess candidate biomarkers, and performed semi-quantitative

real-time polymerase chain reaction (QRT-PCR) assays, as

described previously [13,14]. Also included were five endogenous

control genes, 18S rRNA, GAPD, PGK1, GUSB, and ECE-1, that

spanned the dynamic range of the microfluidics cards. We used

three different cards, designated A, B, and C, printed with

candidate biomarkers of prognosis in CLL. Card A was printed

with 88 candidate biomarkers of IGHV somatic mutation status

[1,2,3,4,12,13]. Card B was printed with 91 candidate biomarkers

associated with prognostic factors other than IGHV somatic

mutation status (Table S3) [5,6,7,14,15,16,17,18]. Card C, which

was used for validation, was printed with 37 candidate biomarkers

that appeared to predict TTT based on a preliminary analysis of

cards A and B, and the five endogenous control genes (Table S4).

We assayed 65 training patient samples on cards A and B, and 66

validation patient samples on card C.

Statistical Methods
The MF-QRT-PCR assay data were processed as described

previously [13,14]. Briefly, data from each card were quantified

separately using the SDS 2.1 software package (Applied Biosys-

tems, Carlsbad, CA) with an automatic baseline and a manual

threshold of 0.10 to record the cycle thresholds, CT. Next, DCT

values were computed by subtracting the mean of the five

endogenous control genes: 18S rRNA, GAPD, PGK1, GUSB, and

ECE-1. Statistical analyses were performed in version 2.11 of R, a

freely available statistical software package (http://cran.r-project.

org/). Differences in clinical and laboratory covariates between

training and validation datasets were tested using unequal-

variance two-sample t-tests for continuous variables and Fisher’s

Exact Test for dichotomous (binary) variables.

Kaplan-Meier estimates were used to plot survival curves.

Univariate time-to-event analyses (for TTT and for OS) were

conducted using Cox proportional hazards models and tested for

significance using the log rank test. In order to select the best sets

of predictors in multivariate models, we began with a Cox

proportional hazards model that incorporated all variables. We

then used a stepwise backward-forward algorithm to optimize

either the Akaike Information Criterion (AIC) or the Bayes

Information Criterion (BIC) [19]. The best multivariate models

were selected based on AIC. (Models selected using BIC were

almost always identical to those selected by AIC; when they

differed, the AIC model included an additional factor, which we

chose to retain.) We extensively cross-validated potential models

on the training set before applying the best potential model to the

validation dataset. The complete computer scripts used to analyze

the data are available at http://bioinformatics.mdanderson.org/

Supplements/Microfluidics/Prognosis [21].
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