
Improving Transmission Efficiency of Large Sequence
Alignment/Map (SAM) Files
Muhammad Nazmus Sakib1, Jijun Tang1, W. Jim Zheng2, Chin-Tser Huang1*

1 Department of Computer Science & Engineering, University of South Carolina, Columbia, South Carolina, United States of America, 2 Department of Biochemistry,

Medical University of South Carolina, Charleston, South Carolina, United States of America

Abstract

Research in bioinformatics primarily involves collection and analysis of a large volume of genomic data. Naturally, it
demands efficient storage and transfer of this huge amount of data. In recent years, some research has been done to find
efficient compression algorithms to reduce the size of various sequencing data. One way to improve the transmission time
of large files is to apply a maximum lossless compression on them. In this paper, we present SAMZIP, a specialized encoding
scheme, for sequence alignment data in SAM (Sequence Alignment/Map) format, which improves the compression ratio of
existing compression tools available. In order to achieve this, we exploit the prior knowledge of the file format and
specifications. Our experimental results show that our encoding scheme improves compression ratio, thereby reducing
overall transmission time significantly.

Citation: Sakib MN, Tang J, Zheng WJ, Huang C-T (2011) Improving Transmission Efficiency of Large Sequence Alignment/Map (SAM) Files. PLoS ONE 6(12):
e28251. doi:10.1371/journal.pone.0028251

Editor: Leonardo Mariño-Ramı́rez, National Institutes of Health, United States of America

Received June 24, 2011; Accepted November 4, 2011; Published December 2, 2011

Copyright: � 2011 Sakib et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MS and CH’s work is partially supported by National Science Foundation (NSF) under the grant NSF CNS 0916857. JT’s work is partially supported by
National Science Foundation (NSF) under the grant NSF OCI 0904179. WJZ’s work is partially supported by 1UL RR029882-01, NIH/NIGMS R01GM063265-09S1; and
a pilot project from grant NIH/NCRR P20 RR017677 and PhRMA Foundation Research Starter Grant. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: huangct@cec.sc.edu

Introduction

One of the primary tasks in bioinformatics research is to collect

and analyze large volume of genomic sequencing data. Modern

sequencing instruments are generating at least hundreds of

millions of short reads. Along with novel sequencing technologies,

many new alignment tools have evolved that can perform efficient

read mapping against large reference sequences. Alignments

generated from these tools have different formats, which is not

helpful for downstream processing. In order to simplify this

process, a common alignment format, such as Sequence

Alignment/Map (SAM) has been designed.

For the purpose of research, scientists and researchers need to

transfer over the Internet large amount of alignment data

represented in SAM format. Greater transmission delay has

always been an obstacle in this process. Thus, reducing

transmission delay has become imperative. One way to accomplish

this goal is to apply a maximum lossless compression on the files to

be transferred.

In this paper, we present SAMZIP, an encoding scheme

specifically designed to work on SAM files, which improves

compression ratio of the existing compression tools available. The

goal is to achieve maximum compression ratio, thereby achieving

minimum overall transmission time. We also demonstrate

experimentally how our encoding scheme accomplishes this goal.

The SAM format
The SAM format comprises one header section and one

alignment section. Both of the sections contain many lines

delimited by the newline character. The fields inside a line are

TAB delimited. The lines in the header section start with

character ‘@’, while the lines in the alignment section do not. An

example is shown in Figure 1. Each alignment line consists of 11

mandatory fields and a variable number of optional fields. A brief

description of the mandatory fields is given in Table 1. The

presence of these fields is mandatory although their value can be

an asterisk (‘*’) or a zero if the corresponding information is

unavailable. The optional fields are in the format: ,TAG. :

,VTYPE. : ,VALUE.. Each tag is represented by two

alphanumeric characters and appears only once for an alignment.

A detailed description of each field has been given in the original

SAM format specification [1].

The BAM format
The binary equivalent of SAM is called Binary Alignment/Map

(BAM). It is compressed by the BGZF library; a generic library is

developed by Li et al. [2]. It also provides fast random access in the

compressed file.

Encoding Techniques
The current compression technology includes a wide range of

encoding techniques. We provide a background introduction for

some of them, as they are needed for our own encoding scheme.

Run-length Encoding. One of the very basic encoding

techniques is run-length encoding. Run-length encoding (RLE) is

a technique in which a continuous occurrence of a data value is

stored as a single data value and count, rather than as the original

sequence. This technique is useful in compressing files that contain

many such long runs of same data value.

PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28251

Delta Encoding. Delta encoding is another technique where

transmission of data takes place in the form of differences between

successive values rather than the original values. This is also

known as data differencing. This technique can be useful in

encoding data values where there is a small difference value in

consecutive data values. It is easier to encode the small difference

values rather than encoding large data values.

Huffman Coding. Huffman coding is an entropy encoding

algorithm developed by David A. Huffman in 1952. It is a popular

algorithm for lossless data compression. The main idea is to

construct a variable length code table for encoding each character

in the source file. The variable-length code table is derived using

the estimated probability of occurrence for each source character.

The resulting code is known as prefix-free code. It means that

the bit string representation of a given symbol is never a prefix of

the bit string representing any other symbol. It results into codes of

shorter length for most common characters, while longer code

lengths for less common characters. If there is a uniform

probability distribution for the occurrence of the characters and

the number of entries in the code table is a power of two, the

Huffman coding becomes equivalent to simple binary encoding or

ASCII encoding.

Dictionary Coding. A dictionary coding is a type of

substitution coding where matched string is substituted by

another string from the dictionary maintained by the encoder.

Dictionaries can be one of two types - static and dynamic. In the

static dictionary, the full set of strings is defined before coding

begins and does not change during the coding process. This

approach is particularly useful if the data to be encoded is fixed

and large, and a pattern can be ascertained beforehand.

Related Compression Research
In the recent years, researchers have been trying to come up

with better compression tools to achieve efficient storage and

transmission of genomic sequence data. Here, we will give a brief

overview of some of the available compression tools developed

over the past few years.

SLIMGENE is a domain specific lossless compression tool

implemented by Kozanitis et al. [3] that can achieve 406
compression of genomic fragments without and 56 compression

when the quality values are included. This tool mostly works with

Illumina Export format which is one of the formats used for

packaging and exporting genomic fragments. Another similar tool

is DSRC (DNA Sequence Reads Compressor), developed by

Deorowicz et al [4]. It works on genomic data in FASTQ format

and has superior compression ratio over its competitor, G-SQZ.

DRSC has a compression ratio of 4 to 6.5 over different variants of

FASTQ format. Wang et al [5] presented GRS, a compression

tool for storing and analyzing genome resequencing data. They

tested it on the first Korean personal genome sequence data set,

achieving about 159-fold compression.

Materials and Methods

Our encoding scheme exploits two important characteristic of

SAM files to improve compression ratio, and consequently the

transmission time. First, the Alignment section of the SAM files

consists of 11 mandatory fields and one optional field which may

occur any number of times in one alignment record. All of these

fields can be processed independently, since the fields have little

inter-relation among them. Therefore, we can use parallel

processing to process these fields and reduce processing time

significantly. Secondly, we have a clear and specific format for

each of these fields. We know the range of values that each of these

fields may contain and also the approximation of occurrence of

these values. We can utilize this knowledge to improve the

encoding and achieve better compression ratio.

An important fact is that, all of the existing best case

compression tools try to achieve the best compression ratio in

one run. Hence, it is not possible to apply compression on an

already compressed file. Even if this becomes possible, the second

run does not improve compression ratio, rather it increases the

output file size. Our goal is to encode the uncompressed file within

least possible period of time and generate an intermediate encoded

file with a moderate compression ratio, and then apply one of the

best case compression tools on the intermediate file to achieve

maximum compression ratio.

In our encoding algorithm, we used a combination of encoding

techniques including run-length encoding, Huffman encoding,

delta encoding, and dictionary coding. The usage of individual

encoding techniques varied upon the pattern of data values we

encountered in our dataset. We briefly describe the techniques for

each of the fields as follows.

Figure 1. Example of a SAM file [1].
doi:10.1371/journal.pone.0028251.g001

Table 1. Mandatory Fields in the SAM format [1].

No. Name Description

1 QNAME Query NAME of the read or the read pair

2 FLAG Bitwise FLAG (pairing, strand, mate strand, etc.)

3 RNAME Reference sequence NAME

4 POS 1-Based leftmost POSition of clipped alignment

5 MAPQ MAPping Quality (Phred-scaled)

6 CIGAR Extended CIGAR string (operations: MIDNSHP)

7 MRNM Mate Reference NaMe (‘ = ’ if same as RNAME)

8 MPOS 1-Based leftmost Mate POSition

9 ISIZE Inferred Insert SIZE

10 SEQ Query SEQuence on the same strand as the reference

11 QUAL Query QUALity (ASCII-33 = Phred base quality)

doi:10.1371/journal.pone.0028251.t001

Improving Transmission Efficiency of SAM Files

PLoS ONE | www.plosone.org 2 December 2011 | Volume 6 | Issue 12 | e28251

1. QNAME: This field exhibits a common long subsequence in

the field values. If we remove this subsequence, the values

become a set of numbers separated by delimiters. Our

algorithm first calculates the longest common subsequence

from these values and encodes it as a fixed value. Then, the

remaining part is encoded as integer values (without the

delimiters).

2. FLAG: This field contains small integer values fitting within a

single byte or two, and exhibit frequent repetitions. We use

run-length encoding here.

3. RNAME: This field mostly exhibits a few fixed values over the

entire course of the file. Here, we use run-length encoding to

encode these values which can include string types.

4. POS: This field contains large integer values which exhibit a

constant increase and repetition. We combine run-length

encoding and delta encoding for these values.

5. MAPQ: This field is encoded using the same technique applied

for the FLAG fields.

6. CIGAR: This field contains values of alpha-numeric type of

any length. They also exhibit long runs of the same value. We

use run-length encoding here but include the length of the

bytes for decoding purpose.

7. MRNM: This field can have any length of alpha-numeric

values, but a careful observation of our dataset reveals that

mostly this field contains either of the two values: ‘ = ’ and ‘*’.

In this case, we use 1-bit encoding for these two values. In other

cases, run-length encoding is used.

8. MPOS: This field contains similar values as the POS field, but

without the constant increase in the values. We use the usual

run-length encoding to encode this field, and include the byte

length information for decoding purpose.

9. ISIZE: A constant value of 0 (zero) is found in most of the files

for this field, which can be discarded totally and included in the

dictionary of fixed values.

10. SEQ: This field normally contains a sequence of characters

from the set {A, T, C, G}. These four characters can be

encoded directly using only 2 bits. Some records may

contain occasional ‘N’ characters, which is rare. We

maintain the position of these ‘N’ characters and encode

them separately. Currently, our algorithm is limited to

support only ACGTN values for this field.

11. QUAL: This field has the characteristic of long runs of single

character value, which is suitable for using run-length

encoding.

12. TAG: This is an optional field, having the format: ,TAG. :

,VTYPE. : ,VALUE.. The TAG and VTYPE portions

can have two and one character values respectively, taken

from a limited set of values. So, these fields are particularly

suitable for Huffman encoding. The VALUE portion

contains variable length alphanumeric values, which are

kept as it is.

The encoded output is divided into separate files, one output file

for each field. Any suitable compression tool can be applied on the

encoded output files for further compression. The encoded files

have a much smaller size compared to the original input file, so a

large input file is no longer needed for the compression tools. This

effectively reduces the compression time. After decompression, the

decoding algorithm reads all of these files to reconstruct the

original SAM file.

Our algorithm is based on assumptions on the values that the

SAM fields should exhibit. If the input varies from the normal

characteristic, the algorithm would exhibit worst performance. But

it can be adjusted by changing different parameters for different

fields. Another worst case scenario is when the input has absolutely

zero repetitive values. On the other hand, this algorithm shows

best case performance when there are long runs of repetitive

occurrences in the data. As the algorithm is for lossless data

compression, the data values are decoded exactly as they are

encoded without any loss of information. We have tested the

integrity of the data by matching the original file with the

decompressed file.

In a SAM file, major portion of the data consists of QNAME,

SEQ, and QUAL data values. QNAME values usually exhibit a

pattern with a long subsequence of alphanumeric characters. This

subsequence can be easily separated leaving only a few numeric

values or symbols. So, the QNAME data can have high

compression ratio depending on their pattern. SEQ values contain

characters from a small fixed set and have high compression ratio.

On the other hand, QUAL data values may contain characters

from a large set and have high entropy. Hence, QUAL data have

low compression ratio. The rest of the data values consist mostly of

small integer values or strings of short length. Their compression

ratio depends on the repetition of these data values.

Results

We implemented SAMZIP in C in order to evaluate its

performance. The source code of our SAMZIP implementation

can be found in the supporting information file S1. A 10 MB

sample input file for SAMZIP can be found in the supporting

information file S2. We conducted several tests for both offline and

online compression scenarios. For the offline compression

scenario, we assume that data is already available and can be

Table 2. Offline Compression Results.

Original File Size [GB] samtools gzip WinRAR(Normal) WinRAR (Best) SAMZIP +WinRAR(Best)

Comp.
File Size
[GB]

Trans
Time
[min.]

Comp.
File Size
[GB]

Trans.
Time
[min.]

Comp.
File Size
[GB]

Trans.
Time
[min.]

Comp.
File Size
[GB]

Trans.
Time
[min.]

Comp.
File Size
[GB]

Trans.
Time
[min.]

23.13 3.5 309.50 3.06 270.59 2.89 255.56 2.2 194.54 2.08 183.93

25.01 3.6 318.34 3.09 273.24 2.9 256.44 2.19 193.66 2.08 183.93

25.25 3.74 330.72 3.22 284.74 3.04 268.82 2.28 201.62 2.21 195.43

25.39 4.29 379.36 3.77 333.37 3.51 310.38 2.66 235.22 2.42 214.00

25.81 3.92 346.64 3.4 300.66 3.19 282.09 2.41 213.11 2.24 198.08

doi:10.1371/journal.pone.0028251.t002

Improving Transmission Efficiency of SAM Files

PLoS ONE | www.plosone.org 3 December 2011 | Volume 6 | Issue 12 | e28251

compressed ahead of time, so we only consider the effective

transmission time (calculated based on the reduced data size). For

the online compression scenario, we assume that data needs to be

compressed on the fly, so the compression time is also added to the

effective transmission time to get the total transmission time. We

compared our scheme to two popular general purpose lossless

compressors, gzip and WinRAR (both the normal compression

mode and the best compression mode), and one SAM file specific

compression tool, samtools. The test data comprised of five files

from our existing dataset. The test machine was an Intel Xeon

2.8 GHz, Quad Core CPU, 6 GB RAM, under 64-bit Ubuntu

Maverick Version 10.10 and Windows 7 Professional Edition

environments.

Table 2 shows the experimental results for offline compression.

For each of the compression tools, we show the compressed file size (in

Gigabytes) and corresponding transmission time (in minutes). The

transmission time is calculated based on the assumption of using

T1 bandwidth (1.544 Mbps or 0.193 MBps). For example, an

output file size of 3.5 GB can be transmitted in (3584/

0.193) = 18569.94 seconds or 309.50 minutes. From Table 2, we

can see that WinRAR has superior compression ratio over

samtools and gzip, even in normal compression mode. If we

compare samtools with WinRAR (best), the transmission time of

WinRAR (best) improves roughly by approximately

115,144 minutes. In the case of gzip, the improvement ranges

from 76 to 98 minutes. Now, when we combine SAMZIP with

WinRAR in the best compression mode, we get even better

compression ratio and transmission time. The improvement in the

transmission time of our method ranges from 6 to 21 minutes over

the results of WinRAR (best).

Table 3 shows test results for online compression. In this table,

only the total time is shown for each of the compression methods.

The total time is calculated by adding the compression time, the

effective transmission time, and the decompression time. For

comparison purpose, we also list the result of WinRAR in the

fastest compression mode, whose compression time is relatively

short but compression ratio is inferior to the normal mode and the

best mode. As before, we used the same assumption of T1

bandwidth for transmission. From Table 3, we can find again that

WinRAR (best) has the best total time as a single compression tool.

But if we use SAMZIP with WinRAR (normal), we get even better

total time. This is because WinRAR (normal) mode has the lowest

decompression time. The combination of this mode with SAMZIP

beats even the WinRAR (best) mode.

In these test cases, we combined SAMZIP with WinRAR.

However, similar tests can be performed using the combination of

other available compression tools with SAMZIP, and we can show

that SAMZIP improves performance of those tools.

Discussion

Research in Bioinformatics largely depends on storage and

manipulation of huge amount of data. Efficient transmission of

these data is crucial for the advancement of research. In this paper,

we have implemented SAMZIP, an encoding scheme for SAM

files, which improves compression ratio of existing compression

utilities available. Our experimental results show that it can

achieve significant improvement in transmission time over open

source and commercial compression tools. In order to accomplish

this, we utilized the prior knowledge of the file format and

specifications.

Supporting Information

File S1 SAMZIP source code. The complete source code of

SAMZIP implementation written in C.

(RAR)

File S2 Sample SAM file. A 10 MB sample input file for

SAMZIP.

(SAM)

Author Contributions

Conceived and designed the experiments: MNS JT C-TH. Performed the

experiments: MNS. Analyzed the data: MNS C-TH. Contributed

reagents/materials/analysis tools: JT WJZ. Wrote the paper: MNS C-

TH. Designed the software used in analysis: MNS. Acquisition of sample

data: WJZ.

References

1. SAM Format Specification, Version 0.1.2-draft, August 20, 2009.

2. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence

alignment/map (SAM) format and SAMtools. Bioinformatics 25(16): 2078–9.
3. Kozanitis C, Saunders C, Kruglyak S, Bafna V, Varghese G (2010) Compressing

Genomic Sequence Fragments Using SLIMGENE. J Comput Biol 18(3):
401–13.

4. Deorowicz S, Grabowski S (2011) Compression of genomic sequences in

FASTQ format. Bioinformatics 27(6): 860–2.

5. Wang C, Zhang D (2011) A novel compression tool for efficient storage of

genome resequencing data. Nucl Acids Res 39(7): e45.

Table 3. Online Compression Results.

Original File Size
[GB] samtools gzip

WinRAR
(Fastest)

SAMZIP
+WinRAR
(Fastest)

WinRAR
(Normal)

SAMZIP
+WinRAR
(Normal)

WinRAR
(Best)

SAMZIP +WinRAR
(Best)

Time
[min.]

Time
[min.]

Time
[min.]

Time
[min.] Time [min.]

Time
[min.]

Time
[min.]

Time
[min.]

23.13 354.70 346.75 333.79 291.29 286.87 266.05 276.67 272.76

25.01 365.08 350.82 340.76 299.28 289.64 272.69 280.61 278.41

25.25 380.61 364.72 355.76 311.04 302.38 285.28 292.86 296.82

25.39 429.47 414.77 407.10 348.83 346.70 315.37 333.38 325.91

25.81 397.21 385.96 371.43 325.35 319.09 296.38 309.65 303.45

doi:10.1371/journal.pone.0028251.t003

Improving Transmission Efficiency of SAM Files

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28251

