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Abstract

Biomarker discovery from high-dimensional data is a crucial problem with enormous applications in biology and medicine.
It is also extremely challenging from a statistical viewpoint, but surprisingly few studies have investigated the relative
strengths and weaknesses of the plethora of existing feature selection methods. In this study we compare 32 feature
selection methods on 4 public gene expression datasets for breast cancer prognosis, in terms of predictive performance,
stability and functional interpretability of the signatures they produce. We observe that the feature selection method has a
significant influence on the accuracy, stability and interpretability of signatures. Surprisingly, complex wrapper and
embedded methods generally do not outperform simple univariate feature selection methods, and ensemble feature
selection has generally no positive effect. Overall a simple Student’s t-test seems to provide the best results.
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Introduction

Biomarker discovery from high-dimensional data, such as

transcriptomic or SNP profiles, is a crucial problem with

enormous applications in biology and medicine, such as diagnosis,

prognosis, patient stratification in clinical trials or prediction of the

response to a given treatment. Numerous studies have for example

investigated so-called molecular signatures, i.e., predictive models

based on the expression of a small number of genes, for the

stratification of early breast cancer patients into low-risk or high-

risk of relapse, in order to guide the need for adjuvant therapy [1].

While predictive models could be based on the expression of

more than a few tens of genes, several reasons motivate the search

for short lists of predictive genes. First, from a statistical and

machine learning perspective, restricting the number of variables

is often a way to reduce over-fitting when we learn in high

dimension from few samples and can thus lead to better

predictions on new samples. Second, from a biological viewpoint,

inspecting the genes selected in the signature may shed light on

biological processes involved in the disease and suggest novel

targets. Third, and to a lesser extent, a small list of predictive genes

allows the design of cheap dedicated prognostic chips.

Published signatures share, however, very few genes in

common, raising questions about their biological significance

[2]. Independently of differences in cohorts or technologies, [3]

and [4] demonstrate that a major cause for the lack of overlap

between signatures is that many different signatures lead to

similar predictive accuracies, and that the process of estimating

a signature is very sensitive to the samples used in the phase of

gene selection. Specifically [5], suggest that many more samples

than currently available would be required to reach a descent

level of signature stability, meaning in particular that no

biological insight should be expected from the analysis of

current signatures. On the positive side, some authors noticed

that the biological functions captured by different signatures are

similar, in spite of the little overlap between them at the gene

level [6–8].

From a machine learning point of view, estimating a signature

from a set of expression data is a problem of feature selection, an

active field of research in particular in the high-dimensional setting

[9]. While the limits of some basic methods for feature selection

have been highlighted in the context of molecular signatures, such

as gene selection by Pearson correlation with the output [5], there

are surprisingly very few and only partial investigations that focus

on the influence of the feature selection method on the performance and

stability of the signature [10]. compared various feature selection

methods in terms of predictive performance only, and [11] suggest

that ensemble feature selection improves both stability and

accuracy of SVM recursive feature elimination (RFE), without

comparing it with other methods. However, it remains largely

unclear how ‘‘modern’’ feature selection methods such as the

elastic net [12], SVM RFE or stability selection [13] behave in

these regards and how they compare to more basic univariate

techniques.

Here we propose an empirical comparison of a panel of feature

selection techniques in terms of accuracy and stability, both at the

gene and at the functional level. Using four breast cancer datasets,

we observe significant differences between the methods. Surpris-

ingly, we find that ensemble feature selection, i.e., combining

multiple signatures estimated on random subsamples, has

generally no positive impact, and that simple filters can

outperform more complex wrapper or embedded methods.
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Materials and Methods

Feature selection methods
We compare eight common feature selection methods to

estimate molecular signatures. All methods take as input a

matrix of gene expression data for a set of samples from two

categories (good and bad prognosis in our case), and return a set

of genes of a user-defined size s. These genes can then be used

to estimate a classifier to predict the class of any sample from the

expression values of these genes only. Feature selection methods

are usually classified into three categories [9,14]: filter methods

select subsets of variables as a pre-processing step, indepen-

dently of the chosen predictor; wrapper methods utilize the

learning machine of interest as a black box to score subsets of

variable according to their predictive power; finally, embedded

methods perform variable selection in the process of training and

are usually specific to given learning machines. We have

selected popular methods representing these three classes, as

described below.

Filter methods
Univariate filter methods rank all variables in terms of

relevance, as measured by a score which depends on the method.

They are simple to implement and fast to run. To obtain a

signature of size s, one simply takes the top s genes according to

the score. We consider the following four scoring functions to rank

the genes: the Student’s t-test and Wilcoxon sum-rank test, which

evaluate if each feature is differentially expressed between the two

classes; and the Bhattacharyya distance and relative entropy to calculate a

distance between the distributions of the two groups. We used the

MATLAB Bioinformatics toolbox to compute these scoring

functions.

Wrapper methods
Wrapper methods attempt to select jointly sets of variables with

good predictive power for a predictor. Since testing all

combinations or variables is computationally impossible, wrapper

methods usually perform a greedy search in the space of sets of

features. We test SVM recursive feature elimination (RFE) [15], which

starts with all variables and iteratively removes the variables which

contribute least to a linear SVM classifier trained on the current

set of variables. We remove 20% of features at each iteration until

s remain, and then remove them one by one in order to

rigourously rank the first s. Following [11], we set the SVM

parameter C to 1, and checked afterwards that other values of C
did not have a significant influence on the results. Alternatively, we

test a Greedy Forward Selection (GFS) strategy for least squares

regression also termed Orthogonal Matching Pursuit, where we

start from no variable and add them one by one by selecting each

time the one which minimizes the sum of squares, in a 3-fold

internal cross-validation setting. This algorithm was implemented

in the SPAMS toolbox for Matlab initially published along with

[16].

Embedded methods
Embedded methods are learning algorithms which perform

feature selection in the process of training. We test the popular

Lasso regression [17], where a sparse linear predictor b[Rp is

estimated by minimizing the objective function R(b)zlEbE1,

where R(b) is the mean square error on the training set

(considering the two categories as +1 values) and EbE1~Xp

i~1
jbij. l controls the degree of sparsity of the solution, i.e.,

the number of features selected. We fix l as the smallest value

which gives a signature of the desired size s. Alternatively, we

tested the elastic net [12], which is similar to the Lasso but where

we replace the ‘1 norm of b by a combination of the ‘1 and ‘2

norms, i.e., we minimize R(b)zlEbE1zl=2EbE2
2 and EbE2

2~Xp

i~1
b2

i . By allowing the selection of correlated predictive

variables, the elastic net is supposed to be more robust than the

Lasso while still selecting predictive variables. Again, we tune l to

achieve a user-defined level of sparsity. For both algorithms, we

used the code implemented in the SPAMS toolbox.

Ensemble feature selection
Many feature selection methods are known to be sensitive to

small perturbations of the training data, resulting in unstable

signatures. In order to ‘‘stabilize’’ variable selection, several

authors have proposed to use ensemble feature selection on

bootstrap samples: the variable selection method is run on several

random subsamples of the training data, and the different lists of

variables selected are merged into a hopefully more stable subset

[11,13,18].

For each feature selection method described above, we tested

in addition the following three aggregation strategies for

ensemble feature selection. We first bootstrap the training

samples B~50 times (i.e., draw a sample of size n from the

data with replacement B times) to get B rankings (r1:::rB) of all

features by applying the feature selection method on each sample.

For filter methods, the ranking of features is naturally obtained by

decreasing score. For RFE and GFS, the ranking is the order in

which the features are added or removed in the iterative process.

For Lasso and elastic net, the ranking is the order in which the

variables become selected when l decreases. We then aggregate

the B lists by computing a score Sj~1=B
PB

b~1 f (rb
j ) for each

gene j as an average function of its rank rb
j in the b-th bootstrap

experiment. We test the following functions of the rank for

aggregation:

N Ensemble-mean [11]: we simply average the rank of a gene over

the bootstrap experiments, i.e., we take f (r)~r.

N Ensemble-stability selection [13]: we measure the percentage of

bootstrap samples for which the gene ranks in the top s, i.e.,

f (r)~1 if rƒs, 0 otherwise.

N Ensemble-exponential: we propose a soft version of stability

selection, where we average an exponentially decreasing

function of the rank, namely f (r)~expf{r=sg.

Finally, for each rank aggregation strategy, the aggregated list is

the set of s genes with the largest score.

Accuracy of a signature
In order to measure the predictive accuracy of a feature

selection method, we assess the performance of various supervised

Table 1. Data.

Dataset name # examples # positives source

GSE1456 159 40 [30]

GSE2034 286 107 [31]

GSE2990 125 49 [32]

GSE4922 249 89 [33]

The four breast cancer datasets used in this study.
doi:10.1371/journal.pone.0028210.t001
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classification algorithms trained on the data restricted to the

selected signature. More precisely, we test 5 classification

algorithms: nearest centroids (NC), k-nearest neighbors (KNN)

with k~9, linear SVM with C~1, linear discriminant analysis

(LDA) and naive Bayes (BAYES). The parameters of the KNN

and SVM methods are fixed to arbitrary default values, and we

have checked that no significantly better results could be obtained

with other parameters by testing a few other parameters. We assess

the performance of a classifier by the area under the ROC curve

(AUC), in two different settings. First, on each dataset, we perform

a 10-fold cross-validation (CV) experiment, where both feature

selection and training of the classifier are performed on 90% of the

data, and the AUC is computed on the remaining 10% of the data.

This is a classical way to assess the relevance of feature selection of

a given dataset. Second, to assess the performance of the signature

across datasets, we estimate a signature on one dataset, and assess

its accuracy on other datasets by again running a 10-fold CV

experiment where only the classifier (restricted to the genes in the

signature) is retrained on each training set. In both cases, we report

the mean AUC across the folds and datasets, and assess the

Table 2. AUC (10-fold cross-validation).

Class. Type Random t-test Entropy Bhatt. Wilcoxon SVM RFE GFS Lasso Elastic Net

NC S 0.62(0.17) 0.66(0.14) 0.58(0.15) 0.60(0.15) 0.62(0.15) 0.62(0.15) 0.58(0.15) 0.63(0.15) 0.63(0.15)

E-M 0.62(0.15) 0.65(0.14) 0.59(0.15) 0.63(0.15) 0.62(0.15) 0.63(0.14) 0.62(0.13) 0.61(0.16) 0.63(0.15)

E-E 0.61(0.15) 0.65(0.14) 0.59(0.15) 0.61(0.16) 0.62(0.15) 0.61(0.15) 0.58(0.13) 0.63(0.13) 0.63(0.14)

E-S 0.63(0.14) 0.65(0.14) 0.58(0.15) 0.61(0.15) 0.62(0.15) 0.63(0.15) 0.59(0.12) 0.63(0.13) 0.63(0.14)

KNN S 0.59(0.16) 0.61(0.15) 0.52(0.11) 0.57(0.13) 0.63(0.15) 0.60(0.15) 0.59(0.13) 0.60(0.17) 0.60(0.17)

E-M 0.61(0.14) 0.62(0.15) 0.57(0.15) 0.60(0.15) 0.64(0.16) 0.62(0.15) 0.61(0.12) 0.61(0.15) 0.60(0.12)

E-E 0.55(0.13) 0.63(0.15) 0.53(0.10) 0.54(0.10) 0.63(0.16) 0.60(0.17) 0.54(0.16) 0.61(0.14) 0.60(0.17)

E-S 0.60(0.13) 0.63(0.15) 0.54(0.11) 0.54(0.12) 0.62(0.16) 0.58(0.14) 0.55(0.14) 0.62(0.14) 0.60(0.14)

LDA S 0.54(0.12) 0.56(0.12) 0.51(0.14) 0.55(0.13) 0.52(0.12) 0.56(0.12) 0.50(0.13) 0.58(0.14) 0.57(0.14)

E-M 0.53(0.10) 0.55(0.13) 0.55(0.13) 0.58(0.12) 0.56(0.13) 0.60(0.15) 0.52(0.14) 0.59(0.14) 0.60(0.13)

E-E 0.54(0.13) 0.53(0.15) 0.52(0.15) 0.53(0.11) 0.53(0.14) 0.57(0.13) 0.53(0.15) 0.59(0.12) 0.58(0.13)

E-S 0.54(0.13) 0.52(0.13) 0.54(0.13) 0.55(0.12) 0.52(0.14) 0.57(0.16) 0.54(0.15) 0.59(0.15) 0.60(0.13)

NB S 0.57(0.14) 0.60(0.13) 0.58(0.11) 0.58(0.14) 0.57(0.13) 0.56(0.14) 0.54(0.11) 0.59(0.15) 0.59(0.15)

E-M 0.59(0.13) 0.59(0.14) 0.57(0.14) 0.59(0.13) 0.57(0.13) 0.56(0.13) 0.59(0.12) 0.57(0.15) 0.57(0.14)

E-E 0.55(0.15) 0.60(0.14) 0.58(0.12) 0.57(0.13) 0.58(0.13) 0.57(0.14) 0.58(0.11) 0.58(0.12) 0.58(0.13)

E-S 0.58(0.14) 0.60(0.14) 0.57(0.13) 0.57(0.13) 0.58(0.13) 0.56(0.14) 0.58(0.10) 0.58(0.11) 0.58(0.13)

SVM S 0.56(0.18) 0.56(0.15) 0.55(0.11) 0.55(0.12) 0.54(0.15) 0.62(0.14) 0.51(0.16) 0.62(0.15) 0.62(0.15)

E-M 0.51(0.15) 0.55(0.14) 0.59(0.16) 0.60(0.13) 0.56(0.13) 0.62(0.15) 0.55(0.16) 0.61(0.16) 0.61(0.16)

E-E 0.54(0.16) 0.54(0.15) 0.54(0.13) 0.54(0.12) 0.55(0.15) 0.61(0.17) 0.56(0.17) 0.63(0.13) 0.62(0.16)

E-S 0.54(0.17) 0.55(0.18) 0.56(0.12) 0.56(0.12) 0.54(0.14) 0.61(0.16) 0.55(0.17) 0.63(0.14) 0.62(0.16)

AUC obtained for each combination of feature selection and classification method, in 10-fold cross validation and averaged over the datasets. Standard error is shown
within parentheses. For each selection algorithm, we highlighted the setting in which it obtained the best performance. The Type column refers to the use of feature
selection run a single time (S) or through ensemble feature selection, either with the mean (E-M), exponential (E-E) or stability selection (E-S) procedure to aggregate
lists.
doi:10.1371/journal.pone.0028210.t002

Figure 1. Area under the ROC curve. Signature of size 100 in a 10-fold CV setting and averaged over the four datasets.
doi:10.1371/journal.pone.0028210.g001
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significance of differences between methods with a paired

ANOVA test.

Stability of a signature
To assess the stability of feature selection methods, we compare

signatures estimated on different samples in various settings. First,

to evaluate stability with respect to small perturbation of the

training set, we randomly subsample each dataset into pairs of

subsets with 80% of sample overlap, estimate a signature on each

subset, and compute the overlap between two signatures in a pair

as the fraction of shared genes, i.e., jS1\S2j=s. Note that this

corresponds to the figure of merit defined by [5]. The random

sampling of subsets is repeated 20 times on each dataset, and the

stability values are averaged over all samples. We will refer to this

procedure the soft-perturbation setting in the remaining. Second, to

assess stability with respect to strong perturbation within a dataset,

we repeat the same procedure but this time with no overlap

between two subsets of samples. In practice, we can only sample

Table 3. AUC (between-datasets setting).

Training data Type Random t-test Entropy Bhatt. Wilcoxon SVM RFE GFS Lasso Elastic Net

GSE1456 S 0.59(0.10) 0.63(0.13) 0.60(0.10) 0.63(0.13) 0.61(0.14) 0.61(0.13) 0.61(0.11) 0.62(0.11) 0.62(0.11)

E-M 0.60(0.12) 0.63(0.14) 0.60(0.12) 0.61(0.14) 0.61(0.14) 0.61(0.11) 0.60(0.12) 0.63(0.11) 0.60(0.12)

E-E 0.60(0.13) 0.63(0.13) 0.58(0.10) 0.63(0.12) 0.61(0.13) 0.61(0.11) 0.62(0.12) 0.63(0.11) 0.62(0.11)

E-S 0.60(0.14) 0.63(0.14) 0.59(0.10) 0.63(0.11) 0.61(0.13) 0.61(0.13) 0.62(0.13) 0.63(0.12) 0.63(0.09)

GSE2034 S 0.62(0.15) 0.62(0.15) 0.57(0.20) 0.59(0.19) 0.58(0.19) 0.60(0.18) 0.62(0.15) 0.63(0.16) 0.63(0.16)

E-M 0.63(0.17) 0.63(0.15) 0.60(0.15) 0.64(0.16) 0.58(0.19) 0.63(0.17) 0.62(0.16) 0.62(0.16) 0.62(0.16)

E-E 0.64(0.14) 0.63(0.15) 0.56(0.19) 0.58(0.19) 0.59(0.19) 0.63(0.16) 0.60(0.18) 0.61(0.16) 0.61(0.16)

E-S 0.61(0.17) 0.63(0.16) 0.56(0.17) 0.57(0.19) 0.59(0.19) 0.63(0.15) 0.62(0.17) 0.62(0.16) 0.63(0.16)

GSE2990 S 0.64(0.14) 0.64(0.15) 0.56(0.14) 0.60(0.16) 0.60(0.16) 0.62(0.16) 0.64(0.15) 0.66(0.13) 0.65(0.13)

E-M 0.61(0.15) 0.66(0.16) 0.59(0.17) 0.65(0.13) 0.58(0.16) 0.65(0.15) 0.62(0.14) 0.64(0.15) 0.64(0.15)

E-E 0.61(0.14) 0.66(0.15) 0.54(0.14) 0.57(0.19) 0.59(0.15) 0.62(0.15) 0.63(0.15) 0.65(0.14) 0.66(0.14)

E-S 0.62(0.15) 0.66(0.14) 0.55(0.14) 0.57(0.18) 0.60(0.16) 0.64(0.15) 0.63(0.14) 0.65(0.14) 0.65(0.14)

GSE4922 S 0.65(0.15) 0.66(0.15) 0.59(0.16) 0.63(0.14) 0.64(0.16) 0.64(0.14) 0.62(0.12) 0.65(0.14) 0.65(0.14)

E-M 0.65(0.12) 0.67(0.15) 0.64(0.13) 0.66(0.16) 0.65(0.15) 0.64(0.13) 0.65(0.15) 0.66(0.14) 0.64(0.13)

E-E 0.65(0.15) 0.66(0.15) 0.57(0.16) 0.63(0.15) 0.66(0.15) 0.64(0.12) 0.65(0.13) 0.67(0.13) 0.66(0.14)

E-S 0.65(0.15) 0.65(0.15) 0.60(0.16) 0.62(0.16) 0.66(0.16) 0.63(0.12) 0.63(0.10) 0.66(0.13) 0.65(0.13)

Average S 0.62(0.14) 0.64(0.15) 0.58(0.15) 0.61(0.15) 0.61(0.16) 0.62(0.15) 0.62(0.13) 0.64(0.13) 0.64(0.14)

E-M 0.62(0.14) 0.65(0.15) 0.61(0.15) 0.64(0.15) 0.61(0.16) 0.63(0.14) 0.62(0.14) 0.64(0.14) 0.62(0.14)

E-E 0.62(0.14) 0.64(0.15) 0.56(0.15) 0.60(0.17) 0.61(0.16) 0.63(0.13) 0.62(0.14) 0.64(0.14) 0.64(0.14)

E-S 0.62(0.15) 0.64(0.15) 0.58(0.15) 0.60(0.16) 0.61(0.16) 0.63(0.14) 0.62(0.14) 0.64(0.14) 0.64(0.13)

AUC obtained with Nearest Centroids when a signature is learnt from one dataset and tested by 10-fold cross-validation on the three remaining datasets. Standard error
is shown within parentheses. For each training dataset, we highlighted the best performance. The Type column refers to the use of feature selection run a single time (S)
or through ensemble feature selection, either with the mean (E-M), exponential (E-E) or stability selection (E-S) procedure to aggregate lists.
doi:10.1371/journal.pone.0028210.t003

Figure 2. Area under the ROC Curve. NC classifier trained as a function of the size of the signature, for different feature selection methods, in a
10-fold CV setting averaged over the four datasets.
doi:10.1371/journal.pone.0028210.g002
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subsets of size N=2, where N is the number of samples in a dataset,

to ensure that they have no overlap. Again, we measure the

overlap between the signatures estimated on training sets with no

sample in common. We call this procedure the hard-perturbation

setting. Finally, to assess the stability across datasets, we estimate

signatures on each dataset independently, using all samples on

each dataset, and measure their overlap. We call this procedure

the between-datasets setting below.

Functional interpretability and stability of a signature
To interpret a signature in terms of biological functions, we

perform functional enrichment analysis by inspecting the signature

for over-represented Gene Ontology (GO) terms. This may hint at

biological hypothesis underlying the classification [6,7]. We

perform a hypergeometrical test on each of the 5830 GO

biological process (BP) terms that are associated to at least one

gene in our dataset, and correct the resulting p-values for multiple

testing through the procedure of [19]. To assess the interpretability of

a signature, i.e., how easily one can extract a biological

interpretation, we compute the number of GO terms over-

represented at 5% FDR. To compare two signatures in functional

terms, we first extract from each signature the list of 10 GO terms

with the smallest p-values, and compare the two lists of GO terms

by the similarity measure of [20] which takes into account not only

the overlap between the lists but also the relationships between

GO BP. Finally, to assess the functional stability of a selection

method, we follow a procedure similar to the one presented in the

previous section and measure the mean functional similarity of

signatures in the soft-perturbation, hard-perturbation and be-

tween-datasets settings.

Data
We collected 4 breast cancer datasets from Gene Expression

Omnibus [21], as described in Table 1. The four datasets address

the same problem of predicting metastatic relapse in breast cancer

on different cohorts, and were obtained with the Affymetrix HG-

U133A technology. We used a custom CDF file with EntrezGene

ids as identifiers [22] to estimate expression levels for 12,065 genes

on each array, and normalized all arrays with the Robust Multi-

array Average procedure [23].

Results

Accuracy
We first assess the accuracy of signatures obtained by different

feature selection methods. Intuitively, the accuracy refers to the

performance that a classifier trained on the genes in the signature can

reach in prediction. Although some feature selection methods

(wrapper and embedded) jointly estimate a predictor, we dissociate

here the process of selecting a set of genes and training a predictor on

these genes, in order to perform a fair comparison common to all

feature selection methods. We test the accuracy of 100-gene signatures

obtained by each feature selection method, combined with 5 classifiers

to build a predictor as explained in the Methods section. Table 2

shows the mean accuracies (in AUC) over the datasets as reached by

the different combinations in 10-fold cross-validation.

Figure 3. Area under the ROC Curve. NC classifier trained as a
function of the number of samples in a 50|10-fold CV setting. We
show here the accuracy for 100-gene signatures as averaged over the 4
datasets. Note that the maximum value of the x axis is constrained by
the smallest dataset, namely GSE2990.
doi:10.1371/journal.pone.0028210.g003

Figure 4. Area under the ROC Curve. NC classifier trained as a function of the number of samples in a 50|10-fold CV setting for each of the four
datasets. We show here the accuracy for 100-gene signatures.
doi:10.1371/journal.pone.0028210.g004
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Globally, we observe only limited differences between the

feature selection methods, for a given classification method. In

particular the selection of a random signature reaches a baseline

AUC comparable to that of other methods, confirming results

already observed by [3]. Second, we observe that, among all

classification algorithms, the simple NC classifier consistently gives

good results compared to other classifiers. We therefore choose it

as a default classification algorithm for further assessment of the

performance of the signatures below. Figure 1 depicts graphically

the AUC reached by each feature selection method with NC as a

classifier, reproducing the first three lines of Table 2. Although the

t-test has the best average AUC, the results vary widely across

datasets explaining the large error bars. In fact, a paired ANOVA

test detects no method significantly better than the random

selection strategy; the only significant differences are observed

between t-test, on the one hand, and Entropy and GFS, on the

other hand, which have the lowest performances without

aggregation. In particular, we observe that ensemble methods

for feature selection do not bring any improvement in accuracy in

a significant way.

In order to assess how a signature estimated on one dataset

behave in another dataset, we report the results for between-

Figure 5. Stability for a signature of size 100. Average and standard errors are obtained over the four datasets. a) Soft-perturbation setting. b)
Hard-perturbation setting. c) Between-datasets setting.
doi:10.1371/journal.pone.0028210.g005
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datasets experiments in Table 3. For each training dataset, we

highlight the method with the best results, and report the average

results (over the 4|3|10~120 folds) in the last row. In this

setting, we barely notice any difference with the cross-validation

setting (Table 2) and essentially reach the same conclusions,

namely that no significant result stands out, except for the t-test to

perform overall better than entropy.

In order to check how these results depend on the size of the

signature, we plot in Figure 2 the AUC of the 9 feature

selection methods, with or without ensemble averaging,

combined with a NC classifier, as a function of the size of the

signature. Interestingly, we observe that in some cases the AUC

seems to increase early, implying that fewer than 100 genes

may be sufficient to obtain the maximal performance. Indeed,

while it is significant that 100-gene signatures perform better

than a list of fewer than 10 features (pv0:05 regardless of the

method or the setting), signatures of size 50 do not lead to

significantly worse performances in general. It is worth noting

that some algorithms have an increasing AUC curve in this

range of sizes, and we observe no overfitting that may lead to a

decreasing AUC when the number of features increases.

Random selection was previously shown to give an AUC

equivalent to other methods for a large signature, but as we

observe on this picture, the fewer genes the larger the gap in

AUC.

In order to assess the influence of the number of samples used

to estimate the signature, we computed the 10-fold cross-

validation AUC (repeated 50 times) reached with a NC classifier

as a function of the number of samples in the training set. Figure 3

shows the AUC averaged over the four datasets, for each feature

selection method, while Figure 4 shows the same AUC on each

dataset separately. With no surprise, we observe that the average

accuracy clearly increases with the number of samples in the

training set, for all methods, and that the relative order of the

different methods does not strongly depend on the number of

samples. While it is impossible to extrapolate the curve, it is not

hard to imagine that it would continue to increase to a certain

point. On this plot, t-test clearly outperforms the rest of the

methods. However, looking at the behavior of the methods with

respect to the size of the training set on each set separately, we

note that not only the level of performance but also the relative

order between methods strongly depend on the dataset. For

example, while t-test outperforms all methods in the GSE4922

dataset, Lasso and Elastic Net seem to be the best choices in

GSE2034. On the other hand, we observe that the best methods

on each datasets have not reached their asymptote yet, suggesting

by extrapolation that better accuracies could be reached with

larger cohorts.

Stability of gene lists
We now assess the stability of signatures created by different

feature selection methods at the gene level. Figure 5 compares the

stability of 100-gene signatures estimated by all feature selection

Figure 6. Evolution of stability of t-test signatures with respect
to the size of the training set in the hard-perturbation and the
between datasets settings from GSE2034 and GSE4922.
doi:10.1371/journal.pone.0028210.g006

Figure 7. Stability of different methods in the between-dataset setting, as a function of the size of the signature.
doi:10.1371/journal.pone.0028210.g007

Feature Selection Methods for Molecular Signatures

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e28210



methods tested in this benchmark, in the three experimental

settings: soft-perturbation, hard-perturbation and between-data-

sets settings. The results are averaged over the bootstrap

replicates and the four datasets. It appears very clearly and

significantly that filter methods provide more stable lists than

wrappers and embedded methods. It also seems that ensemble-

exponential and ensemble-stability selection yield much more

stable signatures than ensemble-average. It is worth noting that a

significant gain in robustness through bootstrap is only observable

for relative entropy and Bhattacharyya distance. Interestingly,

SVM-RFE seems to benefit from ensemble aggregation in the

soft-perturbation setting, as observed by [11], but this effect

seems to vanish in the more relevant hard-perturbation and

between-dataset settings.

Obviously, subfigures 5B) and 5C) are very much alike while

Figure 5A) stands aside. They confirm that the hard-

perturbation setting is the best way to estimate the behavior

of the algorithms between different studies. The larger stability

observed in the between-datasets setting compared to the hard

perturbation setting for some methods (e.g., t-test) is essentially

due to the fact that signatures are trained on more samples in

the between-dataset setting, since no split is required within a

dataset. Figure 6 illustrates this difference for one feature

selection method. It shows the stability of the t-test in both

settings with respect to the number of samples used to estimate

signatures. While both curves remain low, we observe like [5] a

very strong effect of the number of samples. Interestingly, we

observe that for very small sample sizes the stability in the hard-

perturbation setting is a good proxy for the stability in the

between-dataset setting. However, the slope of the hard-

perturbation setting stability seems sharper, suggesting that

the gap would stretch for larger sample sizes, should the blue

curve be extrapolated. These results suggest that i) the main

reason for the low stability values is really the sample size and

ii) the uniformity of the cohort still plays a role for larger sizes

of training sets.

We also observe in Figure 7 that the relative stability of the

different methods does not depend on the size of the signature over

a wide range of values, confirming that the differences observed for

signatures of size 100 reveal robust differences between the

methods.

Interpretability and functional stability
Even when different signatures share no or little overlap in terms

of genes, it is possible that they encode the same biological processes

and be useful if we can extract information about these processes

from the gene lists in a robust manner. In the case of breast cancer

prognostic signatures, for example, several recent studies have

shown that functional analysis of the signatures can highlight

coherent biological processes [6,7,24–26]. Just like stability at the

gene level, it is therefore important to assess the stability of biological

interpretation that one can extract from signatures.

First, we evaluate the interpretability of signatures of size 100, i.e.,

the ability of functional analysis to bring out a biological

interpretation for a signature.

As shown on Figure 8, the four filter methods appear to be

much more interpretable than wrappers/embedded methods.

However, it should be pointed out that the number of significant

GO terms is often zero regardless of the algorithm, leading to large

error bars. Ensemble methods do not seem to enhance the

interpretability of signatures.

Second, we assess on Figure 9 the functional stability for all

methods in the three settings. While the baseline stability, as

obtained by random signatures, is approximatively the same

regardless of the setting, we observe that, like stability at the gene

level, soft- and hard-perturbation can lead to very different

interpretations. This suggests again that the high functional

stability obtained by several methods in the soft-perturbation

setting is mainly due to the overlap in samples. Hence the hard-

perturbation setting seems to be a much better proxy for the

between-datasets framework.

Stability results at the functional level are overall very similar

to the results at the gene level, namely, we observe that univariate

filters are overall the most stable methods, and that the hard-

perturbation setting returns a trustworthy estimate of the inter-

datasets stability. In particular, an ANOVA procedure reveals

that in the single-run settings, only signatures obtained from

filters are significantly more stable than random. We also note

that Ensemble-mean never improves the functional stability and

that Ensemble-exponential/Ensemble stability selection return

more stable signatures than single-run for Entropy and

Bhattacharyya as well as for GFS and Lasso although less

significantly.

Figure 8. GO interpretability for a signature of size 100. Average number of GO BP terms significantly over-represented.
doi:10.1371/journal.pone.0028210.g008
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Bias issues in selection with Entropy and Bhattacharrya
distance

Gene selection by relative entropy and Bhattacharyya

distance is more stable but less accurate than random selection,

which suggests a bias in the method which may preferably and

consistently select particular genes, not necessarily very

predictive. To elucidate this behavior, we investigated the

genes selected by these two methods. We noticed that they tend

to be systematically expressed at low levels, as shown in

Figure 10, and that they barely depend on the labels, which

explains the high stability but small accuracy. In fact the

frequently selected genes systematically show a multimodal yet

imbalanced distribution due to the presence of outliers, as

illustrated on Figure 11. As soon as, by chance, one class of

samples contains one or more outliers when the other class

doesn’t, this type of distribution is responsible for a very high

variance ratio between the two classes, thus leading to a very

high value of the entropy and Bhattacharyya statistics. It is

Figure 9. GO stability for a signature of size 100 in the soft-perturbation setting. Average and standard errors are obtained over the four
datasets. A) Soft-perturbation setting. B) Hard-perturbation setting. C) Between-datasets setting.
doi:10.1371/journal.pone.0028210.g009
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therefore likely that, although stable and interpretable, the

molecular signatures generated by these two methods lead to

erroneous interpretation.

Discussion

We compared a panel of 32 feature selection methods in light of

two important criteria: accuracy and stability, both at the gene and

at the functional level. Figure 12 summarizes the relative

performance of all methods, and deserves several comments.

Taking random feature selection as a baseline, we first notice

the strange behavior of gene selection by Batthacharyya distance

and relative entropy: they are both more stable but less accurate

than random selection. A careful investigation of the genes they

select allowed us to identify that they tend to select genes with low

expression levels, independently of the sample labels. This

unwanted behavior can easily be fixed by pre-filtering genes with

small variations, but it highlights the danger of blindly trusting a

feature selection method, which in this case gives very stable and

interpretable signatures.

Second, we observe that among the other methods, only elastic

net, Lasso and t-test clearly seem to outperform random in terms

of accuracy, and only t-test outperforms it in terms of stability.

Overall, t-test gives both the best performance and the best

stability. The fact that the Lasso is not stable is not surprising since,

like most multivariate methods, it tries to avoid redundant genes in

a signature and should therefore not be stable in data where

typically many genes encode for functionally related proteins.

What was less expected is that neither the elastic net, which was

designed exactly to fight this detrimental property of Lasso by

allowing the selection of groups of correlated genes, nor stability

selection, which is supposed to stabilize the features selected by

Lasso, were significantly more stable than the Lasso. In addition,

we also found very unstable behaviors at the functional level. This

raises questions about the relevance of these methods for gene

expression data. Similarly, the behavior of wrapper methods was

overall disappointing. SVM RFE and Greedy Forward Selection

are neither more accurate, nor more stable or interpretable than

other methods, while their computational cost is much higher.

Although we observed like [11] that SVM RFE can benefit from

ensemble feature selection, it remains below the t-test both in

accuracy and stability.

Overall we observed that ensemble method which select

features by aggregating signatures estimated on different bootstrap

samples increased the stability of some methods in some cases, but

did not clearly improve the best methods. Regarding the

aggregation step itself, we advise against the use of ensemble-

average, i.e. averaging the ranks of each gene over the

bootstrapped lists, regardless of the selection method. Ensemble-

stability selection or ensemble-exponential gave consistently better

results. The superiority of the latter two can be explained by the

high instability of the rankings, as discussed in [27].

Regarding the choice of method to train a classifier once

features are selected, we observed that the best accuracy was

achieved by the simplest one, namely the nearest centroids classifier,

used e.g. by [10,25]. An advantage of this classifier is that it does

not require any parameter tuning, making the computations fast

and less prone to overfitting.

The performance evaluation of gene selection methods must be

done carefully to prevent any selection bias, which could lead to

underestimated error rates as discussed in [28,29]. This happens

when, for example, a set of genes is selected on a set of samples,

and its performance as a signature is then estimated by cross-

validation on the same set. In our experimental protocol, we

overcome this issue by ensuring that gene selection is never

influenced by the test samples on which the accuracy is measured.

In the 10-fold cross-validation setting, this means that genes are

selected and the classification model is trained 10 times, on the 10

training sets. Alternatively, we also tested the performance of

prognostic signature across datasets, where selection bias is clearly

absent. We barely observed any difference between the 10-fold

cross-validation setting and the setting across dataset, in terms of

average accuracy, confirming that cross-validation without

selection bias is a good way to estimate the generalization

performance.

We noticed that evaluating the stability and the interpretability

in a soft-perturbation setting may lead to untrustworthy results.

The best estimation seems to be obtained in the hard-perturbation

setting experiments. The lack of stability between datasets has

been explained by four arguments. First data may come from

different technological platforms, which is not the case here.

Second and third, there are differences in experimental protocols

Figure 10. Bias in the selection through entropy and Bhatta-
charyya distance. Estimated cumulative distribution functions (ECDF)
of the first ten genes selected by four methods on GSE1456. They are
compared to the ECDF of 500 randomly chosen background genes.
doi:10.1371/journal.pone.0028210.g010

Figure 11. Estimated distribution of the first gene selected by
entropy and Bhattacharyya distance.
doi:10.1371/journal.pone.0028210.g011
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and in patient cohorts, which is indeed the case between datasets;

fourth, the small number of sample leads statistical instability. We

however obtained very similar stability in the hard-perturbation

setting (within each dataset) and in the inter-datasets results. This

suggests that the main source of instability is not the difference in

cohorts or experimental protocols, but really the statistical issue of

working in high dimension with few samples.
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