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Abstract

Drug repositioning helps fully explore indications for marketed drugs and clinical candidates. Here we show that the clinical
side-effects (SEs) provide a human phenotypic profile for the drug, and this profile can suggest additional disease
indications. We extracted 3,175 SE-disease relationships by combining the SE-drug relationships from drug labels and the
drug-disease relationships from PharmGKB. Many relationships provide explicit repositioning hypotheses, such as drugs
causing hypoglycemia are potential candidates for diabetes. We built Naı̈ve Bayes models to predict indications for 145
diseases using the SEs as features. The AUC was above 0.8 in 92% of these models. The method was extended to predict
indications for clinical compounds, 36% of the models achieved AUC above 0.7. This suggests that closer attention should
be paid to the SEs observed in trials not just to evaluate the harmful effects, but also to rationally explore the repositioning
potential based on this ‘‘clinical phenotypic assay’’.
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Introduction

Repositioning helps fully explore the indications of marketed

drugs and clinical candidates [1]; however, most successful stories

of repositioning are based on serendipity and not systematic

analysis [2]. In silico methodologies have helped in mining the

drug’s off-target effects [3,4,5,6,7,8], off-system effects (such as, off-

target related gene expression perturbation or downstream

pathways) [9,10,11,12,13] and off-phenotypes (i.e. adverse drug

reactions [14,15] or new indication) providing new hypotheses to

reposition the drug. These strategies focus primarily on using

preclinical information. Unfortunately, clinical therapeutic effects

are not always consistent with preclinical outcomes [16].

Recently, a systematic analysis observed that phenotypic

screening exceeded target-based approaches in discovering first-

in-class small-molecule drugs [17]. Clinical phenotypic informa-

tion comes from actual patient data, which mimics a phenotypic

‘‘screen’’ of the drug effects on human, and can directly help

rational drug repositioning. For example, Chiang and Butte

suggested new indications for a drug based on its existing

therapeutic effect [18]. In our study, however, we utilize the rich

information from the clinical side-effects (SEs), which are usually

regarded only as unwanted effects to suggest new indications for a

drug. For instance, hypotension is an unfavorable SE of some drugs.

However, those drugs may also act as anti-hypertensives, if we

utilize this SE by controlling the dosing, improving the

formulation and choosing the sub-population etc.

The rationale for this strategy is that SEs and indications are

both measurable behavioral or physiological changes in response

to the treatment, and if drugs treating a disease share the same SE,

there might be some underlying mechanism-of-action (MOA)

linking this disease and the SE. The SE may thus serve as a

phenotypic ‘‘biomarker’’ for this disease. Furthermore, both

therapeutic and side effects are observations on human subjects,

as opposed to animal models, so there is less of a translational

issue. The methodology of Drug Repositioning based on the Side-

Effectome (DRoSEf) is discussed in this study. The basic

hypothesis is that if the SEs associated with a drug D are also

induced by many of the drugs treating disease X, then drug D

should be evaluated as a candidate for treating disease X. We

constructed a database of disease-SE associations from drug-SE

data extracted from drug labels by SIDER and drug-disease

relationships from PharmGKB (Table S1). Researchers, who

observe an unexpected effect in their clinical trial can query the

database for other diseases associated with this phenotype. This

would suggest alternative indications for the drug. Using this

approach, we predict new indications for marketed drugs. In

addition, we built QSAR models to predict side effects based on

the compound structure. For 4,200 candidate drugs with no

available clinical SE information, we were able to combine the

above QSAR models with the SE-disease models to predict new

indications.

Results

Identification of the disease-side effect associations
Both disease-drug associations and drug-SE associations are

required to infer disease-SE associations. We extracted the

indications of drugs from PharmGKB to provide the disease-drug

associations [19]. The SEs printed on the drug label provide

consistent and reliable data as these are summarized from large

clinical trials, and the drug label is approved and standardized by

regulatory agencies. The SIDER database [4], which has been

used to predict drug off-targets provides a mapping extracted from
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drug labels of 888 approved drugs to 584 side effects. These 888

drugs map to 303 drugs and 145 diseases in PharmGKB. We used

the binary fact of the SE’s presence on the drug label as listed in

SIDER. Similar to generating gene-SE associations in ref [20], we

inferred disease-SE associations by counting the number of the

drugs listing or not listing a SE when indicated or not indicated for

a disease, generating a confusion matrix as shown in Fig. 1A. The

association strength of a disease-SE pair is measured using

multiple criteria, including the Matthews correlation coefficient

(MCC), sensitivity (sn) and specificity (sp). We computed 84,680

confusion matrices for each pair of 145 diseases and 584 SEs.

3,175 (3.75%) of these associations (Table S1) were considered

possibly informative (using multiple criteria as described in

Methods).

We investigated a few of the 3,175 associations to understand

what these associations implied and how they could be used to

suggest new indications. Some of the associations have an explicit

explanation based on the current knowledge of the MOA

(Table 1). The SE positive Antinuclear Antibodies (ANA)indicates the

presence of autoimmune antibodies and appears to be associated

with stroke. It is the SE shared by drugs treating stroke, mainly

ticlopidine and several angiotensin-converting enzyme (ACE)

inhibitors. Stroke itself, is associated with severe immune

suppression [21]. Thus, conceivably drugs that are associated

with increasing immune response in terms of positive ANA may help

stroke patients, though of course an autoimmune response is not

desirable. Overall, 50% of the drugs treating stroke list this SE,

whereas only 2% of the drugs not indicated for stroke list positive

ANA as a SE. This 2% (often termed false positives) includes

several statins and ramipril (Table 1). Several statins are

associated with positive ANA, but are not indicated for stroke.

However, a meta-analysis of 120,000 patients across 42 trials

showed that statin therapy provides protection for all-cause

mortality and nonhemorrhagic strokes [22]. Ramipril, which also

lists positive ANA as a SE, showed a 32% risk reduction for stroke

[23]. DRoSEf is suggesting that the immune related SEs of these

drugs directly indicate their use for stroke, and this has also

recently been recognized experimentally [23].

Cytomegalovirus infection is a sign of a weakened immune

system [24]. Drugs that reduce immune response are often used to

prevent transplant rejection, thus drugs that list increased

cytomegalovirus (CMV) infections as a SE may be good candidates

Figure 1. Constructing and visualization of the disease-SE associations. a) Confusion matrix of using SE priapism to predict Parkinson
Disease. PD: Parkinson Disease; MCC: Matthews correlation coefficient; TP, FP, TN and FN stand for true positives, false positives, true negatives and
false negatives respectively. This confusion matrix represents one disease-SE pair. b) The overall layout of the disease-SE network. Diseases and SEs
are shown in red and white circles respectively. The edge color and the width indicate the association strength as measured by MCC. The
neuropsychiatric, neoplasm, circulatory- system disease dominated clusters are highlighted in yellow, red and grey rectangles respectively. c)
Neuropsychiatric disease-dominated cluster. The SE tardive dyskinesia and priapism is highlighted in orange. The MCC for PD-priapism pair is 0.47
according to the confusion matrix in a) and is visualized as an orange line (see black arrow from a) to c)) . d) Sample MCC, sensitivity and specificity
measures for using priapism to predict diseases. For example, 86% of the drugs that treat obsessive-compulsive disorder (OCD) list priapism as a side
effect; whereas only 7% (1-sp) of the drugs not reported to treat OCD list this SE.
doi:10.1371/journal.pone.0028025.g001

Drug Repositioning Based on Side-Effects
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for treating transplant patients. Methotrexate, an antineoplastic

drug lists CMV infections as a SE. As a dihydrofolic acid reductase

inhibitor, it is officially used as an antineoplastic, but has been

reported for the off-label use of preventing transplant rejection

[25].

DRoSEf suggests that drugs that list porphyria as an SE may act

as antidiabetics. In a study of 328 Swedish patients with porphyria,

the 16 patients that developed diabetes all had their porphyria

symptoms resolved [26]. Valproic acid, pyrazinamide, naproxen,

and estradiol all list porphyria as a SE but are not indicated for

diabetes. Valproic acid is an anticonvulsant and a recent study

found it effective in lowering blood glucose levels in Wfs1 knockout

mice [27]. Pyrazinamide is an anti-tuberculosis agent, and type II

diabetes is a known risk factor for tuberculosis [28]. In mice,

naproxen is used as a tool to delay or prevent the development of

type II diabetes from a pre-diabetic condition [29]. In a double-

blinded, randomized placebo controlled clinical trial on women

with type II diabetes, oral estradiol significantly decreased fasting

glucose [30].

Drugs that list delusions as a side effect may help with depression.

Cabergoline, an ergot derivative that causes delusions, is a

dopamine agonist that has an antidepressant-like property [31].

The dopamine receptor agonist pergolide has shown antidepres-

sant effects in Parkinson patients [32]. Hyperacusis is a medical

condition associated with hypersensitivity to certain frequency

ranges of sounds. Phenytoin is a known anticonvulsant with

hyperacusis as a listed side effect, and DRoSEf suggests a potential

utility for treating depression. In fact, a small clinical trial found

equivalent therapeutic effects between phenytoin and fluoxetine in

treating depression [33]. Modafinil is a drug for narcolepsy and is

also potentially effective in combination with fluoxetine to treat

depression [34].

Constitutional symptoms are a listed SE for many antineoplasm

drugs. An anti-HIV drug nevirapine also lists constitutional symptoms

as a SE. Nevirapine has previously been suggested as a treatment

for human hormone-refractory prostate carcinoma [35].

In fact, 27% of the ‘‘false positive’’ drugs-disease association

(Table S2) suggested by DRoSEf have at least one article in

PubMed of publication type ‘‘clinical trial’’ with the drug name

mentioned, and the disease a major subject heading for that

article. Still not all 3,175 associations have an obvious MOA

explanation based on current knowledge. We thus include all of

the associations in Table S1 and look forward to further

experiments, and analysis. Based on these 3,175 associations, we

built Naı̈ve Bayes models to predict the 145 indication endpoints

using their associated SEs as the features. The average AUCs of

10-fold cross validations for each of the 145 disease were

calculated using Weka [36]. 92% of the AUCs were above 0.8

(Table S3) suggesting that multiple SEs can be used to predict

indications.

Visualization of the disease-SE associations
Based on these 3,175 associations, a disease-SE network was

constructed (Fig. 1B). Diseases that share similar SEs tend to

cluster with each other. The diseases are grouped into three

clusters dominated by neuropsychiatric diseases (Fig. 1C),

circulatory system diseases, and neoplasms (Figure S1) as

visualized using Cytoscape [37]. The neuropsychiatric disease-

dominated cluster (Fig. 1C) shares SEs, such as tardive dyskinesia, an

involuntary movement SE associated with long term dosing or

high doses of antipsychotics [38]. Other SEs, such as priapism, a

painful medical condition in which the erect penis or clitoris does

not return to flaccid state [39], is also shared by four

neuropsychiatric diseases (Fig. 1D). For instance, the connection

between priapism and OCD suggests repositioning opportunities of

priapism compounds to OCD (Text S1).

DRoSEf for compounds in clinical trials
The prior analysis requires knowing the SEs from a drug’s label

before we predict new indications. For clinical candidates whose

SE information is unknown, we predicted their SEs based on the

compound structure and then predicted new indications based on

those SEs. We hypothesized that such a prediction ‘‘chain’’ would

provide mechanistic explanations of the compound’s new

indication based on the disease-SE association and the structural

information of the compound. We extracted all small molecules

from GenegoH MetaBase along with their disease indications [40].

This provided molecules in clinical trials in addition to the 888

SIDER drugs. These 4,200 molecules are indicated for at least one

of 101 diseases from the 145 disease set. MetaBase also uses MeSH

disease terms, thus making comparisons to the MeSH indications

from PharmGKB straightforward.

DRoSEf requires the side-effect profile for each molecule to

predict new indications. However, such information is difficult to

obtain for most of the 4,200 molecules because these are generally

clinical candidates without FDA approved drug labels, and have

little or no SEs published from their clinical trials in a standardized

way. Quantitative structure-activity relationship (QSAR) models

have been used to predict target binding of the ligand [41]. We

hypothesized that QSAR models could also be used to predict SEs.

We are mapping compound structure to possible SEs and then

onto a disease indication. For side effect j (SEj), we recruited the

positive set (w
pos
j , drugs listing SEj) and the negative set (wneg

j , drugs

not reported to induce SEj) from the 888 SIDER drug set

Table 1. Some of the associations from the disease-SE network.

Disease Class Disease Side Effect MCC sn sp p value
Predictions (False Positive
Drugs)a

Circulation System Stroke Positive ANA 0.46 0.47 0.98 1.8E-15 statins, ramipril

Other Transplantation Cytomegalovirus infection 0.75 0.75 0.99 3.5E-06 methotrexate

Metabolite disease Diabetes Mellitus Porphyria 0.44 0.50 0.98 8.8E-06 valproic acid, pyrazinamide,
naproxen, estradiol

Psychiatric disease Depressive Disorder Delusions 0.46 1.00 0.91 1.1E-08 cabergoline, memantine, pergolide

Psychiatric disease Depressive Disorder Hyperacusis 0.55 0.88 0.96 9.0E-09 phenytoin, modafinil

Neoplasms Neoplasms Constitutional symptoms 0.50 0.56 0.94 2.6E-18 nevirapine

aDrugs not listed treating disease (2nd column) but listed the SE (3rd column).
doi:10.1371/journal.pone.0028025.t001

Drug Repositioning Based on Side-Effects
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(Fig. 2A). For 566 of the 584 SEs, we successfully trained QSAR

models (18 of them failed). Then we used these 566 QSAR models

to predict the SEs of 4,200 molecules from MetaBase (Fig. 2B,

Methods S1).

The ROC curves of the prediction performance for 101

disease endpoints are shown in Figure S2, and their AUCs are

summarized in Table S4. Some of the disease endpoints had

only a few positive drugs from the MetaBase set, and their AUC

value might not accurately reflect the true performance. We,

therefore, focus on the diseases that have more than 30

compounds with that specific indication in MetaBase. Table 2
lists the diseases with AUC greater than 0.70. We then

evaluated the extent of the structure similarity information that

contributed to these performances. In fact, if we do not use the

SE information at all and rely only on chemical structure, only

18% of the 101 disease endpoints achieve AUCs above 0.7

(Table S4), while using DRoSEf 36% of disease endpoints had

AUCs above 0.7. Moreover, 74% of endpoints achieved higher

AUC than using chemical structural information alone. Only

22% of the variance in the AUCs of DRoSEf was explained by

chemical structure across the 101 endpoints. This again

indicates that the side effect intermediate is adding value to

the prediction.

Case study of clinical molecules predicted to treat
hypertension

MetaBase includes 203 molecules indicated for hypertension.

However, there are additional molecules that have not yet been

reported to treat hypertension that achieved a relatively high H
score based on SEs (corresponding to the rightmost part of the

blue line in Fig. 3A). There are 12 SEs linked to hypertension that

meet our criteria from DRoSEf. The structure of some of the

molecules with the highest H and their predicted relationships

with the 12 hypertension-associated SEs are visualized in Fig. 3C.

Many of the SEs are physiologically linked to hypertension and the

MOA for some of the SEs matched published studies. Postural

hypotension is an obvious SE that might suggest hypertension as an

indication as it is the sudden drop in blood pressure that may

occur when a person stands up. Drugs causing this SE should at

least be considered and evaluated for treating hypertension

provided the effect can be controlled with formulation and dosing.

Nine of the top 10 molecules predicted to effect hypertension from

MetaBase are also predicted to induce postural hypotension, which is

perhaps a relevant clinical phenotypic screen for hypertension and

adds direct evidence for potential repositioning (Fig. 3C).

pemphigus is reported to be induced by angiotensin-converting

enzyme (ACE) inhibitors [42], and cold extremities is antihyperten-

Figure 2. A schematic figure of mapping drug structure to side effect and then onto a disease indication. a) Train the 566 SE models.
For SEj, the w

pos
j (+) and wneg

j (2) were recruited from 888 SIDER molecules. b) The diseasei-moleculek association (Hik) was calculated as the dot
product value of the disease-SE association vector (DS) and SE-molecule association vector (SM). The binary SE-molecule (SM) association was
calculated from QSAR models. The width of the colored lines indicates the weights of the disease-SE associations. As an example, Hi2 is more than Hi1

as the association of side effect j in green to disease i is stronger.
doi:10.1371/journal.pone.0028025.g002
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sives especially by b-adrenergic blockers [43]. These associations

could be further confirmed in SIDER dataset, where ACE

inhibitors were significantly enriched in drugs listing pemphigus

(p = 5.7E-10) and b-blockers were associated with cold extremities

(p = 4.5E-6). In our prediction results, we also found that ACE

inhibitors are significant enriched in the drugs predicted as

pemphigus positive (Fisher’s exact p = 1.4E-3); whereas b-adrenergic

blockers have significantly higher frequency in drugs predicted as

cold extremities positive (p = 0.02). Claudication or peripheral artery

disease, which includes narrowing and hardening of the arteries, is

a SE associated with hypertension treatment. A case report

demonstrated that reduction in blood pressure could worsen

intermittent claudication [44]. Sinus arrest can be induced by

antihypertensives [45]. ‘Sexual dysfunction’ is a known complica-

tion of some antihypertensive drug therapy and has been

associated with many of the antihypertensive agents [46].

Intracranial hypotension is the cause for arm pain from central

traction causing irritation of a cervical nerve [47]. However, we

did not identify obvious MOAs for the association of vasculitis,

tracheobronchitis and sialadenitis with the hypertension. In

summary, the exploration of the disease-specific SEs can provide

a more rational explanation for drug repositioning via under-

standing the known and unknown mechanism-of-action (MOA)

between the SEs and the drugs’ therapeutic effect.

As these are clinical molecules the amount of additional

published clinical data is limited, however there is still target

based validation for some of these molecules. Among the top

investigational molecules in Fig. 3C, glenvastatin is originally

indicated for hyperlipidemias. Studies have documented the effect

of statins on blood pressure [48]. Melagatran and ximelagatran are

thrombin inhibitors. Thrombin signaling was proved to be

involved in the vascular response to hypertension [49]. Muragli-

tazar is an agonist of PPARa and PPARc. PPARa stimulation

exerts a lowering effect in blood pressure [50]; whereas the SEs of

PPARc agonists usually include lowering of blood pressure [51].

ABT-770 is a metalloproteinase inhibitor, and the metalloprotei-

nase was reported to regulate blood pressure [52]. Blonanserin acts

as the antagonist of 5-HT2 receptor. A study demonstrated that

the increase in blood pressure is due to a stimulation of

postjunctional 5-HT2 receptors [53].

Discussion

This study proposes systematic drug repositioning based on the

rational association between diseases and SEs. We extracted 3,175

relationships between diseases and SEs. For some of the drug

repositioning opportunities, we found compelling published

clinical trials. However, there are many new indications which

have not been tested yet. We built Naı̈ve Bayes models to predict

indications for 145 diseases using the SEs as features. The AUC

was above 0.8 in 92% of these models. We also extended the

method to predict indications for 4,200 clinical molecules by

utilizing QSAR models for SE. These results suggest that clinical

pharmacologists should pay even more attention to the SEs

observed in clinical trials, as they may suggest additional

indications for their drugs based on understanding the connections

between SEs and the therapeutic effect of the drug.

Assaf et al [54] systematically predicted the indication for drugs

based on multiple properties of drugs and diseases. However, our

focus on utilizing clinical phenotypic information enables

interpretability and direct application of findings. The examples

discussed in this study are primarily for demonstrating the

principle of this methodology, but all of them may not necessarily

be effective or practical for repositioning. Other factors need to be

considered for practical use of this methodology, such as the

unmet medical need for the disease, the fraction of the population

showing the side effect, the CNS penetration of the molecule, and

whether the therapeutic effect is significant enough in comparison

to current treatments. Moreover the previous therapeutic effect

could now become a potential side effect as well, and will need to

be carefully considered in the risk benefit profile. But, hopefully, in

a few cases this could all be managed via choosing a suitable

formulation, dose, and the sub population.

The SEs have been used to predict drug targets [4]. DRoSEf

mimics a phenotypic clinical assay rather than the target based

Table 2. AUCs for disease indications based on predicting side effects from structure, and then using side effects to predict the
indication.

Disease category Diseasea
# of drugs with this
indication in clinical trial

# of SE features
associated with disease AUC

Neuropsychiatric Depression 72 87 0.82

Depressive Disorder 42 204 0.82

Schizophrenia 77 55 0.81

Depressive Disorder, Major 48 170 0.81

Anxiety Disorders 144 186 0.71

Neoplasms Stomach Neoplasms 49 4 0.77

Carcinoma, Non-Small-Cell Lung 73 10 0.76

Lung Neoplasms 59 30 0.74

Neoplasms 347 42 0.74

Lymphoma 28 4 0.72

Leukemia, Myeloid, Acute 30 20 0.71

Head and Neck Neoplasms 33 7 0.70

Others Hypertension 203 12 0.74

Diabetes Mellitus, Type 2 112 8 0.71

aOnly diseases with AUC.0.7 are shown.
doi:10.1371/journal.pone.0028025.t002
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assay. It has been reported that more first-in-class drugs have been

found using phenotypic screening than target-based approaches

between 1999 and 2008 [17]. Our study demonstrates that the

clinical phenotypic features work well in suggesting new

indications, and may even outperform in vitro assays or animal

models that face many translational challenges. In this study, we

did not consider the absolute frequency of the SEs or the relative

frequency or significance compared to placebo.

In SIDER, only 37.9% of the drug-SE pairs have frequency

information associated with them, thus to maximize the amount of

drugs covered we did not utilize frequency information. SEs with

higher frequencies like nausea and vomiting are usually described in

detail with frequency information and written in the drug label.

However, the frequencies for most of the informative SEs are

unknown. Some of the SEs in Table S1 are regarded to be rare,

but are still implicated in the pathogenesis of a particular disease.

In fact, they might expose an extreme phenotype. For example,

porphyria is a rare inherited disease [55]. Patients with this inherited

disease show a decrease in the risk of porphyria on becoming

diabetic [26,56]. This may suggest why antidiabetic drugs are

usually reported to worsen porphyria, but this may only affect

people with an inherited genetic mutation for porphyria, and this

subset of population may in theory act as the ‘‘model’’ for

screening anti-diabetes drugs, with porphyria as the screening

endpoint. Thus, a drug that increases porphyria in this sub

population with the mutation may well be a good diabetes drug

in a different larger population. So the off-phenotype of a drug on

a sub population might suggest its use for a broader population. In

addition to mimicking a human phenotypic screen to help fish out

positive candidates for repositioning, DRoSEf may also suggest the

unrecognized disease pathogenesis, such as studying porphyria may

lead to better understanding of the diabetes.

A limitation of DRoSEf is the number (888) of drugs with

available side effects. The models and accuracy would improve if

we were able to obtain side effects on a larger number of drugs.

Moreover, predictions of indications for 4,200 MetaBase drugs

would also be better if we had some side effect information from

their early stage clinical trials rather than relying on just their

structures. Even if we had to rely on structures for preclinical

molecules, it would help if the structure based side effect models

were trained on more than the 888 drugs from SIDER. The 888

molecules may not be representative in terms of structural

variability, and it is possible that some of the QSAR models are

over-fitted. Constructing a larger database of disease-SE associa-

Figure 3. Predict drugs’ repositioning potential for hypertension via DRoSEf. a) The distribution of the H score for the positive (red) and
negative (blue) set for hypertension. The molecules with high H score in negative set (red square bracket) were chosen as the candidates for treating
hypertension. b) The ROC curve of using H score to predict hypertension. The AUC is 0.74. c) Predicted relationships of the top molecules with the 12
SEs and the association of these SEs with the hypertension. The binary association among molecules and SEs is in grey lines. The association strength
between SE and disease is reflected in the color and the width of the edge. Postural hypotension is highlighted as the SE explicitly linked to
hypertension.
doi:10.1371/journal.pone.0028025.g003

Drug Repositioning Based on Side-Effects
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tions via mining the drug labels and additional literature should

improve accuracy and help reduce over-fitting. On the other

hand, the prediction performance could also be an underesti-

mate. Molecules that have not yet been reported to treat a

disease may well be capable of treating that disease, and in

many cases (the false positive drugs as shown in Table 1)

clinical trials have already shown a positive effect. These

molecules are classified as false positives currently, and this

decreases the computed AUC value. However, even with this

imperfect SE information and potentially underestimated

prediction performance, 36% of the disease endpoints achieved

AUCs higher than 0.7 (Table S3), which is generally higher

than the disease prediction performance using the QSAR model

alone. Although the reliability of the QSAR models needs to be

considered due to the limited number of drugs in the SIDER

set, the major aim of this study is not to demonstrate the power

of using the QSAR model, but to emphasize that the

performance of QSAR model is enhanced after incorporating

side-effect information.

Using multiple SEs features to predict the disease endpoint

could also improve sensitivity over individual features. Although

there are explicit individual disease-SE associations, not all of them

have sufficient prediction power. For instance, not all drugs

treating anemia list polycythemia as a SE, thus the sensitivity of this

feature is limited. The inclusion of multiple features could enhance

sensitivity. If a true positive is not recalled by an individual feature,

it may be suggested by other features. Thus better sensitivity could

be achieved if we had more SEs annotations or other phenotypic

terms from drug label. The emphasis on the sensitivity, however,

may affect specificity. To avoid this problem, all the SEs chosen for

the prediction have high specificity (sp.0.75, see Methods). The

false positives could be excluded further through testing on in vitro

and in vivo models.

DRoSEf provides numerous predictions based on the associa-

tion of the SE and the disease. It greatly benefits from the fact that

clinical side effects are human phenotypic data obviating

translation issues. The methodology for the first time offers the

possibility that the unfavorable side effects in a subpopulation can

themselves offer repositioning opportunities to positively impact a

broad range of patients.

Methods

Constructing the disease-side effect associations
The disease-SE associations were computed based on the

disease-drug association and drug-SE association, which were

extracted from PharmGKB and SIDER databases respectively.

PharmGKB uses MeSH term to describe diseases. For side effects

from SIDER, we only use them as present or absent in association

with a drug, and do not consider their frequencies explicitly, as

only 37.9% of the drugs had side effect frequencies associated with

them. Let true positive (tpij) be the number of drugs listing that are

indicated for disease i and list j as a SE; false positives (fpij) be the

number of drugs that are not indicated for disease i and list SE j;

true negatives (tnij) be the number of drugs that are not indicated

for disease i and do not list SE j; false negatives (fnij) be the number

of drugs that are indicated for i and do not list SE j. We calculated

the sensitivity (snij), specificity (spij) and Matthews correlation

coefficient or MCC (mccij) of using SE j to predict disease i using

the standard formulas below:

snij~tpij=(tpijzfnij),

spij~tnij=(fpijztnij),

mccij~(tpij tnij{fpij fnij)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(tpijzfpij)(tpijzfnij)(fnijztnij)(fpijztpij)

p
:

For binary variables, the MCC is the equivalent of a Pearson

correlation coefficient. The two-sided Fisher’s exact pij value was

also calculated. A disease-SE association was considered to be non-

informative, if (pijw0:05jmccijv0:15jspijv0:75jtpijv2). This

threshold provided 3,175 informative associations including 145

MeSH disease phenotypes and 584 SEs. The Fisher’s p value here

is a measure of the association but not an accurate estimation of

the type I error as it is not corrected using the false discovery rate.

The associations in Table 1 were selected based on the following

criteria: the MCC is among the top 150 of all 3,175 associations

and tpijw3. From these we manually picked a few associations

that had strong literature support. In Fig. 1, to enhance the

visibility of the network layout, the disease-SE relationships were

not visualized if

(pijw0:05jmccijv0:20jspijv0:80jtpijv2):

Training the prediction models for clinical compounds
We calculated several structural descriptors (logP, molecular

weight, number of hydrogen bond donors and acceptors, number

of rotatable bonds and SCFP6 fingerprint) for 888 SIDER drugs.

We tried to train 584 SE models with multiple Laplacian-modified

Bayesian method [41] using the features above. 566 SE models

were successfully trained.

Predict the disease endpoints for clinical molecules
based on SEs

We evaluated 5,534 clinical candidates and marketed drugs

from Genego MetaBase (as of Jan. 2011). MetaBase uses the

MeSH disease ontology for drug indications. We considered only

molecules that included SMILES strings, and further listed a

disease indication matching at least one of the 145 diseases from

the SIDER set, and we excluded molecules that were in the 888

SIDER drug set. This left us with 4,200 small molecules. These

molecules were assigned at least one of the 101 disease MeSH

term that match the 145 MeSH diseases.

The endpoint of our prediction is whether or not the compound

should be considered for a clinical trial for treating disease i just

based on side effect information. For each disease i, we computed

its side-effectome profile vector from the SIDER data,

DSi~½dsi1,dsi2,:::,dsij �, j[½1,566�, i[½1,101�,

where dsij quantifies the association of disease i and SE j. The

vectors were generated using seven different metrics, i.e.,

dsij[ bij ,mccij ,mcc4
ij ,snij ,sn4

ij ,spij ,sp4
ij

n o
,

where bij~0 if (pijw0:05jmccijv0:15jspijv0:75jtpijv2), else,

bij~1. We used the exponent four in an effort to enhance the

signal of the high MCC, sn or sp.
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For each molecule k without known SEs, we estimated its side-

effectome profile vector SMk by computing it using each of the

566 pre-trained SE QSAR models,

SMk~½sm1k,sm2k,:::,smjk�, j[½1,566�, k[½1,4200�,

where smjk~1 if the molecule k is predicted as possibly causing SE

j, else smjk~0. We calculate the association Hik between disease i

and molecule k as the dot product of the two vectors,

Hik~SDSij ,SMjkT~
X566

j~1

dsijsmjk

We compute Hik using each of the seven metrics, and for each

metric we further computed an AUC for each of the 101

endpoints. The metrics sn4
ij performed best among all metrics in

terms of the mean AUC across all 101 disease endpoints. Thus, the

AUC value in Table S4 is based on the sn4
ij metrics.
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