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Abstract

Candida albicans colonises numerous niches within humans and thus its success as a pathogen is dependent on its ability to
adapt to diverse growth environments within the host. Two component signal transduction is a common mechanism by
which bacteria respond to environmental stimuli and, although less common, two component-related pathways have also
been characterised in fungi. Here we report the identification and characterisation of a novel two component response
regulator protein in C. albicans which we have named CRR1 (Candida Response Regulator 1). Crr1 contains a receiver domain
characteristic of response regulator proteins, including the conserved aspartate that receives phosphate from an upstream
histidine kinase. Significantly, orthologues of CRR1 are present only in fungi belonging to the Candida CTG clade. Deletion of
the C. albicans CRR1 gene, or mutation of the predicted phospho-aspartate, causes increased sensitivity of cells to the
oxidising agent hydrogen peroxide. Crr1 is present in both the cytoplasm and nucleus, and this localisation is unaffected by
oxidative stress or mutation of the predicted phospho-aspartate. Furthermore, unlike the Ssk1 response regulator, Crr1 is
not required for the hydrogen peroxide-induced activation of the Hog1 stress-activated protein kinase pathway, or for the
virulence of C. albicans in a mouse model of systemic disease. Taken together, our data suggest that Crr1, a novel response
regulator restricted to the Candida CTG clade, regulates the response of C. albicans cells to hydrogen peroxide in a Hog1-
independent manner that requires the function of the conserved phospho-aspartate.
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Introduction

Two component signal transduction is a primary mechanism

utilised by bacteria to respond to environmental stimuli. These

signalling modules are comprised of a sensor histidine kinase and a

response regulator protein containing a receiver domain [1]. Upon

stimulation, phosphate is transferred from a histidine residue in the

kinase to an aspartate residue located in the receiver domain of the

response regulator protein. This phosphorylation influences the

activity of the response regulator protein to trigger the appropriate

response to the environmental stimulus. Two component-related

signal transduction mechanisms are also utilised, although less

extensively, in certain eukaryotes including fungi, slime mould

and plants [2]. Interestingly, in contrast to the bacterial systems,

a more complex multi-step phosphorelay involving three com-

ponents appears to predominate in eukaryotic systems. Such

eukaryotic pathways typically consist of a hybrid sensor histidine

kinase, containing both kinase and receiver domains, an

intermediary phosphorelay protein and a response regulator

protein containing a receiver domain. In these cases phosphate

is transferred from a histidine residue in the kinase domain to an

aspartate residue located in the receiver domain of the histidine

kinase. This phosphate is then transferred to a histidine residue in

the phosphorelay protein which then completes transfer to an

aspartate residue in the receiver domain of the response regulator.

A function unique to eukaryotic two component-related signalling

pathways is to relay stress signals to stress-activated protein kinase

(SAPK) pathways, which are important stress signalling modules

solely found in eukaryotes [3]. In the model yeast Saccharomyces

cerevisiae, osmotic stress-induced activation of the Hog1 SAPK is

regulated by a multi-step two component-related system consisting of

the Sln1 histidine kinase, the Ypd1 phosphorelay protein and the

Ssk1 response regulator, which functions in parallel with a second

pathway that contains the Sho1 transmembrane protein [4]. In

response to osmotic stress, the Sln1 histidine kinase is inactivated

due to loss of turgor pressure within the membrane [5]. This

subsequently halts phosphorelay through Ypd1 leading to a rapid

dephosphorylation of Ssk1 [6]. Dephosphorylated Ssk1 activates the

MAPKKKs Ssk2/Ssk22 [7], which subsequently activate Hog1.

Interestingly, in the distantly related yeast Schizosaccharomyces pombe,
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an analogous system comprising of the histidine kinases, Mak2

(Phk1) and Mak3 (Phk2) [8,9], the phosphorelay protein Mpr1

(Spy1) [10] and the response regulator Mcs4 [8], functions to relay

hydrogen peroxide, but not osmotic, stress signals to the Hog1-

related Sty1 (Spc1) SAPK pathway. Peroxide sensing by the S. pombe

two component-related pathway is mediated by GAF and PAS

domains present in the Mak2 and Mak3 kinases [9].

In addition to Ssk1/Mcs4, S. cerevisiae and S. pombe both contain

a second response regulator protein termed Skn7 [11] and its

homologue Prr1 [12], respectively. However, unlike Ssk1/Mcs4,

the Skn7 and Prr1 response regulators are transcription factors that

do not regulate the Hog1/Sty1 SAPK pathways. In S. cerevisiae,

Skn7 regulates the expression of genes involved in the cell wall and

the oxidative stress response [13,14] yet, interestingly, two

component-mediated phosphorylation of Skn7 is only required

for the cell wall functions of this transcription factor [13,14].

In contrast, recent studies illustrated that Prr1 is required for

the transcriptional response of S. pombe cells to a wide range of

hydrogen peroxide concentrations [9,15] and that two compo-

nent-mediated phosphorylation of Prr1 is required for the response

to high but not low levels of hydrogen peroxide [9].

Two component proteins, related to those in S. cerevisiae and

S. pombe, have also been identified in the major fungal pathogen

of humans, Candida albicans [16]. Stress responses are inti-

mately linked with the virulence of this medically important

fungus [17], and notably several of these two component proteins

have been implicated in pathogenesis [16]. C. albicans contains three

structurally distinct histidine kinases; Sln1 is most similar to the Sln1

osmosensor in S. cerevisiae [18], Chk1 is the closest homologue of the

Mak2 and Mak3 hydrogen peroxide stress sensors in S. pombe [19],

and Nik1/Cos1 is related to the Nik-1 histidine kinase in Neurospora

crassa [18,20,21]. C. albicans also contains a single phosphorelay

protein, Ypd1 [22], and homologues of the Ssk1 and Skn7 response

regulators [23,24]. Indeed, similar to Ssk1 and Mcs4 in S. cerevisiae

and S. pombe, respectively, Ssk1 is important for the regulation of the

Hog1 SAPK in C. albicans. Specifically, Ssk1 is required for efficient

oxidative stress-induced activation of Hog1 in C. albicans [25,26],

which is reminiscent of Mcs4 regulation of the Sty1 SAPK in S.

pombe. However, the identity of the histidine kinase(s) responsible for

sensing and signalling oxidative stress signals to Ssk1 in C. albicans

remains elusive [27,28]. C. albicans also contains Skn7, a homologue

of the Skn7/Prr1 response regulators in S. cerevisiae and S. pombe and,

similar to findings in these model yeasts, C. albicans cells lacking Skn7

display impaired resistance to oxidative stress-inducing agents [24].

Here, we describe the identification and characterisation of a

novel response regulator in C. albicans, which we name Crr1

(Candida Response Regulator 1), that is not conserved in S. cerevisiae

or S. pombe. We demonstrate that Crr1 is specifically involved in

the response of C. albicans to hydrogen peroxide stress, but not to

other oxidising agents or a range of other stress conditions.

Furthermore, our data suggests that Crr1 functions in a Hog1-

independent pathway and that the role of the protein in hydrogen

peroxide responses is regulated by the phosphorylation of the

conserved aspartic acid residue within the receiver domain.

Collectively, our data suggests that the novel response regulator

protein Crr1 functions in a hitherto unidentified two component

signal transduction pathway to specifically regulate the response of

C. albicans to hydrogen peroxide.

Materials and Methods

Ethics statement
The animal experiments carried out were approved by the

University of Aberdeen local ethical review committee and under

Project Licence PPL 60/4135, granted by the UK Home Office.

All work conformed to UK Home Office regulations.

Strains and growth conditions
The C. albicans strains used in this study are listed in Table 1.

Cells were grown at 30uC in either YPD media (2% yeast extract,

1% bactopeptone, 2% glucose) or SD media (6.79 g/l yeast

nitrogen base without amino acids, 2% glucose) supplemented

with the required nutrients for auxotrophic mutants [29].

Strain construction
The oligonucleotide primers used for generating the constructs

described below are listed in Table 2.

Deletion of CRR1. The CRR1 locus was disrupted by Ura-

blasting [30] in RM1000 to generate strain JC528 (crr1D). The

crr1::hisG-URA3-hisG disruption cassette deleted codons 2–281 of

the 282 codon predicted open reading frame. Gene disruptions

were confirmed by PCR. To construct re-integrant control strains

the CRR1 gene plus 1000 bp of the promoter region and 214 bp

of the terminator region were amplified by PCR, using the

oligonucleotide primers CRR1PromF and CRR1TermR, and

ligated into the BamHI site of CIp20 to create Clp20-CRR1 [31].

The CIp20-CRR1 plasmid was digested with StuI and integrated

at the RPS10 locus in the crr1D mutant to generate strains JC803

and JC804. To generate a crr1D deletion mutant that was

auxotrophically identical to the reconstituted strain, the CIp20

vector was integrated at the RPS10 locus in the crr1D mutant to

generate strain JC566. CRR1 was also deleted in a second strain

background, SN148 [32]. CRR1 disruption cassettes, comprising

either the ARG4 gene or the HIS1 gene flanked by loxP sites and

100 nucleotides corresponding to regions 59 and 39 of the CRR1

open reading frame, were generated by PCR using the

oligonucleotide primers CRR1delF and CRR1delR and the

plasmid templates pLAL2 or pLHL2 [33], respectively. These

CRR1 disruption cassettes replaced the entire 282 codon open

reading frame of CRR1. To construct the re-integrant control

strain, the CIp20-CRR1 plasmid was digested with StuI as above

and integrated at the RPS10 locus in the crr1D mutant (JC1571) to

generate strain JC1574. As above, a crr1D deletion mutant that

was auxotrophically identical to the reconstituted strain was

generated by integrating the CIp20 vector at the RPS10 locus in

the crr1D mutant to generate strain JC1572.

Deletion of SSK1. SSK1 disruption cassettes, comprising

either the URA3 gene or HIS1 gene flanked by loxP sites and

100 nucleotides of DNA sequence corresponding to regions 59 and

39 of the SSK1 open reading frame, were generated by PCR using

the oligonucleotide primers SSK1delF and SSK1delR, and the

plasmid templates pLUL2 or pLHL2, respectively [33]. These

SSK1 disruption cassettes, which deleted the entire 674 codon open

reading frame, were sequentially introduced into C. albicans

RM1000 (CRR1) or crr1D (JC528) cells to disrupt both alleles of

SSK1 and generate strains JC784 and JC787, respectively. Gene

disruptions were confirmed by PCR. SSK1 was also deleted in a

second strain background, SN148 [32]. SSK1 disruption cassettes,

comprising either the ARG4 gene or the HIS1 gene flanked by loxP

sites and 100 nucleotides corresponding to regions 59 and 39 of the

SSK1 open reading frame, were generated by PCR using the

oligonucleotide primers SSK1delF and SSK1delR and the plasmid

templates pLAL2 or pLHL2 [33], respectively. The CIp20 vector

was integrated at the RPS10 locus in the resulting ssk1D mutant to

generate strain JC1552.

GFP-tagging and mutagenesis of Crr1. To tag Crr1 at the

C-terminus with GFP, the CRR1 gene was amplified by PCR using the

oligonucleotide primers CRR1HindIIIF and CRR1GFPHindIIIR,

Crr1 Response Regulator in Candida albicans
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and ligated into the HindIII site adjacent to the GFP sequence in

pACT1-GFP [34] to create pACT1-CRR1GFP. The pACT1-

CRR1GFP plasmid was linearised by digestion with StuI to target

integration at the RPS10 locus in C. albicans crr1::hisG/crr1::hisG

(JC528) and crr1::HIS1/crr1::ARG4 (JC1571) cells. In the resulting

strains, JC924 and JC1576 respectively, expression of CRR1GFP is

controlled by the ACT1 promoter. Mutagenesis of CRR1 to create

the crr1D209N allele was performed by a two-stage PCR in which a

mega primer, generated using the oligonucleotides CRR1DNmutF

and CRR1MHR and the plasmid CIp10-CRR1 as template, was

subsequently used with the oligonucleotide CRR1PstIF and the

plasmid CIp10-CRR1 as template. The resulting 1.2 kb PCR

fragment was digested with PstI and NheI and ligated into CIp-C-ZZ

[35] digested with PstI and NheI to remove the TEV-protein A-

encoding sequence. The resulting plasmid CIp-CRR1(D209N) was

used as template for PCR, using the oligonucleotide primers

CRR1HindIIIF and CRR1GFPHindIIIR, and the PCR fragment

produced was then ligated into the HindIII site of pACT1-GFP as

above. The resulting pACT1-CRR1(D209N)GFP plasmid was

linearised and targeted to the RPS10 locus in C. albicans crr1::hisG/

crr1::hisG (JC528) and crr1::HIS1/crr1::ARG4 (JC1571) cells, as

described above, to generate strains JC926 and JC1578,

Table 2. Oligonucleotides used in this study.

Name Sequence 59 to 39

CRR1PromF gcgcggatccgcgaaagttcacagttattgtg

CRR1TermR gcgcggatcctataaacacgacaaacctccttgg

CRR1delF aaattgcctccccctgttgcaagtaatttttcctcctttttttttgatttgtatatttttacaaccaataagttattattgaattcattgtacacactaaccagggttttcccagtcacg

CRR1delR aaacatcgtagaacaacgtagaaacaaccataaaccattcaaagaaacaagatacaaaacaaaaatataagtcaaacaaaaaacccgctctgaatgcatctcactaaagggaacaaaagc

SSK1delF ctaggggaaccaaaaaaaaaaatattaaaaataaccaagaaagaaataaagaaacaagaattctgcttataaaacgaatataaaaaaaaaataataactcccagggttttcccagtcacg

SSK1delR aattttatcaatcattaaaagcaaaaactgaaaaaaaccgaaaacctaatttattccaacgactcatcttagtggcatttcataaatccgtttttttcttctcactaaagggaacaaaagc

CRR1HindIIIF cggcccaagcttatgatatccatgaacccaattatg

CRR1GFPHindIIIR cggcccaagcttgctattttgttttttcttg

CRR1DNmutF cattccatatttatcaacattgagatgcctgatg

CRR1MHR gaattcgctagcttaatgatggtgatgatggtgaagtcctcctcgctgatcaatttttgttcttcagccatggacaaatcttcttcagaaattaacttttgctcctctattttgttttttcttgttataattatatc

CRR1PstIF aatgtctgcagccatcaatcggtatataatttggaag

doi:10.1371/journal.pone.0027979.t002

Table 1. Strains used in this study.

Strain Genotype Source

RM1000 ura3::l imm434/ura3::limm434, his1::hisG/his1::hisG [51]

JC50 RM1000 hog1::LoxP-ura3-LoxP, hog1::LoxP-HIS1-LoxP+CIp20 [36]

JC52 RM1000 hog1::LoxP-ura3-LoxP, hog1::LoxP-HIS1-LoxP+CIp20-HOG1 [36]

JC806 RM1000+CIp20 This study

JC528 RM1000 crr1::hisG/crr1::hisG This study

JC566 RM1000 crr1::hisG/crr1::hisG+CIp20 This study

JC803 RM1000 crr1::hisG/crr1::hisG+CIp20-CRR1 This study

JC804 RM1000 crr1::hisG/crr1::hisG+CIp20-CRR1 This study

JC784 RM1000 ssk1::LoxP-URA3-LoxP/ssk1::LoxP-HIS1-LoxP This study

JC787 RM1000 crr1::hisG/crr1::hisG, ssk1::LoxP-URA3-LoxP/ssk1::LoxP-HIS1-LoxP This study

JC924 RM1000 crr1::hisG/crr1::hisG+pACT1-CRR1GFP This study

JC926 RM1000 crr1::hisG/crr1::hisG+pACT1-CRR1(D209N)GFP This study

SN148 arg4D/arg4D leu2D/leu2D his1D/his1D ura3D::imm434/ura3D::imm434 iro1D::imm434/iro1D::imm434 [32]

JC747 SN148+CIp30 [52]

JC1552 SN148 ssk1::LoxP-ARG4 -LoxP/ssk1::LoxP-HIS1-LoxP+CIp20 This study

JC1571 SN148 crr1::LoxP-ARG4 -LoxP/crr1::LoxP-HIS1-LoxP This study

JC1572 SN148 crr1::LoxP-ARG4 -LoxP/crr1::LoxP-HIS1-LoxP+CIp20 This study

JC1574 SN148 crr1::LoxP-ARG4 -LoxP/crr1::LoxP-HIS1-LoxP+CIp20-CRR1 This study

JC1576 SN148 crr1::LoxP-ARG4 -LoxP/crr1::LoxP-HIS1-LoxP+pACT1-CRR1GFP This study

JC1578 SN148 crr1::LoxP-ARG4 -LoxP/crr1::LoxP-HIS1-LoxP+pACT1-CRR1(D209N)GFP This study

doi:10.1371/journal.pone.0027979.t001
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respectively. The integrated open reading frames and the correct

chromosomal insertion of the GFP-tagged derivatives of CRR1 were

confirmed by PCR and DNA sequencing.

Stress sensitivity tests
C. albicans strains to be tested were grown in liquid culture at

30uC to exponential phase and then 10 fold serial dilutions were

spotted onto YPD plates containing the indicated compounds,

using a 48-well replica plater (Sigma-Aldrich). Plates were

incubated at 30uC for 24 h.

Hog1 phosphorylation assays
Cells were grown to mid-exponential phase at 30uC and

exposed to either 5 mM hydrogen peroxide or 1 M NaCl for the

indicated times. Protein extracts were prepared and phosphory-

lated Hog1 was detected by western blot with an anti-phospho-p38

antibody (New England Biolabs) as described previously [36].

Blots were stripped and total levels of Hog1 were determined by

probing with an anti-Hog1 antibody (Santa Cruz Biotechnology).

Microscopy
Cells were fixed in 3.7% para-formaldehyde, washed in PEM

(100 mM PIPES pH 7.6, 1 mM EGTA, 1 mM MgSO4) and

spread onto poly-L-lysine-coated slides as described previously

[36]. Cover slips were mounted onto slides using Vectashield

mounting medium containing DAPI (Vector Laboratories,

Burlingame, CA). DAPI and GFP fluorescence were captured by

exciting cells with 365 nm and 450–490 nm wavelengths,

respectively, using a Zeiss Axioscope microscope, with a 636 oil

immersion objective, and Axiovision imaging system.

Virulence analysis
The standard 28-day survival method was employed to examine

the potential role of Crr1 in mediating C. albicans virulence.

Female BALB/c mice (6–8 weeks; Harlan, UK) were housed in

groups of 6 with food and water provided ad libitum. C. albicans

strains RM1000+CIp20 (JC806), crr1D+CIp20 (JC566), and

crr1D+CIp20-CRR1 (JC803), were grown in NGY medium (0.1%

neopeptone, 0.4% glucose, 0.1% yeast extract) for 18 h at 30uC
with constant agitation. Cells were harvested in sterile saline,

washed twice, and resuspended to produce inoculants containing

approximately 2.56106 cfu/ml. Mice were injected with 100 ml of

each strain, with inoculants ranging from 1.2–1.46104 cfu/g

mouse body weight. All experimental work was carried out under

UK Home Office licence regulations and conformed to the

requirements of the Ethical Review Committee of the University

of Aberdeen. Mouse condition and weight were monitored daily,

with mice culled either when they showed signs of severe infection

or if weight decreased by more than 20% from the initial body

weight. For all culled mice, death was recorded as occurring on the

following day. At the time of death, the left kidney and spleen were

aseptically removed and homogenised in saline for organ burden

determination. Mouse survival was plotted and compared by

Kaplan-Meier survival plots and kidney/spleen counts compared

by Kruskall-Wallis non-parametric test.

Results

Identification of a novel response regulator in C. albicans
To shed more insight into the roles of two component signal

transduction pathways in C. albicans we analysed the genome

database (http://www.candidagenome.org/) for potential hitherto

unidentified two component signal transduction proteins. This

analysis revealed an uncharacterised open reading frame

(orf19.5843) in C. albicans which we have named CRR1 (Candida

Response Regulator 1), that encodes a potential novel two

component response regulator protein. Analysis of the predicted

sequence of Crr1 revealed a potential receiver domain, that

contains all the key residues found in such domains, including two

highly conserved aspartate residues, one of which receives

phosphate from an upstream histidine kinase, and a highly

conserved lysine residue (Fig. 1A, indicated in red bold).

Moreover, the similarity of the potential receiver domain of

Crr1 to the prototypical bacterial response regulator CheY,

extends to a large number of hydrophobic residues that are

components of the hydrophobic core of CheY (Fig. 1A, indicated

in grey shading; [37]). Interestingly, homologues of Crr1 are not

found in either of the well characterised model yeasts, S. cerevisiae

or S. pombe. Indeed, the only closely related homologues of Crr1

are encoded by uncharacterised open reading frames present in

other members of the Candida CTG clade [38] (Figs. 1B; S1).

Moreover, it is noteworthy that the homology to Crr1 extends

outside of the receiver domain only in the diploid members of the

Candida CTG clade [38]; Candida dubliniensis, Candida tropicalis,

Candida parapsilosis and Lodderomyces elongisporus (Fig. 1B and data

not shown), whereas significant homology is restricted to the

receiver domain in members of the haploid subclade [38];

Debaromyces hansenii, Candida guilliermondii and Candida lusitaniae

(Fig. S1). It is also interesting to note that sequence analysis of the

proteins in the haploid subclade did not reveal any obvious

homology outside of the potential receiver domain within this

subgroup of proteins (Fig. S1B). Taken together our analysis has

revealed a novel family of response regulator proteins that appears

to be confined to the Candida CTGclade.

Crr1 is required for hydrogen peroxide resistance in
C. albicans

To examine the function(s) of Crr1 in C. albicans, a homozygous

null mutant was generated. Each of the two copies of the CRR1

allele in this diploid fungus was inactivated using the ura-blaster

gene disruption system, which deleted codons 2–281 of the

predicted 282 codon reading frame in strain RM1000. Previous

studies in C. albicans have implicated the other response regulator

proteins, Ssk1 and Skn7, in the oxidative stress response. For

example, cells lacking SSK1 display increased sensitivity to a range

of oxidative stress-inducing agents including hydrogen peroxide,

menadione and potassium superoxide [25], whilst cells lacking

SKN7 display increased sensitivity to hydrogen peroxide and t-

BOOH but not to menadione or potassium superoxide [24].

Hence, to examine the potential role of Crr1 in the response of C.

albicans to oxidative and other stress conditions, we compared the

sensitivity of wild-type, crr1D, and reintegrant (crr1D+CRR1) cells

to an extensive panel of stress-inducing agents (Fig. 2). Deletion of

CRR1 did not impair the growth of C. albicans under non-stress

conditions. Notably, however, deletion of CRR1 specifically

resulted in impaired resistance to the oxidative stress-inducing

agent hydrogen peroxide and, importantly, this phenotype was

reversed upon reintroduction of the wild-type CRR1 gene into the

crr1D strain (Fig. 2). In contrast, no notable increase in stress

sensitivity was observed in response to other oxidative stress-

inducing agents, such as menadione, a variety of osmotic stress-

inducing agents, such as NaCl, KCl or sorbitol, heavy metals such

as cadmium or arsenic, caffeine, or antifungal drugs such as

fluconazole or nystatin (Fig. 2). Deletion of CRR1 in the SN148

[32] background replicated such findings (Fig. S2A).

In C. albicans the Hog1 SAPK is activated in response to a range

of stress conditions, including hydrogen peroxide and, moreover,

the Ssk1 response regulator plays an important role in the relay of

Crr1 Response Regulator in Candida albicans
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hydrogen peroxide signals to Hog1 [25,26,28]. In S. cerevisiae, the

analogous Ssk1 response regulator has been shown to relay

osmotic, but not oxidative, stress signals to the Hog1 SAPK and it

does this in parallel with a second, Sho1-mediated, osmosensing

pathway (reviewed in [4]). Intriguingly, although the analogous

Sho1 pathway does not appear to relay osmotic stress signals to

Hog1 in C. albicans [28], both C. albicans single ssk1D or double

ssk1Dsho1D mutants retain wild-type levels of Hog1 activation

following osmotic stress [25,28]. Thus, there is a distinct

mechanism of Hog1 activation in response to osmotic stress in

C. albicans that is independent of both Sho1 and Ssk1. The

identification of Crr1 raised the possibility that this novel response

regulator functions redundantly with Ssk1 to relay osmotic and

possibly other stress signals to the Hog1 SAPK. To investigate this

hypothesis, first a double ssk1Dcrr1D mutant was created and the

stress sensitive phenotypes exhibited by ssk1D, crr1D, ssk1Dcrr1D
and hog1D mutants compared. Significantly, the single ssk1D and

crr1D mutants displayed a similar level of sensitivity to hydrogen

peroxide, intermediate to that displayed by hog1D cells, and this

was not further increased in the double ssk1Dcrr1D mutant (Fig. 2).

Cells lacking SSK1 also displayed intermediate sensitivity to a

range of other stress conditions such as the superoxide generator

menadione, heavy metals, SDS and various drugs compared to

that exhibited by hog1D cells (Fig. 2). However, deletion of CRR1

did not result in increased sensitivity to any of these conditions

either in the presence or absence of SSK1 (Fig. 2). Similarly, whilst

deletion of SSK1 increased the resistance of cells to cell wall

damaging agents as previously reported [39], such as the cell wall

biogenesis inhibitors Calcofluor White and Congo Red, this was

not exacerbated in the ssk1Dcrr1D double mutant (Fig. 2).

Collectively, these data suggest that, although Ssk1 is involved in

the response to multiple stress conditions, Crr1 is specifically

required for the response of cells to hydrogen peroxide.

Ssk1, but not Crr1, regulates Hog1 phosphorylation in
response to hydrogen peroxide but both response
regulators are dispensable for NaCl-induced Hog1
phosphorylation

As cells lacking the Crr1 response regulator displayed increased

sensitivity to hydrogen peroxide, in a manner that links the protein

to Ssk1 function, we next examined whether, like Ssk1 [25], Crr1

relays oxidative stress signals to the Hog1 SAPK. Consistent with

previous reports [25,28], western blot analysis revealed that

hydrogen peroxide-induced activation of the Hog1 SAPK was

impaired in cells lacking Ssk1 (Fig. 3). However, in contrast, wild-

Figure 1. Sequence analysis of the response regulator protein Crr1 in C. albicans and identification of homologues in other diploid
members of the Candida CTG clade. (A) Clustal alignment of the receiver domain located in the C-terminal region of Crr1 (orf19.5843) of
C. albicans (CaCrr1) and the CheY response regulator protein of Escherichia coli which essentially consists of a receiver domain. Residues that are
identical between the receiver domains are indicated by bold, the aspartate and lysine residues conserved in all receiver domains are shown in red
bold, and the aspartate residue which is predicted to be phosphorylated by two component signal transduction by a bold red ‘‘P’’. Hydrophobic
residues that are components of the hydrophobic core of CheY are indicated by grey shading. Note that the homology between the receiver domains
extends to the replacement of amino acids with others with similar chemical properties. A colon indicates a highly similar substitution and a full stop
a similar substitution. (B) Clustal alignment of potential Crr1 homologues in C. albicans (CaCrr1), C. dubliniensis (CD36_30940; CdCrr1), C. tropicalis
(CTRG_00590; CtCrr1), and C. parapsilosis (CPAG_04104; CpCrr1). Residues shared by all four proteins are highlighted as described in (A) above. Two
conserved regions were identified (green bold) that lie N-terminal to the potential receiver domain in each protein. The predicted protein sequences
of the Crr1 homologues in the diploid members of the Candida CTG clade were obtained by BLAST analyses at the C. albicans genome web site
(http://candidagenome.org/).
doi:10.1371/journal.pone.0027979.g001
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type levels of hydrogen peroxide-induced Hog1 phosphorylation

were observed in crr1D cells (Figs. 3; S2B), and the level of

hydrogen peroxide-induced Hog1 activation associated with loss of

SSK1 was not further impaired in ssk1Dcrr1D double mutant cells

(Fig. 3). Furthermore, consistent with the wild-type levels of

osmotic stress resistance exhibited by ssk1D, crr1D and ssk1Dcrr1D
cells (Figs. 2; S2A), Hog1 activation was not impaired in any of

these mutants following NaCl treatment (Figs. 3; S2B).

Taken together, our data show that, whilst both response

regulators Ssk1 and Crr1 are important for the oxidative stress

response in C. albicans, Crr1 influences the response of cells to

hydrogen peroxide in a pathway that is independent of Hog1

phosphorylation. Moreover, together with the observations that

ssk1Dcrr1D cells display wild-type levels of osmotic stress resistance

and osmotic stress-induced Hog1 activation, these data suggest

that Ssk1 and Crr1 do not function redundantly to regulate Hog1

activation in response to osmotic stress.

Mutation of the putative phospho-aspartate of Crr1 does
not impact on the cellular localisation of Crr1, but does
result in impaired resistance to hydrogen peroxide

Previous studies in the model yeasts S. cerevisiae and S. pombe

revealed that, whilst the Ssk1/Mcs4 response regulators are

cytoplasmic [9,40], the Skn7/Prr1 response regulator transcription

factors are predominantly nuclear [9,40]. Hence, to further

characterise the novel response regulator Crr1 in C. albicans the

cellular location of a Crr1-GFP fusion protein was determined by

fluorescence microscopy. To facilitate this analysis a strain was

created in which a CRR1-GFP fusion gene was expressed from the

ACT1 promoter. This was necessary as previous experiments using

Figure 2. The Crr1 response regulator is required for the resistance of cells to hydrogen peroxide. 26103 cells, and 10-fold dilutions
thereof, of exponentially-growing wild-type (WT, JC806), crr1D (JC566), crr1D+CRR1 (JC803, JC804), ssk1D (JC784), ssk1D/crr1D (JC787), hog1D (JC50)
and hog1D+HOG1 (JC52) strains were spotted onto YPD plates containing the following agents; hydrogen peroxide (2, 2.5, 3, 3.5 mM), 250 mM
menadione, 2.5 mM Na arsenite, NaCl (0.5, 1.0 M), sorbitol (1.0, 1.2 M), 0.6 M KCl, 12.5 mM caffeine, 1 mM cadmium, 5 mg/ml fluconazole, 5 mg/ml
nystatin, 0.02% SDS, 50 mg/ml Calcofluor White and 200 mg/ml Congo Red. Plates were incubated at 30uC for 24 h.
doi:10.1371/journal.pone.0027979.g002
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epitope-tagged Crr1-fusions expressed at the CRR1 locus,

indicated that Crr1 is a very low abundance protein (unpublished

obs.). In addition, to investigate whether two component-mediated

phosphorylation of Crr1 may impact on either the localisation

and/or function of this response regulator, the conserved aspartic

acid (D209) residue located in the receiver domain, that is

predicted to be phosphorylated by two component phosphorelay

(Fig. 1) was substituted with asparagine (Crr1D/N) which is

predicted to mimic hypo-phosphorylation [41]. The Crr1-GFP

and Crr1D/N-GFP fusion proteins were found to be present in

both the cytoplasmic and nuclear compartments of the cell, with

no obvious nuclear or cytoplasmic exclusion (Fig. 4A). Further-

more, treatment of cells with hydrogen peroxide did not alter this

diffuse cellular localisation pattern (Fig. 4A). Thus, Crr1 has a

distinct cellular localisation pattern to that previously documented

for the Ssk1/Mcs4 and Skn7/Prr1 response regulators in S.

cerevisiae and S. pombe and, moreover, this pattern is not affected by

oxidative stress or mutation of the predicted phospho-aspartate

residue.

To further investigate whether two component-mediated

phosphorylation of Crr1 is important for the function of the

protein, the hydrogen peroxide sensitivities of crr1D cells expressing

either Crr1-GFP or Crr1D/N-GFP were compared. Strikingly, cells

expressing Crr1D/N-GFP were found to be reproducibly more

sensitive to hydrogen peroxide than the isogenic ‘wild-type’ cells

expressing Crr1-GFP and, moreover, displayed similar sensitivity to

crr1D cells (compare Figs. 2 and 4B). This phenotype associated with

Crr1D/N-GFP was replicated in SN148 cells (Fig. S2C). Based on

the mutational analyses of other two component signal transduction

proteins in bacteria and fungi these results strongly suggest that two

component-mediated phosphorylation of Crr1 is important for the

function of the protein in contributing to hydrogen peroxide

resistance in C. albicans.

Crr1 is not required for C. albicans virulence
As shown above, Crr1 is required for wild-type levels of

oxidative stress resistance in C. albicans. Interestingly, loss of Ssk1,

but not Skn7, influences the virulence of C. albicans despite the

observations that both are implicated in the oxidative stress

response [24,42]. Hence, we examined the potential role of Crr1

in virulence using the standard 28 day murine model of systemic

candidiasis. Isogenic wild-type (JC806), crr1D (JC566), and

reintegrant crr1D+CRR1 (JC803) strains, which all express URA3

from the RPS10 locus, were tested in the murine model of systemic

candidiasis. Such controls are necessary as it is well-established

that the genomic location of the URA3 disruption marker can

influence expression levels which significantly impacts on the

virulence of C. albicans [43]. However, deletion of CRR1 was found

to have no detectable impact on the virulence of C. albicans

(Fig. 5A). Mice infected with the crr1D mutant had a mean survival

time of 14.866.7 days compared with 14.366.2 and 13.364.3

days for mice infected with wild-type or reintegrant crr1D+CRR1

cells, respectively. Kaplan-Meier and log rank tests showed no

difference in virulence between the strains (P = 0.877). Consistent

with these conclusions, no statistically significant difference in

either kidney (P = 0.314) or spleen (P = 0.782) fungal burdens from

mice infected with wild-type, crr1D or crr1D+CRR1 reintegrant

cells was detected (Fig. 5B). Hence, in contrast to the C. albicans

Ssk1 response regulator [42], we find no evidence that Crr1 is

involved in the virulence of this fungal pathogen using the mouse

model of systemic candidiasis.

Discussion

Here we have identified and characterised a novel response

regulator in C. albicans which we have named Crr1. Two

component signal transduction pathways are utilised to respond

to environmental conditions in fungi and Crr1 was found to be

important for the response of C. albicans to hydrogen peroxide.

Furthermore, mutant cells expressing Crr1 in which the predicted

phospho-aspartate was mutated to asparagine also displayed

increased sensitivity to hydrogen peroxide, indicating two

component-mediated phosphorelay is important for Crr1 function.

Notably, extensive phylogenetic analyses revealed that this

previously uncharacterised response regulator is solely found in

fungi belonging to the Candida CTG clade [38]. Thus, these data

suggest that the Crr1 family is involved in the response of cells to

oxidative stress within a specific subgroup of fungal species.

C. albicans also contains members of the ubiquitous Ssk1 and

Skn7 families of response regulator proteins which are present in

diverse fungal species in addition to the Candida CTG clade [44]. It

is intriguing that all three response regulators, Crr1, Skn7 and

Ssk1, are required for oxidative stress resistance in C. albicans

[24,25]. Whilst Skn7 likely directly mediates the expression of

antioxidant encoding genes, Ssk1 has been shown to be required

Figure 3. The Ssk1, but not the Crr1, response regulator is
required for Hog1 activation in response to hydrogen perox-
ide. Western blot analysis of whole cell extracts isolated from wild-type
(WT, JC806), crr1D (JC566), ssk1D (JC784), and crr1Dssk1D (JC787) cells
after treatment with 5 mM hydrogen peroxide or 1 M NaCl for the
specified times. Western blots were probed with an anti-phospho-p38
antibody, which specifically recognises the phosphorylated, active form
of C. albicans Hog1 (Hog1-P). Total levels of Hog1 protein were
determined by stripping the blot and reprobing with an anti-Hog1
antibody which recognises both phosphorylated and unphosphory-
lated forms of Hog1 (Hog1).
doi:10.1371/journal.pone.0027979.g003

Crr1 Response Regulator in Candida albicans

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e27979



for the hydrogen peroxide-induced activation of the Hog1 SAPK

[25]. Here, our analysis of cells lacking CRR1 revealed that Hog1

activation is not impaired in crr1D cells. However, as ssk1Dcrr1D
cells were no more sensitive to hydrogen peroxide than either

single mutant, this suggests that Crr1 and Ssk1 may act in the

same pathway. Thus, whilst Ssk1 functions upstream of Hog1,

Crr1 may function downstream of this SAPK. Clearly, the nature

of the relationship between Ssk1 and Crr1 function in the response

of cells to hydrogen peroxide requires further investigation.

Although the receiver domain located in the C-terminal region

of Crr1 contains all of the key residues required for the function of

this domain, sequence analysis of the N-terminal region of Crr1

provided no insight into the potential function of this response

regulator protein. Furthermore, this analysis was not facilitated by

defining the localisation of Crr1, which is found throughout the

cell. However, the open reading frame encoding Crr1 (orf19.5843)

was previously identified in transcript profiling studies as a gene

whose expression was up-regulated in the absence of the adenylyl

cyclase Cdc35 [45], or in a conditional phospholipase C mutant at

elevated temperatures [46]. Nonetheless, an extensive analysis of

crr1D cells failed to establish a link between Crr1 and any cAMP-

[45,47] or phospholipase C- [46] dependent processes in C. albicans

(Fig. 2). Interestingly, a recent report linked cAMP-mediated

signalling to oxidative stress resistance in C. albicans, as the quorum

sensing molecule farnesol stimulates resistance to hydrogen

peroxide by inhibiting the Ras-cAMP pathway [48]. However,

similar increases in farnesol-induced hydrogen peroxide resistance

were observed in both crr1D (6.9%) and crr1D+CRR1 (8.9%)

reconstituted cells to those reported previously [48]. Thus, these

data indicate that Crr1 mediates the resistance of C. albicans to

hydrogen peroxide independently of both Hog1 activation and

farnesol-mediated inhibition of cAMP signalling.

In this paper we describe the identification of a response

regulator protein that appears to be confined to the Candida CTG

clade [38]. All of the Crr1-related proteins in the haploid and

Figure 4. Mutation of the putative phospho-aspartate of Crr1 impairs hydrogen peroxide resistance, but does not affect the
cellular localisation of the protein. (A) The localisation of GFP-tagged wild-type Crr1 (Crr1-GFP) and mutant Crr1, in which the putative phospho-
aspatate residue in the receiver domain was mutated to asparagine (Crr1D/N-GFP), were determined by fluorescence microscopy of JC924 (Crr1-GFP)
and JC926 (Crr1D/N-GFP) cells before (2) and after (+) treatment with 5 mM hydrogen peroxide (GFP) for 10 min. Nuclei were visualised by DAPI
staining (DAPI). The control panel illustrates the level of background fluorescence observed in wild-type cells (JC806) expressing untagged Crr1. (B)
103 cells, and 10-fold dilutions thereof, of exponentially-growing crr1D cells expressing either CRR1-GFP (JC924) or CRR1D/N-GFP (JC926) were spotted
onto YPD plates containing the indicated concentrations of hydrogen peroxide and incubated at 30uC for 24 h.
doi:10.1371/journal.pone.0027979.g004

Figure 5. Crr1 is dispensable for the virulence of C. albicans. (A)
Mean survival times, and (B) organ fungal burdens, for BALB/c mice
infected with either WT (RM1000+Clp20, JC806), crr1D (crr1D+Clp20,
JC566) or crr1D reintegrant (crr1D+Clp20-CRR1, JC803) cells following
the standard 28-day survival murine model of systemic candidiasis.
doi:10.1371/journal.pone.0027979.g005
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diploid members of the clade share extensive homology between

their receiver domains suggesting that they had a common

ancestor (Figs. 1B; S1). In addition, we have identified at least two

conserved regions within the N-terminal regions of the diploid

members of the Candida clade (Fig. 1B) although the potential

function(s) of these regions awaits further investigation. Given that

two component signal transduction pathways are utilised to

respond to the environment by regulating appropriate cellular

responses it is tempting to speculate that the diploid members of

the Candida CTG clade respond to the oxidising agent hydrogen

peroxide in a similar manner through the function of these Crr1

homologues. It is important to note, however, that whilst all

members of the Candida CTG clade can cause disease in humans

[49], we can find no evidence that Crr1 affects the virulence of C.

albicans in a standard mouse model of systemic candidiasis. Thus, it

is possible that Crr1 functions to allow adaptation to an

environmental niche outside the human host. Alternatively, Crr1

function may be required for C. albicans to exist as a commensal

organism within specific host niches that are not replicated in a

systemic model of disease. In this regard it is noteworthy that a

recent study revealed that the expression of CRR1 in C. albicans is

induced during the late stages of biofilm formation [50]. Clearly,

much is still to be learnt about the biological roles of the novel

Crr1 response regulator, which is only present in the Candida CTG

clade of fungal species.

Supporting Information

Figure S1 Sequence analysis of the closest homologues
of CaCrr1 in the haploid members of the Candida CTG
clade. (A) Clustal alignment of CaCrr1 with the closest

homologues of CaCrr1 present in Debaromyces hansenii (DE-

HA2G23386g), Candida guilliermondii (PGUG_04093) and Candida

lusitaniae (CLUG_02461). The main shared region of homology is

limited to the potential receiver domain located in all of these

proteins. Residues that are identical between all four proteins are

indicated by bold, the aspartate and lysine residues conserved in all

receiver domains are shown in red bold, and the aspartate residue

which is predicted to be phosphorylated by two component signal

transduction by a bold red ‘‘P’’. Note that the homology between

the receiver domains extends to the replacement of amino acids

with others with similar chemical properties. A colon indicates a

highly similar substitution and a full stop a similar substitution. (B)

Clustal alignment of the closest homologues of CaCrr1 present in

D. hansenii (DEHA2G23386g), C. guilliermondii (PGUG_04093) and

C. lusitaniae (CLUG_02461) revealed that the main region of

homology shared between proteins in the haploid group in the

Candida clade is limited to the potential receiver domain located in

all three proteins. Residues shared by all three proteins are

highlighted as described in (A) above. The predicted protein

sequences of the Crr1 homologues in the haploid members of the

Candida clade were obtained by BLAST analyses at the C. albicans

genome web site (http://candidagenome.org/).

(TIFF)

Figure S2 Phenotypic analysis of Crr1 function in the
SN148 C. albicans background, replicates that in
RM1000 cells. (A) SN148 cells lacking CRR1 are sensitive to

hydrogen peroxide but not other compounds. Approximately 103

cells, and 10-fold dilutions thereof, from exponentially-growing

WT (SN148+CIp30; JC747), crr1D (JC1572) and crr1D+CRR1

(JC1574) strains were spotted onto YPD plates containing the

indicated agents. Plates were incubated at 30uC for 24 h. (B) Ssk1

but not Crr1 is required for Hog1 activation in response to

hydrogen peroxide in SN148 cells. Western blot analysis of whole

cell extracts isolated from wild-type (WT, JC747), ssk1D (JC1552),

crr1D (JC1572), and crr1D+CRR1 (JC1574) cells after treatment

with 5 mM hydrogen peroxide or 1 M NaCl for the specified

times. Western blots were probed with an anti-phospho-p38

antibody, which specifically recognises the phosphorylated, active

form of C. albicans Hog1 (Hog1-P). Total levels of Hog1 protein

were determined by stripping the blot and reprobing with an anti-

Hog1 antibody which recognises both phosphorylated and

unphosphorylated forms of Hog1 (Hog1). (C) Mutation of the

putative phospho-aspartate of Crr1 impairs hydrogen peroxide

resistance in SN148 cells. 103 cells, and 10-fold dilutions thereof, of

exponentially-growing crr1D cells expressing either CRR1-GFP

(JC1576) or CRR1D/N-GFP (JC1578) were spotted onto YPD plates

containing the indicated concentrations of hydrogen peroxide and

incubated at 30uC for 24 h.

(TIFF)
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