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Abstract

Background: Giant freshwater prawn (Macrobrachium rosenbergii or GFP), is the most economically important freshwater
crustacean species. However, as little is known about its genome, 454 pyrosequencing of cDNA was undertaken to
characterise its transcriptome and identify genes important for growth.

Methodology and Principal Findings: A collection of 787,731 sequence reads (244.37 Mb) obtained from 454
pyrosequencing analysis of cDNA prepared from muscle, ovary and testis tissues taken from 18 adult prawns was
assembled into 123,534 expressed sequence tags (ESTs). Of these, 46% of the 8,411 contigs and 19% of 115,123 singletons
possessed high similarity to sequences in the GenBank non-redundant database, with most significant (E value , 1e–5)
contig (80%) and singleton (84%) matches occurring with crustacean and insect sequences. KEGG analysis of the contig
open reading frames identified putative members of several biological pathways potentially important for growth. The top
InterProScan domains detected included RNA recognition motifs, serine/threonine-protein kinase-like domains, actin-like
families, and zinc finger domains. Transcripts derived from genes such as actin, myosin heavy and light chain, tropomyosin
and troponin with fundamental roles in muscle development and construction were abundant. Amongst the contigs, 834
single nucleotide polymorphisms, 1198 indels and 658 simple sequence repeats motifs were also identified.

Conclusions: The M. rosenbergii transcriptome data reported here should provide an invaluable resource for improving our
understanding of this species’ genome structure and biology. The data will also instruct future functional studies to
manipulate or select for genes influencing growth that should find practical applications in aquaculture breeding programs.

Citation: Jung H, Lyons RE, Dinh H, Hurwood DA, McWilliam S, et al. (2011) Transcriptomics of a Giant Freshwater Prawn (Macrobrachium rosenbergii): De Novo
Assembly, Annotation and Marker Discovery. PLoS ONE 6(12): e27938. doi:10.1371/journal.pone.0027938

Editor: John Parkinson, Hospital for Sick Children, Canada

Received September 15, 2011; Accepted October 28, 2011; Published December 8, 2011

Copyright: � 2011 Jung et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research forms part of H. Jung’s Ph.D project, and is supported by an International Postgraduate Research Scholarship (Australia) and a
Queensland University of Technology Postgraduate Award (N7333978). Additional funding for this work was provided by Queensland University of Technology
awarded to P. Mather (QUT VC NPSG award). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: h7.jung@qut.edu.au

Introduction

Of the 200 or so aquaculture species, decapod crustaceans

including prawns, lobsters and crabs contribute substantially to the

US$60 billion global industry [1]. Amongst farmed crustaceans,

the giant freshwater prawn (Macrobrachium rosenbergii) has increas-

ingly become an aquaculture species of major commercial value,

with revenue in Asia alone currently worth .US$1 billion

annually [1–4]. Due to its high value, research is now focusing

on improving the growth performance of farmed M. rosenbergii [2–

6]. However, little is known about this species’ basic biology and

genome make-up so that they can be exploited to improve farm

productivity of this species.

Genomics approaches are now being applied widely to elucidate

genetic factors conferring economically significant traits and/or

phenotypes and to manage genetic diversity in cultured crustacean

species [7–10]. Whilst their application to cultured fish species has

produced significant production gains, such gains are only

beginning to be realized in penaeid species [11–15], and no

detailed genetic analyses have yet been reported for M. rosenbergii.

Such basic information is essential to better understand a species’

biology and to devise strategies to improve productivity in culture.

DNA microsatellites [16–18] and mitochondrial DNA sequence

comparisons [19] have been used to examine the phylogeography

of M. rosenbergii [20,21] sampled from Asia and northern Australia

and genes potentially associated with pathogen defence responses

[22–24] and sexual maturation traits [25] have also been

identified. However, more genome-wide or transcriptome-wide

datasets have yet to be generated as a basis for functional genomics

approaches [26–29] aimed at improving the aquaculture perfor-

mance of this species.

Roche 454 Genome Sequencing FLX technology is particularly

useful as a shotgun method for generating data broadly across

novel genomes, and it is relatively cheap [26,33,31] and
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exceptionally accurate [26–31]. Here it was used to characterize

the transcriptome of M. rosenbergii using cDNA prepared from

mRNA isolated from muscle, ovary and testis tissues. Expressed

sequence tag (EST) sequences generated were assembled and

annotated with putative functions where possible, and database

searches were performed to identify candidate protein domains,

genes and gene families potentially involved with growth. A variety

of markers potentially useful for genomic population studies

including simple sequence repeats (SSRs) located within coding

regions and single nucleotide polymorphisms (SNPs) detected

amongst deep coverage sequence regions reads are also reported.

Results and Discussion

Roche 454 GS-FLX sequencing and contig assembly
cDNA prepared to mRNA purified from muscle, ovary and

testis tissues from M. rosenbergii were sequenced using the 454 GS-

FLX platform. Sequences that passed basic quality standards were

clustered and assembled de novo. In 454 sequencing run #1, a total

of 121,214 EST sequences (total = 36.45 Mb) were assembled

from mRNA isolated from either muscle or ovary tissue sampled

from 6 adult females and preserved in ethanol prior to analysis.

Average EST length was 295 nucleotides (nt). Assembly of high

quality ESTs generated 1983 contigs averaging 673 nt in length.

Due to technical issues with the first 454 GS-FLX run, the

expected amount of data (200 Mb) was not retrieved. Therefore a

second 454 sequencing run was conducted to increase genomic

data, including the addition of testis-derived RNA. In 454

sequencing run #2, a total of 666,517 EST sequences were

assembled from mRNA isolated from muscle and ovary from 9

adult females and 3 adult male testis tissues and preserved in

RNAlater solution (Ambion) prior to analysis. Eyestalk-derived

RNA was also extracted, but ultimately excluded from sequencing

run #2 as quality control indicators suggested it contained PCR

and proteinase inhibitors leading to failure of cDNA fragmenta-

tion, as detected in the bioanalyzer traces (samples were not

fragmented). For the remaining three tissue types, the average

EST length was 311 nt in 454 sequencing run #2. After removing

adaptor sequences, the combined run #1 and #2 dataset

contained 244.37 Mb of sequence comprising 787,731 reads

averaging 310 nt in length, and the average coverage depth was

29.85 sequences per nucleotide position (Table 1). This average

EST read length is longer and the sequencing coverage depth is

substantially higher than has been reported in similar 454

sequencing analyses in non-model species including Glanville

fritillary (197 nt at 2.3 x coverage; [26]), flooded or rose gum (245

nt; [32]) or shore pine (306 nt at 3.6 x coverage; [33]). As shown in

Figure 1, assembly of high quality M. rosenbergii EST sequences

generated 8,411 contigs varying in length from 40 nt to 7,531 nt

(average 845 nt; total 212,142,540 nt), with 5,724 (68%) being

.500 nt in length. The long individual read lengths combined

with the 29.85-fold average coverage contributed to this high

proportion of long contig sequences. Singletons ranged from 50 nt

to 773 nt in length (average 279 nt, total 32,228,442 nt)

(Figure 1). To our knowledge, this is the first comprehensive

study of the transcriptome of M. rosenbergii.

Comparative analyses of ESTs
From BLASTx searches of M. rosenbergii EST coding sequences,

3,757 of the 8,411 (46%) contigs and 21,965 of the 115,123 (19%)

singletons possessed significant similarity (E value ,1e–5) with

proteins in the GenBank non-redundant (nr) database (Table S1).

As might be expected, coding sequences in the majority of contigs

(80%) and singletons (84%) matched well to crustacean and other

arthropod proteins (Figure 2) which are in agreement with

previous prawn studies [14,15]. After redundant and ribosomal

protein sequences were excluded, 2,448 contig and 10,627

singleton sequences were identified as putative genes based on

BLASTx matches.

Species most represented in the BLASTx searches included

some penaeid shrimps, crabs and freshwater and marine crayfish

species including giant tiger shrimp (Penaeus monodon), green mud

crab (Scylla paramamosain), fleshy shrimp (Fenneropenaeus chinensis),

Kuruma shrimp (Marsupenaeus japonicas), white leg shrimp (Litope-

naeus vannamei), red swamp crayfish (Procambarus clarkia), and

American lobster (Homarus americanus). Similarities in EST coding

sequences are indicative of close evolutionary relationship of M.

rosenbergii with other crustaceans. Only a few contig (1.8%) or

singleton (3.9%) coding sequences matched protein sequences

reported for M. rosenbergii, and again this was expected due to the

limited number of M. rosenbergii EST (2365) and protein sequences

(373) currently available in the NCBI databases. The M. rosenbergii

EST sequences generated here thus will vastly expand the number

of genes identified in this species.

Table 1. Summary of 454 pyrosequencing, assembly and analysis of M. rosenbergii transcriptomic sequences.

Dataset name All Muscle Ovary Testis

Total number of bases (Mp) 244.37 114.38 86.06 43.94

Average read length (bp) 310 311 308 311

No. of reads Total 787,731 367,379 279,393 140,959

Assembled 645,837 323,044 189,771 112,271

Singleton 115,123 33,622 77,455 24,995

Repeat 276 136 197 77

No. of contigs Total contigs 8,411 1,723 5,346 1004

Average contig
read length (bp)

845 1,027 796 848

Largest contig (bp) 7,531 7,304 6,955 7,530

No. of large
Contigs . 500bp

5,724 1,171 3,559 683

Average coverage (x) 29.85 59.56 14.92 43.09

doi:10.1371/journal.pone.0027938.t001
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More putative gene ESTs were detected in mRNA isolated from

ovary tissue than from muscle or testis tissue (Figure 3). Only

around 4% of the 3,757 contigs and 14% of the 21,965 singletons

significantly matched either predicted or hypothetical genes (E

value ,1e–5) due to the limited genomic information available for

prawn species in the public database (Table S1). A significant

number of M. rosenbergii ESTs did not possess coding sequences

matching any sequences in the GenBank nr database which is not

surprising for prawn EST studies [14,15]. Whilst most of these

likely represent ESTs spanning only untranslated mRNA regions,

chimeric EST sequences derived from assembly errors or ESTs

containing non-conserved protein regions, as reported in other

transcriptome analyses [34–36], it is also possible that some may

constitute novel genes unique to this species.

Amongst ESTs derived from muscle tissue, coding sequences

with homology to arginine kinase, ATP synthase, eukaryotic

translation initiation factor, myosin heavy and light chain,

sarcoplasmic calcium-binding protein, tropomyosin, and troponin

were most abundant. Amongst ESTs derived from ovary tissue,

coding sequences with homology to aldehyde dehydrogenase, ATP

binding, cd63 antigen, cell division cycle, Chk1 checkpoint-like

protein, e3 ubiquitin, eukaryotic translation initiation factor, ovary

development-related protein, serine threonine-protein kinase,

transmembrane protein, and WD repeat-containing protein were

most abundant. Amongst ESTs derived from testis tissue, coding

sequences with homology to eukaryotic translation initiation

factor, kazal-type proteinase inhibitor, male reproductive-related

protein, serine proteinase inhibitor, and viral A-type inclusion

protein were most abundant. ESTs detected commonly across the

3 tissues included actins, elongation factors, eukaryotic translation

initiation factor, heat shock protein, NADH dehydrogenase,

reverse transcriptase, RNA-binding protein, senescence-associated

protein, tubulin, ubiquitin and zinc finger protein (Figure 3,
Table S1). Although this work was mainly focused on finding

putative genes related with muscle development and growth,

several putative functional transcripts identified here will lay the

foundation for future studies aimed at investigating the role of sex

determination, reproduction-related and xenobiotic genes which

have been studied successfully in other species [26,37,38]. These

findings could be the best source for deciphering the putative

function of novel genes in each tissue but further studies need to be

conducted to understand the molecular functions of specific

reported genes.

Gene Ontology assignments
Gene Ontology (GO) terms could be assigned to 8411 M.

rosenbergii contigs based on BLAST matches to proteins with

known functions (Figure 4, Table S2). EST coding sequences

were assigned to cellular components (4,550 sequences,

Figure 4A), molecular function (6,055 sequences, Figure 4B)

and biological processes (8,806 sequences, Figure 4C).

Amongst ESTs assigned molecular functions, many were

Figure 1. Summary of M. rosenbergii transcriptomic sequences. The contig sequences are represented by solid bars and the singleton
sequences by open bars.
doi:10.1371/journal.pone.0027938.g001
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assigned binding (45.9%) or catalytic functions (32.3%),

predominantly actin and zinc ion proteins (Table S2). Recent

studies of crustaceans have highlighted the importance of actin

in constructing muscle tissues and that it shows variable

expression in different muscle types [39–42]. The cellular

component assignments showed many EST coding sequences to

likely possess cell (22.8%) and cell part (22.5%) functions, whilst

those assigned biological functions were mostly predicted to be

involved in cellular (17.6%) or metabolic processes (16.5%)

including proteolysis, carbohydrate metabolism or oxidation-

reductive functions. Analyses of the transcriptomes of other

crustaceans have identified ESTs possessing similar arrays of

potential metabolic functions [11,14,15,43].

KEGG analysis
Many of the coding sequences present in the M. rosenbergii EST

contig dataset were identified to occur in KEGG pathways;

metabolic pathways (n = 320), biosynthesis of secondary metabo-

lites (n = 135), oxidative phosphorylation (n = 66), biosynthesis of

phenylpropanoids (n = 59), and biosynthesis of alkaloids derived

from histidine and purine (n = 51) (Table S3). Metabolic

pathways, implicated in the kinetic impairment of muscle

glutamine homeostasis in adult and old glucocorticoid-treated rats

[44], showed the highest number of transcripts here. A skeletal

muscle structure in rat intrauterine growth restriction indicated

that changes in metabolic pathways were involved in obesity [45].

A total of 66 transcripts were involved in oxidative phosphoryla-

Figure 2. Top 30 hit species distribution based on BLASTx. E value cut-off is 1e–5 and top 30 hit species distribution of gene annotations
showing high homology to the Arthropoda (Insecta and Crustacea) phylum with known genome sequences. Only contig sequences were used. Bold
text indicates non-Arthropod homology.
doi:10.1371/journal.pone.0027938.g002
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tion. The integrity of the inner membrane and the associated

complexes is essential to oxidative phosphorylation to generate

ATP to supply readily-available free energy for the body [46].

However, malfunction of oxidative phosphorylation could accen-

tuate ATP depletion with the basic energy conservation system

due to anoxic conditions in the tissues which could lead to

metabolic failure [47].

Interestingly, we recovered a high number of transcripts that

were mapped to the phenylpropanoids biosynthesis pathway (59).

Phenylpropanoids not only play an important role in contributing

to all aspects of plant responses towards biotic and abiotic stimuli

[48] but also have a potential dietary importance from plant

derived compounds [49]. A total of 51 transcripts also were

predicted to the alkaloid biosynthesis pathway from histidine and

purine in the M. rosenbergii EST contig dataset. Alkaloids, regarded

as basic plant derived metabolites, are important components of

plant defence, growth and development systems [50,51]. In a study

of sponges and ascidians, an abundance of alkaloids was reported

that displayed biological activities such as metabolites [52].

Considering the omnivorous dietary habit of M. rosenbergii, finding

these pathways was not surprising. Although not all of the major

genes reported in putative KEGG pathways were found in the

current study, this information provides insight into the specific

responses and functions involved in molecular processes in M.

rosenbergii metabolism and muscle contraction against biotic and

abiotic stimuli.

Protein domains
InterProScan searches identified 19,036 protein domains

among the 8,411 M. rosenbergii contigs (Table S4). Consistent

with similar analyses in insects and other crustaceans [14,15,28],

domains that dominated occur in RNA-binding proteins, protein

kinases and transcription factors (zinc finger domains) that are

essential for cellular processing functions including signal trans-

duction and transcription regulation, regulation of RNA stability

and translation control (RNA recognition motifs), innate immu-

nity, cell division, proliferation, apoptosis and cell differentiation

[53,54].

The most common DNA-binding motifs present in eukaryotic

and prokaryotic transcription factors [55] were prevalent in the M.

rosenbergii sequences, with 179 C2H2-type and 102 C2H2-like zinc

finger (Znf) domains identified. Transcription factors usually

contain several Znf domains capable of making multiple contacts

with DNA [56], and can also bind to RNA and protein targets

[57]. A total of 112 nucleotide-binding a-b plait domains found in

RNA-binding domains from various ribonucleoproteins or in viral

DNA-binding domains [58,59] were predicted to exist among the

M. rosenbergii EST coding sequences. In addition, 108 Armadillo-

type fold and 84 Armadillo-like helical domains which form

structural domains consisting of a multi-helical fold comprised of 2

curved layers of a-helices [60], were predicted (Table 2).

Among M. rosenbergii EST coding sequences, 104 domains

containing WD40/YVTN repeat-like sequences, 90 domains

containing WD40-repeat sequences and 88 domains containing

WD40 repeat-like sequences were predicted (Table 2). These

domains are involved in a variety of functions ranging from signal

transduction and transcription regulation to cell cycle control and

apoptosis [61,62]. A total of 86 Ran GTPase families which are

involved in regulating GTP hydrolases [63], contain GTP-binding

domains [64] and regulate receptor-mediated transport between

the nucleus and the cytoplasm [65,66] were also predicted, as were

84 immunoglobulin (Ig)-like fold domains (Table 2). Ig-like fold

domains are involved in a variety of functions including cell-cell

recognition, cell-surface receptors, muscle structure and the

immune system [67], and are often involved with protein-protein

interactions mediated by their b-sheets as in other Ig-like domains

[67,68]. Other domains identified abundantly included Serpin

(serine proteinase inhibitor) domains (n = 79) and NAD(P)-binding

domains (n = 72) (Table 2). Interestingly, few PAZ (n = 3) or PIWI

(n = 8) domains believed to be important components of the

dsRNA-induced silencing complex were identified. The relative

absence of ESTs with such domains is perplexing based on the

detection of genes encoding Dicer and Argonaut type proteins in

penaeid shrimp [69–71] and the clear demonstration of effective

RNAi-mediated knockdown of gene expression in shrimp [70].

Similar transcriptome analyses of other tissues including haemo-

cytes from the lymphoid organs for example that are primary

mediators of pathogen defence responses [14,15,72] might be

useful for indentifying if expression of ESTs encoding putative

RNAi-related domains are more cell specific than domains

required broadly for cell functioning. Although an original aim

of this study was to identify candidate genes, gene families or gene

domains potentially involved with growth phenotypes and/or

other production traits important for M. rosenbergii aquaculture,

none were differentiated from cell function or pathogen defence

type activities. The identification of such ESTs has been

confounded in most studies of shrimp to date focussing on the

identification and characterisation of pathogen defence-related

genes [14,15,72]. Thus genes mediating growth performance and

potentially of value in selective breeding programs await discovery.

Putative genes affecting muscle development and/or
function

The M. rosenbergii EST sequence database was mined for coding

sequences with domains involved potentially with muscle devel-

opment and function (Table 3). Despite recent advances in

sequencing technologies, few genes with such functions have been

characterised from any crustaceans, and only 2365 ESTs assigned

to M. rosenbergii and 5536 ESTs assigned to Macrobrachium were

available in NCBI databases before this study. However, the

123,534 ESTs from the M. rosenbergii individuals selected from high

and low growth performance cohorts should contain genes

potentially expressed differentially and with functional character-

istics suggestive of roles in muscle mass accumulation and other

growth-related functions.

In the current study, both actin and myosin proteins including

tropomyosin and troponin showed a high number of transcripts. It

Figure 3. Comparative summary of M. rosenbergii transcrip-
tomic sequences among three libraries. Putative sequence
descriptions were counted using BLASTx results (E-value ,1e–5) after
excluding ribosomal proteins and redundant ones. Bold numbers
indicate contigs and numbers in italics indicate singletons.
doi:10.1371/journal.pone.0027938.g003
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has been reported that actins are expressed in abundance as they

are critical to formation of muscle filaments [73,74]. Different

actin isoforms have been identified in various crustaceans [40],

and are likely to be involved in playing important roles in

cytoskeletal structure, cell division and mobility, and muscle

contraction [40–42]. The large super-family of myosin proteins

interact with actin filaments by hydrolysing adenosine triphos-

phate that combine to form thick muscle filaments [75]. Myosin

heavy chain (MHC) isoforms differ in their shortening velocity

compared with other isoforms due to the enhanced ability of the

myosin head to hydrolyse ATP [76]. Multiple MHC isoforms are

expressed ubiquitously in all eukaryotic cells and they are the most

abundant contractile protein present in skeletal muscle [77,78]. If

growth rates of M. rosenbergii are dictated primarily by the

efficiency at which feed is converted into muscle mass, it is likely

that myosin gene expression levels could provide a good molecular

marker of individual growth potential, as found in the Atlantic

pink shrimp Farfantepenaeus paulensis [79]. In studies of other

crustaceans, high expression levels of genes encoding fast and slow

myosin isoforms have been found to be accompanied by elevated

expression of other genes encoding for example, actin, myofibrillar

protein, tropomyosin, troponin I, and troponin T [80–82].

According to Perry et al. [83], differences in expression levels of

myofibrillar protein isoforms correlate well with individual body

size in crabs, with changes in expression spanning several orders of

magnitude occurring at different life stages. Tropomyosins

comprise a family of closely related proteins present both in

muscle and non-muscle cells [84]. In striated muscle, tropomyosin

mediates interactions between the troponin complex and actin to

mediate muscle contraction [85]. A high number of actin and

myosin protein transcripts observed here may regulate muscle

development and function in M. rosenbergii. However, further

studies are needed to confirm these observations.

High occurrence of calponin and transgelin was also observed in

the transcriptome of M. rosenbergii. Calponin is a smooth muscle-

specific protein capable of binding actin, tropomyosin and

calmodulin and is also involved in mediating muscle contraction

[86] as its interaction with actin inhibits actomyosin Mg-ATPase

activity. In previous studies of invertebrates and vertebrates,

caldesmon and calponin were shown to interact with actin,

tropomyosin, and Ca2+-calmodulin [39,41,87]. In addition,

transgelin is a calponin which is expressed exclusively in smooth

muscle-containing tissues in adult animals and is one of the earliest

markers of differentiated smooth muscle cells [88,89].

The current study reports a number of putative genes,

transcription factors, and early regulators that are potentially

involved in muscle development and function in M. rosenbergii.

Further studies need to be performed, however, to learn the

molecular functions of these reported genes which were observed

to be expressed more abundantly in adult female and male prawns

compared with earlier developmental stages or slow growth

performance individuals.

Genes of interest related to growth
The transcriptome of M. rosenbergii was examined primarily to

identify genes associated functionally with individual growth. For

this reason, an EST dataset was compiled from tissues of

individuals from high and low growth performance families

Figure 4. Gene ontology (GO) terms for the transcriptomic sequences of M. rosenbergii and comparison of among libraries. (A)
cellular component, (B) molecular function and (C) biological process.
doi:10.1371/journal.pone.0027938.g004

Table 2. Summary of top 20 domains predicted in M. rosenbergii sequences.

IPR accession Domain name Domain description Occurrence

IPR000504 RRM_dom RNA recognition motif domain 188

IPR017442 Se/Thr_prot_kinase-like_dom Serine/threonine-protein kinase-like domain 180

IPR000719 Prot_kinase_cat_dom Protein kinase, catalytic domain 180

IPR007087 Znf_C2H2 Zinc finger, C2H2-type 179

IPR004000 Actin-like Actin-like 150

IPR002290 Ser/Thr_prot_kinase_dom Serine/threonine-protein kinase domain 144

IPR012677 Nucleotide-bd_a/b_plait Nucleotide-binding, alpha-beta plait 112

IPR016024 ARM-type_fold Armadillo-type fold 108

IPR015943 WD40/YVTN_repeat-like_dom WD40/YVTN repeat-like-containing domain 104

IPR011009 Kinase-like_dom Protein kinase-like domain 104

IPR015880 Znf_C2H2-like Zinc finger, C2H2-like 102

IPR017986 WD40_repeat_dom WD40-repeat-containing domain 90

IPR011046 WD40_repeat-like_dom WD40 repeat-like-containing domain 88

IPR002041 Ran_GTPase Ran GTPase 86

IPR008271 Ser/Thr_prot_kinase_AS Serine/threonine-protein kinase, active site 84

IPR013783 Ig-like_fold Immunoglobulin-like fold 84

IPR011989 ARM-like Armadillo-like helical 84

IPR023796 Sepin_dom Serpin domain 79

IPR013083 Znf_RING/FYVE/PHD Zinc finger, RING/FYVE/PHD-type 72

IPR016040 NAD(P)-bd_dom NAD(P)-binding domain 72

doi:10.1371/journal.pone.0027938.t002
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(Table 3). Amongst these, a putative cyclophilin was identified.

Although cyclophilins possess diverse functions and have been

linked to innate immunity [90,91] and testicular development

[48], expression levels of cyclophilin-like proteins have also been

found to be highly correlated with body-weight in the shrimp P.

monodon [92].

Intracellular fatty acid-binding proteins (FABPs), identified in

the current transcriptomic study, are members of a lipid-binding

protein super-family that occur in both invertebrates and

vertebrates, and together with acyl-CoA-binding protein (ACBP)

are involved in lipid metabolism [93]. Few FABPs have been

identified in invertebrates [93,94], and their physiological roles

remain largely unknown. However, in the locust Schistocerca gregaria,

FABP expression has been reported to be strictly adult specific and

is controlled by fatty acids in adult muscle [95]. Locust flight

muscle employs fatty acids exclusively as the energy source for

sustained flight and it is likely that FABP is involved in intracellular

fatty acid transport [96].

In the current study, we found high occurrence of LIM domain

proteins, which play important biological roles in cytoskeleton

organisation, cell fate determination and organ development

[97]. Previously, one LIM domain gene (ISL1) has been identified

as a positional candidate for obesity and for controlling leptin

levels, and is suggested to be involved in body weight regulation

and glucose homeostasis [98]. In a study of the red crab

Gecarcoidea natalis, two genes encoding LIM proteins, a paxillin-

like transcript (pax) and a muscle LIM protein (mlp), were up-

regulated in muscle of crabs in the wet season [99]. These

proteins could play a fundamental role in muscle development

and reconstruction, and their comparative up-regulation is

consistent with a remodelling of leg muscle needed for migration

during the wet season [99].

Physiologically, O-methyltransferase (OMT) plays an important

regulatory role in plant and animal growth, development,

reproduction and immune response [100,101]. OMT transcripts

observed in the current study could represent a potential candidate

gene for developing novel traits in prawns. Methyl farnesoate

(MF), the sesquiterpenoid precursor of insect juvenile hormone III

(JH III), is produced and released by mandibular organs in

decapod crustaceans [102–104]. The physiological function of

MF, however, is not well understood in crustaceans, but by

analogy with established functions of JH III in insects, MF has

been suggested to play an important role in regulation of growth

and reproduction in crustaceans [103,105]. In some crustaceans,

circulating titer and biosynthesis of MF appear to be correlated

positively with maturation of the ovary [105,106]. MF has also

been suggested to play a role in delaying onset of molting in larval

crustaceans [102,106]. This evidence implicates MF in both

crustacean growth and reproduction. Farnesoic acid O-methyl-

transferase (FAMeT; also known as S-adenosyl-methionine:farne-

soic acid O-methyltransferase) is the enzyme that catalyses the

final step in the MF biosynthetic pathway in crustaceans

[107,108]. Studies of crustacean FAMeT indicate that it may

directly or indirectly (through MF) modulate reproduction and

growth in crustaceans [109–112] by interacting with eyestalk

neuropeptides as a consequence of its presence in neurosecretory

cells in the X-organ-sinus gland. It is also believed that MF is the

crustacean homolog for insect juvenile hormone, a molecule that

may also regulate growth and reproduction in crustaceans [112]. If

growth rates of M. rosenbergii are dictated primarily by the

Table 3. Genes of interest for growth and muscle development in M. rosenbergii sequences.

Candidate genes Contig IDs* Length (bp)

Actin A000585; A000586; A000587; A000588; A000763;
A000764; A000765; A000766; A001338; A001339

1329; 1318; 1306; 1295; 1679;
1676; 1641; 1638; 930; 738

Alpha skeletal muscle A000008; A000407; A000408; A000807; A002601; A002969 710; 1141; 1016; 1110; 1474; 1166

Calponin/calponin transgelin A002718; A002875; A006133 1383; 1232; 518

Cyclophilin a A001348; A001349 811; 850

Farnesoic acid
O-methyltransferase

A002527 1587

Fatty acid binding protein A004382 728

Lim domain binding A000448 2610

Muscle lim protein A000421; A000422; A000423; A000424; A000425 5788; 5694; 4595; 4501; 1716

Myosin heavy chain A000009; A000016; A001103; A001282; A001283; A002073;
A003870; A004348; A004442; A007715; A008193

612; 1510; 672; 942; 916; 711;
828; 733; 717; 383; 277

Myosin heavy nonmuscle
or smooth muscle

A000018; A000968; A000969; A001363; A008338; A008352 1512; 5609; 2201; 730; 156; 148

Myosin light chain A008264; A008271; A008339 220; 209; 155

Myosin light chain
smooth muscle

A000639; A000783; A000785 3309; 2919; 1544

Profilin A002454; A003703 1696; 872

Skeletal muscle actin 6 A000022; A000409; A005595; A006187; A007119; A008308; A008374 853; 522; 574; 512; 433; 177; 122

Transforming growth
factor beta regulator 1

A006817 458

Tropomyosin A000105; A000106; A000107; A000108; A000109; A000110; A000111; A000112;
A000113; A000114; A000115; A000116; A001463; A002025; A002026; A007719

2777; 2769; 2770; 2768; 2762;
2760; 2773; 2775; 2765; 2767;
1962; 1954; 377; 1391; 110; 383

*Prefix ‘‘A’’ in ContigIDs indicates all merged contig from three libraries.
doi:10.1371/journal.pone.0027938.t003
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efficiency at which feed is converted into muscle mass, it is likely

that FABP, LIM domain and FAMeT gene expression levels could

provide candidate molecular markers of individual growth

potential.

Another interesting finding in the current study is the expression

of profilin, a small actin-binding protein found in eukaryotic cells

that is critical for cytoskeletal dynamics [113,114]. Profilins are

potent regulators of actin filament dynamics and promote

exchange of ADP to ATP on actin and by affinity to profilin–

actin complexes for actin filament ends [115]. Profilins have

diverse roles in cellular processes, including membrane trafficking,

small-GTPase signalling and nuclear activities, neurological

diseases, and tumor formation [116–118]. Genetic studies have

shown the importance of profilins for cell proliferation and

differentiation. Profilin gene disruption leads to grossly impaired

growth, motility and cytokinesis, and embryonic lethality in

multicellular organisms, for example in insects and mice [119–

121].

The current study identified a number of putative genes that are

potentially involved with growth in M. rosenbergii. However, further

studies are needed to understand the molecular functions of these

putative genes with growth performance and development in M.

rosenbergii.

Putative Molecular Markers
SNPs in M. rosenbergii EST contigs were identified from

alignments of multiple sequences used for contig assembly. Of

the 834 SNPs detected, 555 were putative transitions (Ts) and 279

were putative transversions (Tv), giving a mean Ts : Tv ratio of

1.99 : 1.00 across the transcriptome (Figure 5, Table S5). The

SNP types A « G and C « T were most common and SNP

densities varied among genes, possibly due in part, to the effects

of strong historical selection and the relative functional

importance of individual genes. The Ts : Tv ratio can help

identify genes affected by selection [122]. Although alignments

also identified a total of 1198 indels across the transcriptome

(Figure 5, Table S5), this must be treated with caution because

of technical problems associated with 454 pyrosequencing

[30,37]. Moreover, a total 658 simple sequence repeats (SSRs)

or microsatellites comprising 61.85% dinucleotide repeats,

35.87% trinucleotide repeats and 2.28% tetra/penta/hexa-

nucleotide repeats were detected (Figure 6, Table S6) in the

contigs as well as singletons.

PCR primers could be designed for almost all predicted

polymorphic SSRs (Table S6) but these have yet to be validated

as markers useful for examining M. rosenbergii adaptation and

ecology as has been done with other non-model species [123–125].

In addition, SNPs and SSRs detected here are likely to be highly

transferable to other closely related species as has been found for

other crustacean species [125–127]. It is envisaged that the

potential markers identified here within the ESTs will provide an

invaluable resource for studying the evolution and molecular

ecology of Macrobrachium species and for genome mapping and

quantitative trait loci (QTL) analysis. However, many of the

putative M. rosenbergii SNPs identified could simply represent allelic

variants and future studies are planned to validate which are real.

As ESTs were generated from 3 different tissue types, differential

expression of different tissue-specific alleles is possible. However,

this is rare as it requires somatic mutation or chimerisms between

tissues.

Figure 5. Distribution of putative single nucleotide polymorphisms (SNP) and indels in M. rosenbergii sequences.
doi:10.1371/journal.pone.0027938.g005

Transcriptomics of a Giant Freshwater Prawn

PLoS ONE | www.plosone.org 9 December 2011 | Volume 6 | Issue 12 | e27938



Conclusion
Here we report the first comprehensive EST dataset covering

the transcriptome of the giant freshwater prawn M. rosenbergii, a

non-model prawn species for which little molecular knowledge

currently exists. The 123,534 putative ESTs (115,123 singletons

and 8,411 contigs) identified and assembled will enable gene

discovery in M. rosenbergii, assist in evolutionary studies and with

the significant number of putative growth-related genes identified

should facilitate genomics approaches to improving the growth

performance of domesticated GFP stocks used for aquaculture. In

addition, the large number of SNPs and SSRs detected provide

targets for identifying polymorphisms across M. rosenbergii popu-

lations useful for parentage assignment and for managing

inbreeding in cultured populations. Moreover, the EST sequences

reported should prove invaluable for gene mining and annotation

and phylogenetic analyses as well as provide a resource that can be

exploited as molecular markers and in gene expression studies in

this commercially important aquaculture species.

Methods

Tissue samples
M. rosenbergii with variable growth phenotypes were sampled

from cohorts that were reared in a GFP stock improvement

program in Vietnam [128]. Muscle and ovary tissue was sampled

from adult females from high and low growth performance

families and tissues preserved in 95% ethanol (454 sequencing run

#1). Muscle was not sampled from males as their growth

performance is confounded by social factors [6]. Muscle and

ovary tissue from adult females and testis and eye-stalk tissue from

adult males preserved in RNAlater (Ambion) were also analysed

(454 sequencing run #2).

RNA extraction
In 454 sequencing run #1, TRIzolH reagent (Invitrogen) [129]

was used to extract total RNA from either muscle tissue or ovary

tissue pooled from the three heaviest females from the high growth

performance cohort and from the three lightest females from the

low growth performance cohort. In 454 sequencing run #2, total

RNA was extracted similarly from muscle/ovary (female) and

testis/eye-stalk (male) from groups of three prawns in the same

growth categories as used in 454 sequencing run #1. Total RNA

was purified further using a RNA Easy Kit (QIAGEN). RNA

yields and quality were checked using both a Bioanalyzer

nanochip (Agilent) and a Nanodrop spectrophotometer (Thermo).

Equal amounts of total RNA purified from each tissue type were

pooled and mRNA was isolated using the MicroPoly(A) PuristTM

Kit (Ambion) according to the manufacturer’s protocol.

Library construction and 454 pyrosequencing
mRNA purified from pooled muscle, ovary, testis and eye-stalk

total RNA from males and females of high and low growth

performance were sent to the Australian Genome Research

Facility (AGRF), Brisbane, Australia, for cDNA synthesis using a

cDNA Rapid Library Preparation Kit (Roche) and subjected to

454 GS-FLX sequence analysis. Due to issues with poor RNA and

cDNA quality and low yields from eyestalk tissue, this tissue was

excluded from the cDNA library. The cDNA library sequenced

Figure 6. Distribution of simple sequence repeat (SSR) nucleotide classes among different nucleotide types found in M. rosenbergii
sequences. Both contig and singleton sequences are used to predict the SSR loci.
doi:10.1371/journal.pone.0027938.g006
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thus comprised a pool of cDNAs prepared from muscle tissue from

the three heaviest females, ovary tissue from the three heaviest and

three lightest females and testis tissue from the three heaviest

males. Each cDNA was normalized prior to pooling to reduce

sequence coverage of high copy number mRNAs and samples

tagged for downstream identification. cDNA yields were quanti-

fied using a Quant-iT RiboGreen fluorometer (Invitrogen) and

average lengths were determined by analysis of an aliquot (1 ml) on

the Bioanalyzer (Agilent) using a LapChip 7500. Oligonucleotide

adapters A and B (Roche) were ligated to cDNA 59 and 39 ends

and cDNA was amplified by PCR using the same primers and a

proof reading polymerase. Emulsion PCR (emPCR) set up,

breaking, enrichment and pico-titer plate (PTP) loading steps

were performed according to Roche protocols [31]. Each of the

two sequencing runs employed half of a PTP and was sequenced

twice using Roche 454 GS FLX chemistry (Roche) according to

the manufacturer’s protocol.

Sequence cleaning and assembly
All sequence reads taken directly from the 454 GS-FLX

sequencer were run through the sff file program (Roche) to remove

sequencing adapters A and B, poor sequence data and barcodes.

Contigs and singletons were renamed in a format ‘A (M, O,

T)_000001’ where prefix ‘A’ was used for all assembled contigs

derived from M, O, T cDNA libraries, with M (Muscle), O

(Ovary), and T (Testis) standing for an individual library and

assembly, and 000001 standing for the first arbitrary contig

assignment number. In the case of singletons, the same prefix

codes (A, M, O, T) for cDNA library origin(s) were added in front

of each read name (e.g. A_G1OH9PT01AF0I7). Sequences

containing homopolymers of a single nucleotide comprising

.60% of the read and that were .100 nucleotides in length

were discarded. Trimmed sequences were assembled de novo using

the default parameters of Newbler 2.5.3 (Roche). Each dataset of

mRNA sequences from muscle, ovary and testis tissue was

considered separately as being representative of the transcriptome

of that tissue type at the time of sampling. On the assumption that

some transcripts would be replicated across tissue-type datasets,

these were merged in the combined dataset. After initial quality

filtering, AGRF provided assembled contig and singleton datasets

for analysis. All M. rosenbergii EST sequences obtained were

submitted to NCBI Sequence Read Archive under Accession no.

SRP007672.

Annotation of mRNAs
BLASTx searches [130] of the GenBank non-redundant (nr)

database hosted by the National Center for Biotechnology

Information (NCBI) (http://www.ncbi.nlm.nih.gov/) were per-

formed on all contigs and singletons to identify putative mRNA

functions (E-value threshold ,1e–5) as well as new ESTs. Numbers

of ESTs that were either unique or shared among the libraries

were visualized using a 3-way Venn diagram constructed using

Venny [131]. Total EST numbers in the Venn diagram quadrants

excluding abundant ESTs for ribosomal proteins counted

redundant ESTs only once. The Blast2GO software suite

[132,133] was used to predict functions of individual ESTs, assign

Gene Ontology terms [134,135], and to predict metabolic

pathways using Kyoto Encyclopaedia of Genes and Genome

(KEGG) [136,137]. To identify protein domains, all translated

sequences were interrogated against the InterPro databases

(http://www.ebi.ac.uk/Tools/pfa/iprscan/) using the InterProS-

can tool [138]. The numbers of contigs annotated with each GO

term for each library were quantified using WEGO [139].

Identification of EST-SSR motifs and EST-SNPs
All EST sequences were searched for SSR motifs using the

QDD program [140]. Default settings were employed to detect

perfect di-, tri-, tetra-, penta-, and hexa-nucleotide motifs

(including compound motifs). To be assigned, dinucleotide

SSRs required a minimum of 6 repeats, and all other SSR

types a minimum of 5 repeats. The maximum interruption

between 2 neighbouring SSRs to consider it being a compound

SSR was set at 100 nucleotides. Perl script modules linked to

the primer modelling software Primer3 [141] were used to

design PCR primers flanking for each unique SSR region

identified.

Multiple nucleotide sequence alignments of contigs identified

among the EST libraries derived from individual M. rosenbergii

with divergent growth phenotypes were undertaken to identify

putative SNPs. Alignments employed methods developed previ-

ously for plants and other species of agricultural importance

[33,127,142] and included assessments of raw data alignments

used in the initial assembly of contigs. Since no reference

sequences were available, SNPs were identified as superimposed

nucleotide peaks where 2 or more reads contained polymor-

phisms at the variant allele. SNPs were identified using default

parameters in gsMapper (Roche) to align contigs from the

individual and merged tissue type and prawn phenotype datasets

and SNPs were predicted with high confidence when (i) the

difference existed in at least three non-duplicated reads, (ii) the

difference occurred in both the forward and reverse sequence

reads unless present in at least seven same direction reads with

quality scores over 20 (or 30 if the difference involves a 5-mer or

more) and (iii) the difference comprised a single-base overcall or

undercall forming a consensus differing from the each contig

reference. Indels were segregated into simple types containing an

insertion or deletion of at least one nucleotide compared with the

reference sequence or complex types also containing nucleotides

substitutions.

For the merged EST dataset, loose or strict criteria to maximize

the discovery of rare alleles or to minimize the possibility of false-

positive identifications were not considered [26,127]. In addition,

only an overall transition vs transversion (Ts/Tv) ratio was

calculated across the dataset.

Supporting Information
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