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Abstract

Background and Aims: A polymorphism in adiponutrin/patatin-like phospholipase-3 gene (PNPLA3), rs738409 C-.G,
encoding for the I148M variant, is the strongest genetic determinant of liver fat and ALT levels in adulthood and childhood
obesity. Aims of this study were i) to analyse in a large group of obese children the role of the interaction of not-genetic
factors such as BMI, waist circumference (W/Hr) and insulin resistance (HOMA-IR) in exposing the association between the
I148M polymorphism and ALT levels and ii) to stratify the individual risk of these children to have liver injury on the basis of
this gene-environment interaction.

Methods: 1048 Italian obese children were investigated. Anthropometric, clinical and metabolic data were collected and the
PNPLA3 I148M variant genotyped.

Results: Children carrying the 148M allele showed higher ALT and AST levels (p = 0.000006 and p = 0.0002, respectively).
Relationships between BMI-SDS, HOMA-IR and W/Hr with ALT were analysed in function of the different PNPLA3 genotypes.
Children 148M homozygous showed a stronger correlation between ALT and W/Hr than those carrying the other genotypes
(p: 0.0045) and, therefore, 148M homozygotes with high extent of abdominal fat (W/Hr above 0.62) had the highest OR (4.9,
95% C. I. 3.2–7.8, p = 0.00001) to develop pathologic ALT.

Conclusions: We have i) showed for the first time that the magnitude of the association of PNPLA3 with liver enzymes is
driven by the size of abdominal fat and ii) stratified the individual risk to develop liver damage on the basis of the
interaction between the PNPLA3 genotype and abdominal fat.
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Introduction

Children and adolescents are becoming increasingly vulnerable

to obesity [1]. Paralleling childhood obesity, non alcoholic fatty

liver disease (NAFLD) is rapidly becoming one of the most

important chronic liver diseases among children [2]. The spectrum

of NAFLD ranges from simple steatosis to steatosis associated with

inflammation and fibrosis (non-alcoholic steatohepatitis, NASH),

which can eventually progress to liver cirrhosis [3]. It has been

demonstrated, in fact, that children with NAFLD may develop

later in life severe liver disease with a consequent need for liver

transplantation [4]. A body of evidences shows that NAFLD is

highly related to the metabolic consequences of obesity, such as

dyslipidemia and insulin resistance [5,6]. Also body fat distribu-

tion, and particularly abdominal fat, appears to be implicated in

the risk to develop NAFLD [7]. A genetic predisposition, however,

regardless of these risk factors, has been postulated on the basis of

association and family studies [8]. Two genomewide association

studies identified a polymorphism in adiponutrin/patatin-like

phospholipase-3 gene (PNPLA3), rs738409 C-.G, encoding for

the I148M (isoleucine-to-methionine substitution at residue 148)

protein variant, as the strongest genetic determinant of liver fat

and alanine aminotransferase (ALT) levels [9,10]. Adiponutrin is

expressed in the liver and adipose tissue, has both triacylglycerol

hydrolase and acylglycerol transacetylase activity [11] and it was

suggested that the 148M allele encodes for a loss-of-function

variant that predisposes to steatosis by decreasing triglyceride

hydrolysis in hepatocytes [12]. Furthermore, in two series of

biopsied patients the presence of the 148M allele influences both

the presence of NASH and the severity of fibrosis in patients with

NAFLD, irrespectively of the degree of obesity, the presence of

diabetes, and the previously demonstrated effect of adiponutrin

genotype on steatosis [13,14]. The role of PNPLA3 I148M

polymorphism has been recently studied also in pediatric NAFLD

with results which are not univocal. Whereas Valenti el al showed

an association between this polymorphism and NAFLD histologic
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severity [15], another study [16] found an association only with

the age at the presentation of NAFLD, not supporting the clinical

utility of PNPLA3 genotyping for risk stratification [17].

Interestingly, whereas the 148M allele influenced liver fat

content independently of body mass index (BMI), dyslipidemia

and insulin resistance, it has been demonstrated, in a group of

obese adults, that morbid obesity exposes the association between

the 148M allele and ALT. The degree of obesity seems, therefore,

to act as a stressor on a specific genetic background (the 148M

polymorphism) influencing the susceptibility to deleterious conse-

quences (increased liver enzymes) [18]. Although the use of

PNPLA3 genotyping in clinical practice, currently, appears

controversial, the possibility exists that the use of PNPLA3

analysis in combination with non-genetic factors would really

help in the prediction of individuals at risk for liver damage [17].

Aims of this study were i) to analyse in a large group of obese

Italian children the potential relative role of the interaction of not-

genetic factors such as BMI, waist circumference and insulin

resistance in exposing the association between the I148M

polymorphism and ALT levels and ii) to stratify the individual

risk of these children to have liver injury on the basis of this gene-

environment interaction.

Materials and Methods

Cohort description and clinical evaluation
Of 2720 Caucasian obese children and adolescents, consecu-

tively referred to our ward (childhood obesity service) since the

1999, 1058 patients, randomly chosen, have been enrolled. No

differences in mean age, sex distribution, pubertal stage and

obesity degree were observed between the study sample and the

sample of subjects not included in the study.

Patients had between 2 and 16 years of age and showed a BMI

exceeding the 95th percentile for their age and sex. Subjects using

medications that alter blood pressure, glucose or lipid metabolism

were excluded (10 patients). Children had undergone hepatitis B

vaccination, which is compulsory in Italy. No prior history of

hepatitis was reported in any children. The ethical committee of

the Second University of Study of Naples approved the study.

Written consent was obtained for each participating child from the

parent/legal guardian of the child.

Of the 1048 subjects definitively enrolled in the study 525 were

girls. This sample was representative of the 2720 children referred

to our ward from 1999 to 2009. Weight and height were measured

and BMI was calculated. Standard deviations scores (SDS) for

BMI were calculated by using the LMS method [19]. The

population mean age was 10.663 years; the mean BMI-SDS was

360.7. Pubertal stage was assessed using Tanner criteria [20].

Waist circumference was measured by trained technicians to the

nearest centimeter with a flexible steel tape measure while the

subjects were standing, after gently exhaling, as the minimal

circumference measurable on the horizontal plane between the

lowest portion of the rib cage and iliac crest [21]. The average

value of 2 waist measurements was obtained and, as indirect

measure of the amount of abdominal fat, the ratio between waist

and height (W/Hr) was calculated.

Metabolic evaluation
After informed consent, a blood sample was drawn from each

patient after an overnight fast. The serum was frozen at 220uC
until analysed. Triglycerides levels were determined by an

enzymatic colorimetric test with lipid clearing factor. Serum

ALT and AST were assayed using a Hitachi Analyser (Boerhinger-

Mannheim Diagnostics, Indianapolis, IN). ALT greater than 40

U/L was classified as elevated [22]. In the children with elevated

liver enzymes the presence of hepatitis C was excluded.

A subgroup of 497 children underwent an oral glucose tolerance

test (OGTT). Insulin and glucose levels were measured during the

OGTT at baseline and later every 30 minutes for 120 minutes.

Insulin resistance was assessed using the homeostasis model

assessment (HOMA-IR). For a better definition of peripheral

insulin sensitivity we calculated also the whole body insulin

sensitivity index (WBISI). The composite WBISI is based on values

of insulin and glucose obtained from the OGTT, as originally

described [23] and represents good estimates for clamp-derived

insulin sensitivity [24]. Immunoreactive insulin was assayed by

IMX (Abbott Diagnostics, Santa Clara, CA). The mean intra- and

inter-assay coefficients of variations were 4.7% and 7.2%,

respectively.

Genotyping
Patients were genotyped for PNPLA3 rs738409 C to G variant,

underlying the I148M substitution, using in all cases both direct

sequencing and restriction enzyme analysis. Samples giving

discordant results were re-analyzed.

The following primers were used, F: 59-GCCCTGCT

CACTTGGAGAAA-39 and R: 59-TGAAAGGCAGTGAGG-

CATGG-39. For restriction enzyme analysis FokI enzyme was

used to identify the variant, since the G allele eliminates a FokI

restriction site.

Statistical analysis
A Chi Square test was used to verify whether the genotypes

were in Hardy-Weinberg equilibrium and to compare categorical

variables. Differences among genotypes for continuous variables

were evaluated by a general linear model (GLM). When it was

appropriate age, gender and BMI-SDS were used as covariates.

Levene’s test of equality of variance was used to test the differences

of the variance of the quantitative trait ALT according to the

PNPLA3 genotype. This test is based on the fact that, under

plausible scenarios of gene-gene or gene-environment interaction,

the variance of a quantitative trait (e. g.; ALT levels) is expected to

differ among the three possible genotypes of a biallelic SNP (e. g.;

PNPLA3) [25]. A comparison of regression lines was performed to

examine the influence of the genotype on the relationship between

ALT and W/Hr, BMI-SDS or HOMA-IR.

Not-normally distributed variables were log transformed before

the analysis, but raw means are shown.

To evaluate which value of W/Hr had the best sensitivity/

specificity ratio to predict pathologic ALT levels, we calculated a

Receiver Operating Characteristic (ROC) curve. The area under

the curve (AUC) measures the degree of separation between an

affected and a non-affected subject by a specific test. An AUC of 1

indicates perfect separation between affected and non-affected

subjects, whereas an AUC of 0.5 indicates no discrimination

between the test values. The optimal cut-off point was obtained

using the Youden index (maximum [sensitivity +specificity –1]).

A logistic regression was performed to calculate the odds of

showing pathologic levels of ALT according to both the phenotype

(i. e.; W/Hr) and the genotype (i. e.; PNPLA3 I148M poly-

morphism). Age, gender and BMI SDS were used as covariates.

The Stat-Graph 3.0 software for Windows was used for all the

statistical analyses. ROC curve analysis was made using Statistical

Program for Social Sciences Version 13.0 (SPSS Inc, Chicago, Ill).

All data are expressed as means 6 SD. P-values less than 0.05

were considered statistically significant and where appropriate

were adjusted for multiple comparisons.

Effect of PNPLA3 and Abdominal Fat on Liver Damage
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Results

The frequency of the different PNPLA3 rs738409 genotypes

distribution was in Hardy-Weinberg equilibrium (p: 0.11).

Five hundred and thirty-one patients were homozygous for the

wild type allele (CC), 415 were CG and 102 were GG (i.e.; both

alleles producing the 148M protein). The frequency of the

PNPLA3 minor allele was 0.29, which is in line with the

frequencies reported in obese subjects belonging to the same

geographic area [18,26]. The clinical characteristics of the study

subjects are shown in Table 1.

We observed a striking increase in circulating ALT and AST

levels in the children carrying the 148M allele (p = 0.000006 and

p = 0.0002 respectively), adjusting for age, gender, pubertal stage,

and BMI-SDS (Table 2). Thirty three percent of 148M

homozygous had ALT levels above 40 U/L compared with 17%

of heterozygous and 13% of homozygous for the major allele

(p = 0.00001). Consistently, children homozygous for the 148M

allele had an Odds Ratio (OR) to show pathologic ALT of 2.97

(95% C.I. 1.80–4.18, p = 0.00001) compared to the patients

homozygous for the 148I allele. No differences for BMI-SDS, total

cholesterol, HDL-C, triglycerides, HOMA and WBISI were found

across the genotypes (Table 2).

Based on the theoretical observation that the within genotype

variance of a quantitative trait will vary when a genetic or an

environmental interaction is present, we explored the presence of

an interacting covariate on the genetic effect of PNPLA3 on serum

ALT levels. Levene’s test of equality of variance was statistically

significant (P,0.00001) strongly suggesting the presence of an

interacting covariate. Among the biologically plausible environ-

mental interacting factors, we focused on BMI-SDS, HOMA-IR

and W/Hr. As expected, all these factors directly correlated with

ALT levels in our population (BMI-SDS: r = 0.07, p = 0.01;

HOMA-IR: r = 0.019, p = 0.00001; W/Hr: r = 0.25, p = 0.00001).

A multivariate analysis including BMI-SDS, HOMA-IR and W/

Hr in the model showed that the strongest predictor for ALT levels

was W/Hr (p = 0.000001). Relationships between BMI-SDS,

HOMA-IR and W/Hr with ALT levels were further analysed in

function of the different PNPLA3 genotypes, comparing the slope

of the relative regression lines (Figure 1).

Children homozygous for the PNPLA3 minor allele (148M)

showed a stronger correlation between ALT and W/Hr than those

carrying theI/M or the I/I genotypes, as resulting by the

comparison of regression lines (p: 0.0045) (Figure 1. A), supporting

the idea that the effect of rs738409 on ALT levels has a relevant

magnitude overall in conditions of excess abdominal fat accumu-

lation. Difference among the three regression line intercepts was

statistically significant (p,0.01).

Comparison of the regression line slopes was performed for BMI-

SDS and HOMA-IR and was not significant (Figure 1. B and 1. C).

To identify children at greater risk to have pathologic ALT levels

on the basis of the size of their abdominal fat, we performed a ROC

curve analysis to detect the W/Hr with the best sensitivity and

specificity, which resulted 0.62 (AUC = 0.624; 95% CI = 0.58–0.67;

Sensitivity = 0.665, Specificity = 0.541, p = 0.0001). Successively, in

order to obtain a complete risk stratification of the possibilities to

have liver injury, we subdivided the population of obese children in

six categories according to W/Hr (below or above 0.62) and to

PNPLA3 genotypes (I/I, I/M or M/M) (Table 3).

Logistic regression analysis showed that subjects homozygous

for the PNPLA3 minor allele and with W/Hr above 0.62 (category

Table 1. Clinical and laboratory characteristics of the 1048
children involved in the study.

N 1048

Male/Female 523/525

Tanner 1 (%) 50.3

Tanner 2 (%) 20

Tanner 3 (%) 15

Tanner 4 (%) 12.7

Tanner 5(%) 2

Age (years) 10.663

BMI 3164.8

BMI-SDS 360.7

W/Hr 0.6260.06

HOMA 5.564.3

WBISI* 2.561.6

Total Cholesterol (mg/dl) 160631

Triglycerides (mg/dl) 99649

HDL-C (mg/dl) 46612

ALT (U/L) 29622

AST (U/L) 2469

Gamma-GT (U/L) 1969

Values are expressed as means 6 standard deviations. Ranges are in brackets.
Abbreviations: BMI-SDS: Body Mass Index Standard Deviation Scores; W/Hr:
Waist circumference to height ratio; HOMA-IR: homeostatic model of
assessment of insulin resistance index; WBISI: whole body insulin sensitivity
index; HDL-C: high density lipoprotein-cholesterol; ALT: alanine transaminase;
AST: aspartate transaminase; Gamma-GT: Gamma-Glutamyl transferase. * WBISI
was available in 497 patients.
doi:10.1371/journal.pone.0027933.t001

Table 2. Clinical and laboratory characteristics of obese
patients subdivided by PNPLA3 I148M genotype.

II IM MM P values

Number (%) 531 (51%) 415 (39%) 102 (10%)

Age (years) 10.663 10.463 10.462.8 0.6

BMI -SDS 360.7 360.8 2.960.6 0.2

W/Hr 0.6260.05 0.6260.06 0.6160.04 0.2

HOMA-IR 5.764.6 5.463.7 5.263.6 0.7

WBISI * 2.461.5 2.661.6 2.761.7 0.6

Total Cholesterol
(mg/dl)

159630 161630 160632 0.7

Triglycerides (mg/dl) 976 44 1006 55 101645 0.4

HDL-C (mg/dl) 46612 46612 46611 0.8

ALT (U/L) 25616 30622 38630 0.000006

AST (U/L) 2368 25610 28610 0.0002

Gamma-GT (U/L) 1868 1969 19610 0.4

Values are expressed as means 6 standard deviations. GLM analysis including
gender, age and pubertal stage as covariates has been used to compare
continuous variables. Abbreviations: BMI-SDS: Body Mass Index Standard
Deviation Scores; W/Hr: Waist circumference to height ratio; HOMA:
homeostatic model of assessment of insulin resistance index; WBISI: whole
body insulin sensitivity index; HDL-C: high density lipoprotein-cholesterol; ALT:
alanine transaminase; AST: aspartate transaminase; Gamma-GT:
Gamma-Glutamyl transferase.
*WBISI was available in 497 patients.
doi:10.1371/journal.pone.0027933.t002
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I) had the highest OR (4.9, 95% C. I. 3.2–7.8, p = 0.00001) to

develop pathologic ALT and that OR progressively reduced in the

other groups of patients according to the strength of the

interaction between W/Hr and PNPLA3 genotype (Table 3).

In fact, children homozygous for the PNPLA3 wild allele (148I)

and with W/Hr equal or below 0.62 (category VI) showed the

lowest possibilities to have pathologic ALT (OR 0.28, 95% C. I.

0.1–0.5, p = 0.00001), (Table 3). The post-hoc statistical power for

multiple regression of the present study is 0.99. Liver enzymes of

one hundred and fifty patients who did not enter in a weight loss

program and were, therefore, still obese, were re-evaluated after 5

years. Using the categories assigned at the time of the first

evaluation we observed the persistence of the difference concern-

ing ALT levels. Particularly, patients who had belonged to

category I showed the highest mean ALT levels (53628 UI/L),

and ALT levels progressively decreased from category I to

category VI (p = 0.01).

Discussion

Two recent studies have shown an association between the

rs738409 polymorphism in PNPLA3 and increased liver enzymes

in Caucasian obese subjects, both adults and children [18,26].

These data were in agreement with previous results obtained in

Hispanics [9], an ethnic group with high propensity to develop

liver steatosis and inflammation. In both cases the polymorphism

was not associated with crude estimates of insulin resistance. In

other cohorts of African American, European American and

European subjects, not selected on the basis of their BMI, the

association between PNPLA3 polymorphism and liver enzymes

has not been found [9,27].

In line with the data on obese subjects, we report in a group of

1048 Italian obese children and adolescents that the PNPLA3

rs738409 polymorphism was associated with ALT levels in a dose-

dependent manner.

We expanded the knowledge about the lack of association

between the polymorphism and insulin resistance investigating

whether the PNPLA3 148M allele was associated with insulin

sensitivity estimated from OGTT. The advantage of this method

for evaluating insulin sensitivity compared to the use of fasting

values, as previously done [18,26], is that it provides a more

dynamic and precise measurement of this phenotype [27]. We

found no relationships of the PNPLA3 polymorphism with insulin

sensitivity, in agreement with similar results obtained in obese

adults [18] and with a recent work showing, in obese children

subjected to an insulin clamp, that the level of hepatic and

peripheral insulin resistance are not associated to PNPLA3

rs738409 polymorphism [28]. Furthermore, we found no

association with BMI and serum triglycerides. Although a selection

bias, considering that about one half of the investigated children is

in different pubertal state, may be suspected, it should be

considered that all analyses have been adjusted for pubertal

development.

Pediatric population represents an ideal group of subjects to

study the interaction between genetic factors and phenotypic

characteristics in producing liver injury because of the low number

of confounding factors in pediatric patients (e. g.; the duration of

the disease, lifestyle habits, comorbidities, and drugs).

Based on this concept, we have investigated for the first time if

obesity degree, insulin resistance or abdominal fat might modulate

the strength of the effect of PNPLA3 I148M polymorphism on

liver enzymes and we have found a strong interaction between W/

Hr and PNPLA3 genotype. This suggests that waist circumference

Figure 1. Association between ALT levels and W/Hr, HOMA and
BMI-SDS according to the PNPLA3 genotype. A: Regression
analysis describing the relationship between ALT levels and W/Hr in
patients homozygous for PNPLA3 M variant, heterozygous, and
homozygous for PNPLA3 I variant. The regression between ALT levels
and W/Hr in the group of patients homozygous for PNPLA3 M/M is
described by the equation y = 4.6+2.4*6 (r = 0.36; p = 0.00001). The
equation for PNPLA3 I/M was y = 3.7+1.4*6 (r = 0.22; p = 0.00001). The
equation for PNPLA3 I/I was y = 3.4+1.1*6 (r = 0.17; p = 0.0005). The
comparison between the three regression lines is significant
(p = 0.0045). B: Regression analysis describing the relationship between
ALT levels and HOMA-IR in patients homozygous for PNPLA3 M variant,
heterozygous, and homozygous for PNPLA3 I variant. The regression
between ALT levels and HOMA-IR in the group of patients homozygous
for PNPLA3 M/M is described by the equation y = 3.2+0.14*6 (r = 0.18;
p = 0.02). The equation for PNPLA3 I/M was y = 3.0+1.12*6 (r = 0.16;
p = 0.001). The equation for PNPLA3 I/I was y = 2.9+0.16*6 (r = 0.23;
p = 0.00005). The three equations are not significantly different as to
slopes (p = 0.7). C: Regression analysis describing the relationship
between ALT levels and BMI z-score in patients homozygous for PNPLA3
M variant, heterozygous, and homozygous for PNPLA3 I variant. The
regression between ALT levels and BMI z-score in the group of patients
homozygous for PNPLA3 M/M is described by the equation
y = 3.1+0.24*6 (r = 0.01; p = 0.13). The equation for PNPLA3 I/M was
y = 3.1+0.17*6 (r = 0.08; p = 0.14). The equation for PNPLA3 I/I was
y = 2.9+0.17*6 (r = 0.09; p = 0.04). The three equations are not
significantly different as to slopes (p = 0.5).
doi:10.1371/journal.pone.0027933.g001
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may play an important role in the measure of the effect of the

I148M polymorphism on ALT levels.

The clinical use of waist circumference in children is limited by

the lack of an internationally accepted classification which gives

age-specific waist circumference cutoffs and by the lack, in most

countries, of population-based reference values [29]. To overcome

these limitations the use of the waist-to-height ratio has recently

been proposed [30–33]. Waist circumference is highly correlated

with visceral adipose tissue and metabolic and cardiovascular risk

factors in children, adolescents and adults [34,35]. This support

the idea that the effect of the I148M variant on liver enzymes has a

relevant magnitude in condition of excess of visceral fat which,

therefore, acts as a stressor on a specific genetic background.

That waist circumference, rather than generalised obesity,

contributes to liver damage in children with NAFLD has been

demonstrated analysing liver biopsies of about two hundred

Caucasian children [7]. Furthermore, examining the association

between visceral fat evaluated by magnetic resonance and liver

inflammation in patients with NAFLD van der Poorten et al. have

showed that the extent of liver injury augmented with increase in

visceral fat and this correlation remained statistically significant

even when controlled for insulin resistance and hepatic steatosis

[36]. Therefore, visceral fat appears directly associated with liver

inflammation, independently of insulin resistance and hepatic

steatosis. Recently, an association between the PNPLA3 I148M

polymorphism and histologic liver damage (NASH and liver

fibrosis) has been reported [13–15]. In one of these reports [13] it

has been shown that adiponutrin 148M variant may modulate the

expression of molecules, such as peroxisome proliferator-activated

receptor-alpha (PPAR-alpha) and fas ligand (FASL) [37] impli-

cated in the pathogenesis of liver injury [38]. Putting these data

together with our results we speculate that the exposing role played

by abdominal fat on the PNPLA3 polymorphism may be sustained

by the close direct association between visceral fat and liver

inflammation. Nevertheless, the possibility that, according to the

data of Abate et al. [39,40], is the abdominal subcutaneous fat

rather than the visceral fat to play a major role in this association,

based on our results, cannot be dismissed.

Feldstein et al. have recently demonstrated that NAFLD in

children is associated with a significantly shorter survival as

compared to survival of the general population of same age and

sex [4]. Furthermore, it has been shown that average annual

overall health care costs are significantly higher for individuals

with fatty liver disease and increased ALT levels compared to the

general populations [41]. It would be, therefore, of great clinical

value to identify those obese children at higher risk for NAFLD

who would be expected to benefit the most from medical therapy.

The stratification of the entire population of obese children on

the basis of their PNPLA3 genotype and of the size of abdominal

fat (W/Hr) in six groups with increasing possibilities to show

pathologic liver enzymes adds novel and original knowledge in the

field and would represent an important step in the stratification of

the individual risk to have liver injury.

Concluding, we have studied the PNPLA3 I148M polymor-

phism in the largest cohort of obese children till now investigated

and we have for the first time i) showed that the magnitude of the

association with liver enzymes is driven by the size of abdominal

fat and ii) stratified the individual risk of these patients to develop

liver damage on the basis of the interaction between the PNPLA3

genotype and the size of abdominal fat.
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