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Abstract

The three SLIT ligands and their four ROBO receptors have fundamental roles in mammalian development by promoting
apoptosis and repulsing aberrant cell migration. SLITs and ROBOs have emerged as candidate tumour suppressor genes
whose expression is inhibited in a variety of epithelial tumours. We demonstrated that their expression could be negatively
regulated by cortisol in normal ovarian luteal cells. We hypothesised that after ovulation the locally produced cortisol would
inhibit SLIT/ROBO expression in the ovarian surface epithelium (OSE) to facilitate its repair and that this regulatory pathway
was still present, and could be manipulated, in ovarian epithelial cancer cells. Here we examined the expression and
regulation of the SLIT/ROBO pathway in OSE, ovarian cancer epithelial cells and ovarian tumour cell lines. Basal SLIT2, SLIT3,
ROBO1, ROBO2 and ROBO4 expression was lower in primary cultures of ovarian cancer epithelial cells when compared to
normal OSE (P,0.05) and in poorly differentiated SKOV-3 cells compared to the more differentiated PEO-14 cells (P,0.05).
Cortisol reduced the expression of certain SLITs and ROBOs in normal OSE and PEO-14 cells (P,0.05). Furthermore blocking
SLIT/ROBO activity reduced apoptosis in both PEO-14 and SKOV-3 tumour cells (P,0.05). Interestingly SLIT/ROBO expression
could be increased by reducing the expression of the glucocorticoid receptor using siRNA (P,0.05). Overall our findings
indicate that in the post-ovulatory phase one role of cortisol may be to temporarily inhibit SLIT/ROBO expression to
facilitate regeneration of the OSE. Therefore this pathway may be a target to develop strategies to manipulate the SLIT/
ROBO system in ovarian cancer.
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Introduction

The secreted Slit glycoprotein and its Robo receptor were

originally identified as important axon guidance molecules in the

developing Drosophila nervous system [1,2]. Their role is evolu-

tionary conserved as vertebrate SLIT (SLIT1, SLIT2, SLIT3) and

ROBO (ROBO1, ROBO2, ROBO3, ROBO4) also inhibit

aberrant neuron migration [3]. However most members of the

vertebrate SLIT and ROBO families are also expressed outside of

the nervous system and have been linked with the development of

a variety of organs including the mammary gland and ovary [4,5].

During organogenesis the SLIT/ROBO interaction is thought to

regulate numerous processes including cell proliferation, apoptosis,

adhesion and migration of non-neuronal cells [6,7].

Molecules that have important roles in development are often

dysregulated in cancer [8]. Indeed the SLITs and ROBOs are

candidate tumour suppressor genes whose expression is reduced in

numerous epithelial tumour cell types, mainly through deletion,

loss of heterozygosity and promoter region hypermethylation [9].

This includes cancers derived from reproductive tissues including

cervical, prostate and ovarian germ-line tumours [10–13]. Recent

functional studies have also supported the theory that the SLITs

and ROBOs have tumour suppressor activities. The SLIT/

ROBO pathway promoted programmed cell death and/or

reduced proliferation of fibrosarcoma, oesophageal, hepatocellu-

lar, colorectal, prostate and breast carcinoma cells [14–17]. SLIT2

also inhibited the invasion of numerous different types of tumour

cells including those from the prostate, breast, endometrium and

ovary [13,18,19].

The SLIT/ROBO pathway has now also been shown to have

physiological roles in normal reproductive tissues [6]. SLIT/

ROBO signalling seems to regulate placental angiogenesis and

trophoblast function in an autocrine and/or paracrine manner

[20]. In addition, most of the SLITs and ROBOs are also

temporally regulated during the normal menstrual cycle in the

endometrium and are expressed in the fallopian tube [21].

Furthermore there is increased expression of the SLITs and

ROBOs in the adult corpus luteum during the late-luteal phase of

the ovarian cycle. At this time the SLIT/ROBO interaction

may act to promote its disintegration by stimulating apoptosis

and inhibiting migration of luteal cells [22]. In the corpus

luteum and endometrium expression of SLITs and ROBOs are

hormonally regulated. There was reduced SLIT/ROBO expres-

sion in the decidualised endometrium of early pregnancy [21].

In addition the luteotrophic molecules, human chorionic

gonadotrophin [23] and cortisol [24], that are increased in

early pregnancy, reduce the expression of SLITs and ROBOs in

luteal cells [22].
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Around 90% of ovarian malignancies are classified as epithelial

tumours that are thought to derive from the ovarian surface

epithelium (OSE) [25]. The risk of ovarian cancer is positively

correlated with the number of ovulations [26]. Thus recurrent

injury and subsequent repair of the OSE during ovulation may

predispose this tissue to neoplasia [27]. Ovulation is an

inflammatory event disrupting the OSE, but requiring resolution.

This repair is facilitated by an increased local production the anti-

inflammatory steroid cortisol via up-regulation of 11ß-hydroxy-

steroid dehydrogenase type 1 [28].

We hypothesised that the OSE express SLITs and ROBOs and

that cortisol could temporarily reduce the expression of these

tumour suppressor genes to facilitate survival, proliferation and

migration of these cells during the repair process. If this was the

case this pathway might have a role in ovarian cancer progression

and if it remains active in malignant OSE cells it may offer

therapeutic strategies to manipulate these genes. We therefore

investigated the expression, localisation and regulation of the

SLIT/ROBO pathway in the OSE. We also examined whether

the SLITs and ROBOs were aberrantly expressed and hormonally

regulated in ovarian cancer cells. Furthermore we analysed the

functional significance of a perturbed SLIT/ROBO pathway in

ovarian cancer cells.

Results

The SLIT/ROBO pathway is differentially expressed in
human OSE, ovarian cancer cells and ovarian tumour cell
lines

SLIT2 and ROBO1 could be immunolocalised to the normal

human ovarian surface epithelium (Fig. 1A–C). RT-PCR analysis

confirmed the expression of SLIT2 and ROBO1 in primary cultures

of OSE and demonstrated that there was some expression of

SLIT3, ROBO2 and ROBO4 in these cells (Fig. 1D). We then

investigated the expression of these genes in primary cultures of

malignant cells derived from the ascitic fluid of women with

epithelial ovarian cancer. SLIT2, SLIT3, ROBO1, ROBO2 and

ROBO4 were also expressed in these cells but quantitative analysis

showed that they were reduced by 25–82% when compared to

primary cultures of normal OSE (Fig. 2A) (P,0.05).

In order to confirm that malignant OSE cells had a reduced

expression of SLITs and ROBOs we examined their expression in

two different ovarian tumour cell lines. The PEO-14 cell line is

derived from a well-differentiated ovarian adenocarcinoma and

has similarities with more benign ovarian epithelial cells and early

stage ovarian cancer. In contrast, the SKOV-3 cell line is derived

from a poorly differentiated ovarian adenocarcinoma and is more

characteristic of an advanced tumour [29]. Both these cell lines

expressed SLIT2, SLIT3, ROBO1 and ROBO2 (Fig. 2B). However,

paralleling our results in the primary cell culture, SLIT2, SLIT3

and ROBO2 expression was decreased by between 58% and 97%

in the poorly differentiated SKOV-3 cells when compared to the

well-differentiated PEO-14 cells (Fig. 2C) (P,0.05). Although

PEO-14 and SKOV-3 cells may differ in other aspects as well as

their differentiation status these data suggest that expression of the

SLIT/ROBO tumour suppressor gene pathway may be reduced

during tumour development or progression.

Blocking the SLIT/ROBO interaction decreases apoptosis
in ovarian tumour cells

The effect of the SLIT/ROBO pathway on cell survival was

investigated using a recombinant ROBO1/Fc chimera, which acts

as a ligand trap to inhibit the SLIT/ROBO interaction, and direct

inhibition of SLIT2 using siRNA. Treatment of PEO-14 and

SKOV-3 cells with the ROBO1/Fc chimera did not affect cell

proliferation (P.0.05, data not shown). However in both the

PEO-14 and SKOV-3 cells blocking SLIT action with the

ROBO1/Fc chimera reduced apoptosis by 20–21% as measured

by an activated caspase-3/7 assay (P,0.05) (Fig. 3A). Transient

transfection of SLIT2 siRNA reduced solely SLIT2 expression in

both PEO-14 and SKOV-3 cells. PEO-14 and SKOV-3 cells with

reduced SLIT2 expression had a significant 17–26% decrease in

cleaved Caspase-3 and -7 activities (P,0.05, paired t-test) (Fig. 3B).

This suggests that a reduction in the SLIT/ROBO gene pathway

is associated with increased cell survival.

Cortisol negatively regulates the expression of SLITs and
ROBOs in OSE and a well-differentiated ovarian cancer
cell line

We then investigated whether the expression of the SLIT/

ROBO pathway in ovarian epithelial cells was regulated. In

human ovarian luteal cells the SLIT/ROBO pathway could be

physiologically inhibited by cortisol [22]. As cortisol is produced

locally in the OSE, and has an anti-inflammatory role after

ovulation [30], we examined whether cortisol could regulate

SLIT/ROBO expression in the OSE. SLIT2, SLIT3, ROBO1,

ROBO2 and ROBO4 expression was reduced by 25–30% in cortisol

(1000 nM) treated primary cultures of normal OSE (P,0.05)

(Fig. 4A). However, in primary cultures of malignant epithelial

Figure 1. Expression analysis of the SLIT and ROBO gene
families in human OSE (hOSE). A) Light-field microscopy of ovary
showing specific staining for SLIT2 (brown) in the OSE. B) Likewise
positive ROBO1 (brown) staining was also observed in the OSE. C) No
staining was observed in negative controls. Scale bars represent
100 mm. D) RT-PCR for SLITs and ROBOs in cultured hOSE. With the
exception of SLIT1 and ROBO3 the members of the SLIT and ROBO
families were expressed in hOSE. FB = Fetal Brain positive control;
-RT = RT negative negative control.
doi:10.1371/journal.pone.0027792.g001

SLITs and ROBOs in Ovarian Surface Epithelium
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cells cortisol did not result in any further reduction in the

expression of these genes (P.0.05) (Fig. 4B).

The PEO-14 and SKOV-3 ovarian tumour cell lines also have

the potential to respond to cortisol treatment as they express the

glucocorticoid receptor (GR). In addition they express the

mineralocorticoid receptor (MR) but do not express the proges-

terone receptor (PR) (Fig. 5A). In the more differentiated PEO-14

cells, cortisol reduced the expression of SLIT2, SLIT3, ROBO1 and

ROBO2 by 13–31% (P,0.05) (Fig. 4C). Furthermore cortisol

treatment reduced secreted SLIT2 protein concentration by 53%

(P,0.05) (Fig. 4E). Like the primary cell cultures, the regulation of

these SLITs and ROBOs, as well as the secreted SLIT2 protein, was

lost in the more malignant, and less differentiated, SKOV-3 cells

(P.0.05) (Fig. 4D,F). This suggests that cortisol may have a

physiological role in reducing the SLIT/ROBO interaction during

repair of the OSE and that this pathway may still be active in some

early stage ovarian cancers.

Manipulation of SLITs and ROBOs in ovarian tumour cells
by targeting the glucocorticoid receptor

Thus, although glucocorticoids have a theoretical detrimental

effect on early ovarian cancer cells, it means that manipulation of

the GR, with the aim of increasing SLIT/ROBO gene expression, is

a potential therapeutic target. We therefore ‘‘knocked down’’ GR

using GR siRNA in cortisol-responsive PEO-14 cells. Transfection

of the GRsiRNA for 48 hours caused a significant 63% reduction

in GR expression (P,0.001) (Fig. 5B) without influencing MR

expression (Fig. 5C). This increased the expression of the SLIT2,

ROBO1 and ROBO2 tumour suppressor genes (P,0.05) (Fig. 5D).

In addition, transfection of the GR siRNA resulted in a similar

reduction in GR expression in the cortisol-unresponsive SKOV-3

cells (P,0.01) (Fig. 5B). Importantly the expression of the SLIT2

and ROBO1 tumour suppressor genes was also enhanced by

GRsiRNA transfection (P,0.05) (Fig. 5E).

PEO-14 and SKOV-3 cells were also treated with mifepristone

(RU486), which functions as a GR antagonist. RU486 treatment

Figure 2. Expression of the SLITs and ROBOs in ovarian cancer.
A) Real-time quantitative PCR showing increased SLIT2, SLIT3, ROBO1,
ROBO2 and ROBO4 in primary cultures of hOSE compared to malignant
epithelial cells cultured from the ascites of ovarian cancer patients. B)
RT-PCR showing that both the SKOV-3 and PEO-14 cell lines expressed
SLIT2, SLIT3, ROBO1 and ROBO2. C) Real-time quantitative PCR showing
SLIT2, SLIT3 and ROBO2 transcripts were more abundant in the well
differentiated PEO-14 cells compared to the poorly differentiated SKOV-
3 cells. FB = Fetal Brain positive control; -RT = RT negative negative
control; - = DNA negative negative control; * = P,0.05; ** = P,0.01;
*** = P,0.005.
doi:10.1371/journal.pone.0027792.g002

Figure 3. Inhibiting SLIT-ROBO signalling decreases apoptosis
as measured by an activated caspase-3/7 assay. A) Treatment with
the ROBO1/Fc chimera reduced caspase-3/7 activity, when compared to
treatment PBS/0.1% (w/v) BSA (Control) in both PEO-14 and SKOV-3 cells.
B) Transfection with SLIT2 siRNA reduced caspase-3/7 activity, when
compared to treatment with a scrambled siRNA control. * = P,0.05.
doi:10.1371/journal.pone.0027792.g003
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alone did not influence the expression of SLIT2, SLIT3, ROBO1 or

ROBO2 in either cell line (P.0.05, data not shown). However

RU486 treatment did abolish the cortisol mediated negative

regulation of SLIT/ROBO expression in PEO-14 cells (data not

shown). This suggests that there may be ligand independent effects

of GR on SLIT/ROBO expression and confirms that even in

poorly differentiated cancer cells manipulation of GR can regulate

the expression of tumour suppressor genes.

Discussion

In this study we established that the normal human adult OSE

expresses, at the RNA level, SLIT2, SLIT3, ROBO1, ROBO2 and

ROBO4. Using immunohistochemistry we also showed that SLIT2

and ROBO1 are also expressed at the protein level. As each of the

SLITs is able to interact with each of the ROBOs, with the

possible exception of ROBO4, it is likely that the SLIT/ROBO

interaction is occurring in the OSE. This is not surprising as these

molecules are expressed in other ovarian cells including the

granulosa lutein, theca lutein and luteal fibroblasts cells of the

adult corpus luteum [22] and the pre-granulosa cells and oocytes

of primordial follicles within the developing fetal ovary [5]. The

normal ovary is therefore a site of the physiological autocrine or

paracrine actions of the SLIT/ROBO system.

We found that in normal OSE the SLIT/ROBO system can be

regulated by cortisol. Cortisol reduced the expression of SLIT2,

SLIT3, ROBO1, ROBO2 and ROBO4 in primary cultures of OSE

cells. We have previously shown that the same concentration of

Figure 4. The effect of cortisol on the SLIT/ROBO pathway. A) Real-time quantitative PCR showing that Cortisol (1000 nM), compared to
Ethanol carrier control, reduced SLIT2, SLIT3, ROBO1, ROBO2 and ROBO4 expression in primary cultures of hOSE. B) Cortisol did not alter the expression
of SLITs and ROBOs in primary cultures of ovarian epithelial cancer cells. C) SLIT2, SLIT3, ROBO1 and ROBO2 expression was significantly reduced by
Cortisol in more differentiated PEO-14 cells. D) However expression of these SLITs and ROBOs was not regulated by Cortisol in the poorly
differentiated SKOV-3 cells. E) Cortisol reduced secreted levels of SLIT2 protein in the PEO-14 cells (control secretion is 0.5 ng/ml). F) Cortisol did not
affect secreted levels of SLIT2 protein in the SKOV-3 cells (control secretion is 0.5 ng/ml). * = P,0.05; ** = P,0.01.
doi:10.1371/journal.pone.0027792.g004
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cortisol can inhibit the expression of SLIT2 and SLIT3 in primary

cultures of luteinised granulosa cells and luteal fibroblast-like cells

[22]. After ovulation there is an increase in the local production of

cortisol in the OSE that may act to encourage tissue repair and

renewal [28]. Over the range of physiologically relevant

concentrations in OSE cells cortisol has been shown to have an

anti-inflammatory action and can block interleukin-1 stimulated

MMP-9 expression [30,31]. In addition we have previously shown

that cortisol, by negatively regulating the expression of SLITs and

ROBOs, inhibits apoptosis and facilitates cell migration [22]. This

implies that after ovulation one of the effects of locally produced

cortisol may be to temporarily reduce the expression of the SLIT/

ROBO tumour suppressor genes to facilitate repair of the

damaged OSE.

In many epithelial cancers there is an associated loss of the

expression of members of the SLIT/ROBO family [9]. For

example decreased expression of SLIT and ROBO transcripts has

been observed in oesophageal squamous cell, hepatocellular, lung,

prostate and breast carcinoma [10,15,16,32,33]. This reduction in

expression however is not universal and some cancers, such as

gliomas [34] and recurrent endometrial cancer [35] maintain or

increase the SLIT/ROBO pathway. However alterations in the

expression of this pathway in malignant epithelial cells from

ovarian cancer has not previously been studied.

We cultured malignant epithelial cells from the ascitic fluid of

patients with advanced epithelial ovarian cancer and compared

SLIT/ROBO expression to that in normal OSE. We found

reduced expression of SLIT2, SLIT3, ROBO1, ROBO2 and ROBO4

in malignant cells. Although we believe these cultures are pure

cultures of malignant ovarian cells [36], it is possible that there

may be non-malignant contaminating cells in some cultures. We

therefore also compared the well-differentiated PEO-14 cells with

the poorly differentiated SKOV-3 cells. In both cases the more

malignant cells had lower expression of the SLITs and some of the

ROBOs. It is therefore likely that ovarian cancer can be added to

the list of tumours with reduced SLIT/ROBO expression.

We went on to investigate what effects a less active SLIT/

ROBO pathway may have on cell function. Recent studies have

Figure 5. The effect of manipulation of GR on SLITs and ROBOs in ovarian cancer cells. A) RT-PCR showing that PEO-14 and SKOV-3 cells
expressed GR and MR but not PR. The breast tumour cell line HTB-19 was used as a positive control and –RT was used as a negative control. B) Real-
time quantitative PCR demonstrating that transfection with the GR siRNA reduced GR expression in both cell lines when compared to the scrambled
(sc) siRNA control. C) Confirmation that GRsiRNA did not affect MR expression in PEO-14 and SKOV-3 cells. D) Quantitative Real-time PCR showing an
increase in SLIT2, ROBO1 and ROBO2 expression after GR knock down by GRsiRNA in PEO-14 cells. E) Demonstration that GRsiRNA transfected SKOV-3
cells also had increased SLIT2 and ROBO1 expression. * = P,0.05.
doi:10.1371/journal.pone.0027792.g005
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implied that SLIT2 can inhibit the invasion of endometrial and

ovarian tumour cell lines [19]. We have also shown that inhibition

of SLIT/ROBO signalling in primary cultures luteal fibroblasts

promoted cell migration [22]. In addition blocking SLIT action in

luteal cells from the normal ovary inhibited apoptosis and reduced

in Caspase-3/7 activity [22]. There was a reduction in Caspase-3/

7 mediated apoptosis in PEO-14 and SKOV-3 cells when SLIT/

ROBO signalling was inhibited by blocking SLIT activity using a

ROBO1/Fc chimera and SLIT2 synthesis using siRNA technol-

ogy. Increased apoptosis, associated with reduced expression of the

Bcl-2 and Bcl-xl anti-apoptotic molecules, was seen in SLIT2

transfected fibrosarcomas and oesophageal squamous cell carci-

nomas [16]. SLIT2 could also induce apoptosis associated with

activation of Caspase 3 in breast and lung tumour cell lines [37].

Overall a reduction in SLIT/ROBO activity is associated with

increased cell survival and migration and this is likely to be

relevant in ovarian cancer and its progression.

If the glucocorticoid-mediated inhibition of the SLIT/ROBO

pathway is still manifested in malignant epithelial cells in ovarian

cancer then cortisol may have effects on cell survival and

migration that would be detrimental to the patient. In our

primary cultures of advanced ovarian cancer, as well as the poorly

differentiated SKOV-3 ovarian cancer cell line, the regulation of

SLITs and ROBOs by cortisol was lost. However it was

maintained in the more differentiated PEO-14 tumour cell line.

This implies that the pathway may still be active in the early stages

of ovarian cancer or in less malignant phenotypes. Interestingly

glucocorticoids could inhibit apoptosis during fibrosarcoma

development [38] and in ovarian tumour cell lines and cells from

the ascitic fluid of ovarian cancer patients [39]. Dexamethasone

can also curtail apoptosis induced by chemotherapy in a variety of

different tumour types including breast, prostate, cervical and

ovarian carcinoma cells [40–42]. Therefore glucocorticoid inhibi-

tion of SLITs and ROBOs might still be possible in some

malignant cells.

As the up-regulation of SLITs has been shown to have

inhibitory effects on tumour growth and invasion it is possible

that manipulation of the glucocorticoid pathway has therapeutic

utility. RU486, a GR and PR antagonist, can induce apoptosis in

prostate and ovarian cancer cells [43,44]. Blockade of cortisol

activity in PEO-14 and SKOV-3 cells, which lack PR, using

RU486 did not influence the expression of SLITs and ROBOs in

either cell line. However RU486 did abolish the negative

regulation of SLIT/ROBO expression in PEO-14 cells.

More importantly when we inhibited endogenous GR expres-

sion, using siRNA, there was an increase in the expression of

certain SLITs and ROBOs in both PEO-14 and SKOV-3 cells.

This implies that the SLITs and ROBOs could be regulated, at the

transcriptional level, by GR and that a major role for GR in

controlling SLIT/ROBO expression may be ligand independent.

Our bioinformatic analysis revealed several GR-responsive and

related elements (GREs) in the promoter regions of SLIT2, SLIT3,

ROBO1, ROBO2 and ROBO4. Intriguingly, in neuroblastoma cells,

the activated GR directly interacts with p53 and inhibits p53

dependent cell cycle arrest and apoptosis [45]. However GR can

act as a tumour suppressor in other types of tumours including skin

cancer [46]. Therefore the exact function of GR in cancer could

be dependent on the tumour type.

In summary, this study has provided further evidence that the

SLIT/ROBO pathway has a role in normal ovarian physiology

and is regulated by hormones including glucocorticoids. We have

also shown that the SLITs and ROBOs seem to be aberrantly

expressed in ovarian cancer. Furthermore reduction of this

pathway could augment tumourigenesis and progression through

a dysregulation of cellular processes including apoptosis and

repulsion of cell migration. Overall these data support the concept

that reduction of the SLIT/ROBO pathway is important in

malignant development and progression. This research also

suggests that targeting their physiological regulation by steroids

may have utility in ovarian cancer.

Materials and Methods

Cell and tissue collection
All cells and tissues were obtained with informed written consent

after approval from the Lothian Medical Research Ethics Commit-

tee. Human OSE cells were obtained from the ovaries of

premenopausal women (n = 5) undergoing elective surgery for non-

malignant gynaecological conditions as described previously [29].

Malignant epithelial cells were obtained from the ascitic fluid of

women (n = 8) having surgery for advanced epithelial ovarian cancer

as described previously [36]. Normal human ovarian tissue had been

collected for a complimentary study [47]. The SKOV-3 and PEO-14

cell lines were kindly provided by P. Pujol, INSERM, Montpellier,

France and S. Langdon, University of Edinburgh, Edinburgh, UK.

Cell culture and treatments
Primary OSE cells and primary ovarian cancer cells were

routinely maintained in culture media consisting of Medium 199

(Invitrogen, Paisley, UK) and MCDB105 (Sigma-Aldrich Corp.,

Gillingham, UK) (pH 7.3, 1:1 vv21) supplemented with 15% (v/v)

Fetal Bovine Serum, 50 IU/ml Penicillin, 50 mg/ml Streptomycin

and 2 mM L-Glutamine. PEO-14 and SKOV-3 cells were

cultured in the same media however it was supplemented with

10% (v/v) FBS. For the cortisol treatment studies cells were seeded

in six-well plates at a density of 26105 cells/well. After 24 hours

fresh media containing either 1000 nM Cortisol [22,30,31] in

ethanol with or the equivalent volume of ethanol (0.001% v/v) was

added to the cells. In other experiments 50 mM RU486 [24]

(Sigma) with and without cortisol was used. Each treatment was

carried out in technical triplicate. After 24 hours 1 ml of media

was removed from each well and stored at 220uC for the enzyme-

linked immunosorbent assay (ELISA) experiment and RNA was

extracted from the cells as described below.

For the ROBO1/Fc treatment studies cells were seeded at

26104 cells/well in 96-well plates. After 24 hours fresh media

containing either recombinant rat ROBO1/Fc chimera (R&D

Systems, Inc., Abingdon, UK; 1 mg/ml) or the equivalent volume

of PBS/0.1% (w/v) BSA was added to the cells. Treatments were

carried out in technical quadruplicate. Forty-eight hours later the

cells were analysed for apoptosis using the Caspase-Glo 3/7 assay

as described below.

Short interfering RNA technology
Twenty-four hours before transfection PEO-14 or SKOV-3

cells were seeded in antibiotic free media so that cells were 50%

confluent at the time of transfection. Short interfering RNA

oligonucleotides against GR and SLIT2 as well as a negative

controls, with no significant sequence similarity to human gene

sequences, were obtained from Applied Biosystems (Warrington,

UK). They were transiently transfected into the cells using

Oligofectamine transfection reagent according to manufacturers’

instructions (Invitrogen). Briefly, the siRNA oligonucleotides were

diluted to a final concentration of 200 nM in Opti-MEM I

Reduced Serum Media (Invitrogen) and combined with diluted

Oligofectamine to allow the siRNA:Oligofectamine complexes to

form at room temperature. The siRNA:Oligofectamine complex

was then added dropwise to each well and the cells were then

SLITs and ROBOs in Ovarian Surface Epithelium
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incubated at 37uC, 5% CO2 for 48–72 hours. For expression

analysis experiments the cells were grown in 6-well plates and each

transfection was performed in triplicate. For the caspase-3/7

activity assay experiments the cells were grown in 96-well plates

and each transfection was performed in quadruplicate.

Expression analysis
RNA was extracted from each well of the cells using the RNeasy

Mini kit (QIAGEN Ltd., Crawley, UK) and treated with

deoxyribonuclease I (QIAGEN). RNA was used as a template

for cDNA synthesis using Taqman reverse transcriptase reagents

(Applied Biosystems). Primers specific for the SLITs and ROBOs

have been previously described in detail [22]. PCR was performed

on an Eppendorf Mastercycler gradient authorised thermocycler

(PerkinElmer, Inc., Waltham, MA) using GoTaq Flexi DNA

polymerase (Promega Ltd., Southampton, UK). The PCR

thermocycle consisted of an initial denaturation of 5 min at

95uC followed by 35 cycles of 95uC for 30 sec, annealing

temperature for 30 sec, 72uC for 30 sec, and a final extension of

10 min at 72uC. PCR products were visualised on a 2% (w/v)

agarose gel with added ethidium bromide.

Real-time quantitative PCR
RNA was extracted and reverse transcribed as described above.

A standard curve was generated with serial dilutions of cDNA

synthesised from human fetal brain total RNA (Stratagene Europe,

Amsterdam, The Netherlands). Real-time PCR amplification was

then performed in duplicate 10 ml reactions using Power SYBR

Green PCR master mix (Applied Biosystems) following the

manufacturer’s instructions and using the ABI 7500HT fast real-

time PCR system instrument (Applied Biosystems). Primers used

were the same as for the expression analysis and have been

described previously [22]. The ABI instrument’s default settings

were used for the cycling program and the melting curve analysis.

The ABI analysis software calculated quantitative values for each

sample by comparing the sample threshold cycle number, where the

increase in the signal associated with exponential growth of PCR

products begins to be detected, to the standard curve, according to

the manufacturer’s manuals. In all cases the level of gene expression

within the samples lay within the boundaries of the corresponding

standard curve. Since the precise quality and amount of cDNA that

was added to each reaction mix was difficult to assess, transcripts of

glucose-6-phosphate dehydrogenase (G6PDH), a housekeeping

gene, were also quantified for each sample as described above.

This gene is not regulated in the samples under investigation and

therefore acted as an endogenous control. Each sample was

normalised on the basis of its G6PDH content by dividing the

amount of target gene by the amount of housekeeping gene.

SLIT2 ELISA
Since SLIT2 is a secreted protein, the concentration of this

protein from PEO-14 and SKOV-3 cells was assessed using

culture media from these experiments. Human SLIT2 protein

concentration was determined quantitatively using an immunoas-

say kit (USCN Life Science & Technology Co., Wuhan, China).

Firstly, frozen media was concentrated by freeze-drying and the

dried media was reconstituted in 220 ml sample diluent buffer that

was provided with the immunoassay kit. One hundred microlitres

of the experimental samples and standards were loaded onto the

microtitre plate in duplicate. The protocol was followed according

to the manufacturers’ instructions and optical density was

measured using a Multiskan EX microplate photometer (Thermo

Fisher Scientific Inc., Basingstoke, UK) at 450 nm. A standard

curve was generated and sample concentrations were calculated

using AssayZap computer software (Biosoft, Cambridge, UK).

Caspase-3 and -7 activity assay
To measure caspase-3 and -7 activities in PEO-14 and SKOV-3

cells, the Caspase-Glo 3/7 assay was followed according to the

manufacturer’s instructions (Promega UK Ltd., Southampton,

UK) as described previously [22]. Briefly, Caspase-Glo 3/7

reagent was added directly to the cells in culture medium in a

1:1 ratio. The well contents were then mixed and incubated at

room temperature for up to 3 hours. This resulted in cell lysis,

followed by caspase cleavage of the substrate and generation of a

glowtype luminescent signal, produced by luciferase. Lumines-

cence was measured using a FLUOstar OPTIMA microplate

reader (BMG Labtech Ltd., Aylesbury, UK). Luminescence was

directly proportional to the amount of caspase activity present.

The value for the no cell control was subtracted from the

experimental values and the experiment was carried out three

times to reduce the possible effects of biological variability.

Immunohistochemistry
To investigate the localisation of ROBO1 and SLIT2 proteins,

5 mm paraffin tissue sections of normal human ovary prepared on

poly-L-lysine-coated microscope slides were examined. The

immunohistochemistry protocol and antibodies and controls used

have been previously described in detail [5].

Statistical analysis
Statistical analysis was conducted using a Prism software

package (GraphPad Software Inc., La Jolla, CA, USA) with

significance defined as P,0.05. After confirmation of normal

distribution of samples they were analysed using either a paired or

unpaired t-test as appropriate.
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