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Abstract

Among its many roles, the HIV-1 accessory protein Vpu performs a viroporin function and also antagonizes the host cell
restriction factor tetherin through its transmembrane domain. BIT225 is a small molecule inhibitor that specifically targets
the Vpu viroporin function, which, in macrophages, resulted in late stage inhibition of virus release and decreased infectivity
of released virus, a phenotype similar to tetherin-mediated restriction. Here, we investigated whether BIT225 might mediate
its antiviral function, at least in part, via inhibition of Vpu-mediated tetherin antagonism. Using T-cell lines inducible for
tetherin expression, we found that BIT225 does not exert its antiviral function by inhibiting Vpu-mediated tetherin
downmodulation from the cell surface, the main site of action of tetherin activity. In addition, results from a
bioluminescence resonance energy transfer (BRET) assay showed that the Vpu-tetherin interaction was not affected by
BIT225. Our data provide support for the concept that tetherin antagonism and viroporin function are separable on the Vpu
transmembrane and that viroporin function might be cell-type dependent. Further, this work contributes to the
characterization of BIT225 as an inhibitor that specifically targets the viroporin function of Vpu.
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Introduction

The human immunodeficiency virus 1 (HIV-1) has a complex

retroviral genome, which, in addition to encoding the classical

structural and enzymatic proteins Gag, Gag-Pol, Pol and Env, and

the regulatory proteins Tat and Rev, also encodes the four

accessory proteins Vpr, Vif, Vpu and Nef that play multiple roles

in HIV-1 pathogenesis (reviewed in [1,2]). An important function

of the HIV-1 accessory proteins appears to be the antagonism of

host cell restriction factors [3,4,5,6,7,8,9].

The viral protein Vpu is a 16 kDa type I transmembrane

protein, consisting of a N-terminal transmembrane domain (AA 1–

27) and a cytoplasmic domain (AA 28–81) of two consecutive

amphiphatic a-helices (AA 33–49 and AA 57–70) [2,10,11]. At the

cell membrane, Vpu assembles to a multimeric state, most likely as

pentamers, but possibly also as tetramers or hexamers [11,12,13].

The most studied function of Vpu is the downmodulation of CD4,

which permits Env trafficking to the viral assembly site and

subsequent incorporation into the viral membrane. This CD4

downmodulation occurs in the endoplasmic reticulum (ER) and is

mediated by the C-terminal domain of Vpu acting as a transient

adaptor protein to link CD4 to b-transducin repeats-containing

protein (b-TrCP), resulting in proteasomal degradation of CD4

but not of Vpu (reviewed in [14]).

A second function of Vpu is the antagonism of the host cell

restriction factor tetherin (BST-2/CD317/HM1.24). Tetherin

inhibits viral replication late in the viral replication cycle,

inhibiting the budding of nascent virus by directly holding the

budding virus to the cell surface [15,16,17]. Tetherin is

constitutively expressed in various cells, including monocyte-

derived macrophages, activated CD4+ T-cells and T-cell lines

[18,19,20,21,22,23]. Both this tetherin-mediated restriction as well

as tetherin cell surface expression are interferon responsive, linking

tetherin to the innate immune response [5,15,16,23].

Tetherin is a 30–36 kDa type II transmembrane protein that

consists of a short cytoplasmic N-terminal region (AA 1–21), a

transmembrane region (AA 22–43), an ectodomain (AA 44–160),

and a C-terminal glycosylphosphatidylinostol (GPI) anchor

[19,24]. Tetherin localizes to the plasma membrane, the trans-

Golgi network (TGN) and the early and recycling endosomes, and

cycles between these membrane compartments [24,25]. Tetherin-

mediated restrictive activity has commonly been attributed to its

cell surface expression, though additional surface-independent

mechanisms have been suggested but not yet characterized

[5,15,21,23,26,27].

In HIV-1 infection, the viral protein Vpu antagonizes tetherin-

mediated restriction and promotes down-modulation of tetherin

from the cell surface where viruses assemble and bud [28,29].
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Vpu-mediated downmodulation of tetherin can occur via tetherin

degradation by the proteasome and/or the lysosome, and the

sequestration of tetherin in intracellular compartments. For the

degradation of tetherin, Vpu employs b-TrCP that acts in a

fashion similar to that which occurs during degradation of CD4.

Vpu recognizes tetherin through an interaction between the

transmembrane domains of these two proteins. Molecular

mapping revealed a few amino acids on each transmembrane

domain that are crucial for functional interactions (Vpu: A14, A18

and W22) [30,31,32,33,34,35,36]. In Vpu transmembrane multi-

mers, these residues are predicted to be outside-facing [33];

modeling of the tetherin transmembrane domain indicates a sided

positioning of crucial amino acid residues in the helix and supports

the existence of a direct Vpu-tetherin interface [5].

In addition to tetherin antagonism and virus release, the

transmembrane domain of Vpu also functions as a cation-selective

ion channel (also called viroporin) in a multimeric state

[11,37,38,39,40]. Interestingly, the A18H mutation of an

outside-facing residue important for Vpu-tetherin interaction

rendered the viroporin activity of Vpu sensitive to rimantadine,

an inhibitor of the viroporin function of influenza A M2 protein

[41]; this suggests a possible link between Vpu viroporin function

and Vpu-mediated promotion of virus release by tetherin

antagonism. However, a recent study reported that tetherin

antagonism and viroporin function are separable functions of Vpu.

Mutation of the Vpu amino acids A14 and A18 to asparagines

abrogated tetherin antagonism without affecting viroporin func-

tion [42]. Also, an S23A mutation eliminated viroporin function

but did not affect anti-tetherin activity [42,43].

BIT225 (N-[5-(1-methyl-1H-pyrazol-4-yl)-napthalene-2-carbon-

yl]-guanidine: CASNo. 917909-71-8) is a novel small molecule

inhibitor of HIV-1 Vpu viroporin function. In addition to its activity

against Vpu, BIT225 also abrogates the viroporin function of

hepatitis C virus (HCV) protein p7 [44,45]. Further, BIT225

displays a synergistic effect in HCV infections with interferon a2b

(IFNa2b) in vitro [44], which also stimulates tetherin expression as

part of the interferon-induced antiviral state [23,32]. In monocyte-

derived macrophages (MDMs), which express high levels of

endogenous tetherin and which represent a long-lived virus

producing reservoir in HIV-1 infection, BIT225 efficiently blocks

HIV-1 virus release and reduces the infectivity of released virus

[45,46]. Tetherin also inhibits the release of Dvpu virus and renders

released virus less infectious [15,16,32]. Interestingly, BIT225 exerts

higher antiviral efficacy in MDMs than in CD4+ T-cells, even

though the latter express lower endogenous tetherin levels [45].

Therefore, we have now investigated whether the antiviral

activity of BIT225 might be partly related to inhibition of Vpu-

mediated tetherin-antagonism in tetherin expressing CD4+ T-cell

lines. However, we were not able to detect a tetherin-mediated

impact on BIT225 function, which suggests that BIT225

specifically blocks Vpu viroporin function. These data also support

the concept that viroporin function and virus release are separable

functions of the Vpu transmembrane domain [42], and that the

viroporin function of Vpu may be cell type specific [45].

Results

First we assessed the cyototoxicity of BIT225 on the following

T-cell lines: SupT1-tetherinpos (transduced with human tetherin),

SupT1-tetherinneg (transduced with an empty vector), SupT1-

tetherinhTMa1 (transduced with a chimeric tetherin resistant to

Vpu mediated antagonism), and CEM-SS cells [23,32,47]. CEM-

SS cells express detectable endogenous levels of cell surface

tetherin, and this correlates with their lower permissiveness to Dvpu

viral replication compared to wt viral replication [23]. Cells were

cultured in media containing BIT225 at concentrations of 0.04,

0.2, 1, 5, 10, 25 or 50 mM for 72 h, after which we assessed cell

viability using flow cytometry detection of side scatter (SSC) and

forward scatter (FSC), comparing BIT225 treated populations to

dimethyl sulfoxide (DMSO) treated controls (Figure S1). Non-

linear regression analysis revealed that BIT225 had a 50%

cytotoxic concentration of 32–50 mM in the transduced Sup-T1

cell lines (Fig. 1A–C, Table 1). CEM-SS cells showed reduced

sensitivity to BIT225 (extrapolated 50% cytotoxic concentration:

67 mM) (Fig. 1D; Table 1).

We then assessed the inhibitory effect of BIT225 on virus release

in these cell lines infected with equal amounts of wt or Dvpu virus

and cultured in media containing BIT225 at concentrations of

0.04, 0.2, 1, 5, 10, 25 or 50 mM at 72 h post infection (p.i.) (Fig. 1,

Table 1). The half maximal inhibitory concentrations (IC50) for

virus release in wt infected populations were ,18 mM in SupT1-

tetherinneg cells, ,11 mM in tetherin expressing SupT1-tetherinpos

cells and ,50 mM in the SupT1-tetherinhTMa1 control cell line,

expressing chimeric tetherin, resistant to Vpu antagonism.

Regarding Dvpu infected populations, the extrapolated IC50

concentrations were ,54 mM (SupT1-tetherinneg), ,90 mM

(SupT1-tetherinpos) and ,86 mM (SupT1-tetherinhTMa1), respec-

tively (Fig. 1A–C; Table 1). To assess the impact of BIT225 on

Vpu-mediated virus release (‘Vpu effect’), we normalized virus

release in wt infected populations to that of Dvpu infected

populations (Fig. 1E). In SupT1-tetherinneg cells, the ‘Vpu effect’

remained stable at 2.4–3 at BIT225 concentrations up to 10 mM,

after which it declined to ,1.2, which indicates almost equal virus

release in wt and Dvpu infected populations. A similar trend was

observed in the Vpu-resistant SupT1-tetherinhTMa1 cells, express-

ing tetherin, though the reduction only occurred at 25 mM (fold

change: ,1.6). In CEM-SS cells, virus release in wt and Dvpu

infected populations was not significantly affected by BIT225

concentrations of up to 50 mM, and the ‘Vpu effect’ remained

relatively stable at ,3–3.5 fold (Fig. 1D; Table 1).

In SupT1-tetherinpos cells, however, the Vpu effect was

generally stronger at concentrations up to 5 mM (0.04 mM: 9.2,

5 mM: 8.5), with a peak at 0.2 mM BIT225 (ratio: 12). Starting at

10 mM the ratio decreased (10 mM: 6.5, 25 mM: 5, 50 mM 1.6) to

levels similar to those obtained with the other cell lines (Fig. 1E).

The apparently elevated sensitivity of SupT1-tetherinpos cells to

BIT225 might be due to an inhibition of Vpu-mediated tetherin

antagonism. Therefore, we assessed whether BIT225 might

influence tetherin cell surface expression levels in uninfected cells

and/or might affect tetherin modulation following infection. Cells

were infected with wt or Dvpu virus and cultured in the absence

(DMSO control) or presence of 10 mM BIT225, a concentration

almost equal to the IC50 in SupT1-tetherinpos cells for virus

release. At 72 h p.i., tetherin cell surface expression in infected and

uninfected cells was assessed using flow cytometry; infected and

uninfected cells were distinguished based on virus-derived

enhanced green fluorescent protein (eGFP) expression (Figure

S2). We were able to specifically detect and quantify tetherin cell

surface expression and its modulation following infection in

SupT1-tetherinpos cells, SupT1-tetherinhTMa1 cells, and CEM-SS

cells (Fig. 2, Figure S2); cell surface tetherin expression in SupT1-

tetherinneg cells was at the limit of specificity of detection (Fig. 2A).

In wt infected SupT1-tetherinpos cells, tetherin surface expression

was downregulated by ,70% compared to uninfected controls. In

Dvpu infected cells, detection of cell surface tetherin was increased

(,50%), as previously reported [47]. Treatment with 10 mM

BIT225 did not affect tetherin cell surface levels in uninfected cells,

neither did BIT225 affect either Vpu-mediated tetherin down-

Vpu Inhibitor BIT225 and Vpu-Tetherin
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Figure 1. BIT225 does not affect Vpu-mediated antagonism of tetherin-mediated restriction of virus release independent of cell
toxicity. The T-cell lines SupT1-tetherinpos (A), SupT1-tetherinhTMa1 (B), SupT1-tetherinneg (C) and CEM-SS cells (D) were infected with equal amounts
of wt or Dvpu virus by spinoculation and cultured in media containing BIT225 at concentrations of 0.04, 0.2, 1, 5, 10, 25 and 50 mM. Virus release was
assessed at 72 h p.i. by reverse transcriptase assay (solid lines). Cell viability was assessed by flow cytometry using side scatter and forward scatter in
the presence of BIT225 (0.04, 0.2, 1, 5, 10, 25 and 50 mM) compared to DMSO controls (dotted lines) (A-D). Normalized data from three independent
experiments, analyzed for non-linear regression, are presented; error bars represent standard error of the mean (SEM). (E) The relative Vpu-mediated
impact of virus release from A-D was determined by normalizing virus release in wt infected populations relative to virus release in Dvpu infected
populations.
doi:10.1371/journal.pone.0027660.g001

Table 1. IC50 concentrations and 50% viability concentrations of BIT225 determined by non-linear regression analysis.

T-cell line 50% cell viability (BIT225 [mM]) IC50 – wt (BIT225 [mM]) IC50 - Dvpu (BIT225 [mM])

SupT1-tetherinneg 49.48 18.44 54.19

SupT1-tetherinpos 32.25 11.15 89.97

SupT1-tetherinhTMa1 43.67 49.59 85.51

CEM-SS 67.21 ..100 ..100

doi:10.1371/journal.pone.0027660.t001

Vpu Inhibitor BIT225 and Vpu-Tetherin
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modulation in wt infection or upregulation in Dvpu infected

SupT1-tethernpos cells. In SupT1-tetherinhTMa1 cells, tetherin

levels were not downregulated following wt infection compared to

uninfected cells, but slightly upregulated (,35%); infection with

Dvpu virus resulted in an upregulation of cell surface tetherin by

,120%. Cell surface tetherin levels followed the same trend in

BIT225 treated cells, but were generally increased, compared to

the respective untreated populations (uninfected: 65% increase; wt

infections: 60% increase; Dvpu infections: 35% increase). In CEM-

SS cells, wt infection decreased cell surface tetherin by ,75%,

while Dvpu infected cells showed a decrease of ,20% in cell

surface tetherin expression, compared to uninfected populations,

as previously described [23]. BIT225 did not affect tetherin cell

surface levels in uninfected CEM-SS cells or tetherin modulation

in infected cells.

To further test whether BIT225 might affect Vpu-tetherin

interactions, we performed a bioluminescence resonance energy

transfer assay (BRET). In this assay, energy transfer is observed

only upon close proximity (,10 Å) of Renilla luciferase (RLuc)-

fused tetherin and enhanced yellow fluorescent protein (eYFP)-

fused Vpu, indicating a direct interaction. A disruption of

interaction results in a decreased eYFP emission signal following

luciferase excitation. The assay was performed in the absence

(DMSO control) or in the presence of 10 mM BIT225, which is

close to the IC50 in regard to virus release in tetherin expressing

SupT1-tetherinpos cells. We were able to specifically detect

bioluminescence energy transfer in our system. The negative

control, wherein an eYFP protein is used in the absence of Vpu,

resulted in a background signal of ,25; the positive control,

provided by a RLuc-eYFP fusion protein, exhibited a relative

signal of ,49. The use of RLuc-fused tetherin and eYFP-fused

Vpu resulted in a signal of ,52 in the absence of BIT225 and a

signal of ,51 in the presence of BIT225 (Fig. 3). Although these

ratios were not significantly different from each other nor different

from the positive control, the difference from the negative control

was significant. Thus, while the BRET assay indicates a specific

Vpu-tetherin interaction, BIT225 does not appear to influence

Vpu-tetherin interactions in this system, confirming the absence of

Vpu-tetherin modulation by BIT225 in regard to virus release and

tetherin cell surface expression.

Figure 2. BIT225 does not modulate tetherin cell surface expression. (A) Representative overlay of tetherin cell surface expression levels. Cell
surface tetherin levels assessed by flow cytometry detection of PerCP-levels in SupT1-tetherinpos cells (orange), SupT1-tetherinhTMa1 cells (turquoise),
SupT1-tetherinneg (green) and CEM-SS cells (rose). Controls are unstained SupT1-tetherinpos cells (red) and SupT1-tetherinpos cells stained with
secondary antibody only (blue). (B–D) Geometric means of cell surface expression of tetherin in SupT1-tetherinpos cells (B), SupT1-tetherinhTMa1 cells
(C) and CEM-SS cells (D) in the presence of BIT225 [10 mM] or absence of BIT225 (DMSO control). Cells were infected with equal amounts of wt and
Dvpu BR-NL43-IRES-eGFP. At 48 h p.i., cells were gated into uninfected and infected populations, based on their virus-derived eGFP expression profile,
and cell surface levels of tetherin were assessed. Data are derived from a minimum of three independent experiments.
doi:10.1371/journal.pone.0027660.g002

Vpu Inhibitor BIT225 and Vpu-Tetherin
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Discussion

BIT225 is a novel antiviral compound that inhibits the

viroporin function of HIV-1 Vpu and HCV p7 [44,45]. In

HIV-1 infections, MDMs represent an important active viral

reservoir [48]. Treatment of MDMs with BIT225, and subsequent

inhibition of Vpu (viroporin function), inhibits viral replication at a

late stage and reduces virus release and viral infectivity [45,46].

HIV-1 infection of T-cells proved to be less sensitive to BIT225-

mediated inhibition of Vpu [45]. In HCV infections, BIT225 is

synergistic with IFNa2b in vitro, which also induces tetherin

expression across a wide range of cells including CD4+ T-cells, the

primary target for HIV-1 [16,21,23,32,44]. Several CD4+ T-cell

lines, including CEM-SS, display detectable levels of endogenous

tetherin at the cell surface, which correlates with their reduced

permissiveness towards Dvpu replication [23]. Tetherin is a host

cell restriction factor that acts late in the viral life cycle, inhibiting

release of nascent virus by directly linking the viral and cellular

membranes [15,16,26]. In HIV-1 infection, Vpu antagonizes

tetherin-mediated restriction by downmodulating tetherin from

the cell surface [15,26]; compared to CD4+ T-cells, MDMs

express higher endogenous tetherin levels than CD4+ T-cells

[21,23]. Tetherin also reduces the infectivity of released virus and

there is evidence that tetherin also inhibits direct cell-to-cell spread

of HIV-1 [47,49], though the extent of this latter effect is still

debated [50].

Vpu mediates its viroporin function and its tetherin antagoniz-

ing activity via its transmembrane domain. Although the Vpu

transmembrane domain is responsible for both the viroporin

function and tetherin antagonism, a recent report suggests that

these two activities can be distinguished [42]. Here, we

investigated whether the Vpu-specific inhibitor BIT225 might

partially act via inhibition of Vpu-mediated tetherin antagonism, in

addition to its known inhibitory effect on Vpu viroporin function

[38,45,46]. To this end, we used a panel of SupT1 T-cell lines

which are inducible for expression of human tetherin (SupT1-

tetherinpos) or a Vpu-resistant tetherin variant, resistant due to a

chimeric transmembrane domain (SupT1-tetherinhTMa1); the

control cell line was transduced with an empty vector and tetherin

levels in that cell line were below the sensitivity level of tetherin

detection by flow cytometry [32,47]. In this panel, tetherin

expression is independent of the multifaceted IFN response.

Therefore, this system allows the specific investigation of tetherin-

mediated effects and Vpu-mediated countermeasures. In addition,

a CEM-SS cell line, which expresses intermediate levels of tetherin

was used [23]. The effects of BIT225 on cell viability, virus release,

Vpu-tetherin interaction and Vpu-mediated downmodulation

from the cell surface were investigated.

BIT225 exerts similar effects on the viability of SupT1-

tetherinneg cells and SupT1-tetherinhTMa1 cells, while the tetherin

expressing SupT1tetherinpos cell line was more sensitive to

BIT225, exhibiting reduced viability at lower concentrations. As

the only difference between these cell lines is the expression of

tetherin, the reduced cell viability of these SupT1-tetherinpos cells

in response to BIT225 may be due to higher tetherin expression in

these cells, leading to their increased fragility when cultured with

drug (Fig. 2A). Also, all SupT1 cell lines showed decreased viability

in the presence of BIT225 when compared to CEM-SS cells (Fig. 1;

Table 1). Transduced SupT1-based cell lines need to be cultured

in the presence of puromycin, G418 and doxycycline to maintain

the inserted tetherin gene and to induce tetherin expression. It is

not known whether these compounds might sensitize cells to

BIT225 or whether drug interactions might occur in this

circumstance.

In the SupT1 cell lines examined, BIT225 inhibited virus

release in a Vpu-specific manner; BIT225 IC50 concentrations

were lower in the presence of Vpu, comparing wt to Dvpu

infections (Fig. 1; Table 1). Since the IC50 values were less than 3-

fold lower than the extrapolated 50% cytotoxic concentrations of

BIT225 in the Sup-T1 cell lines, and to achieve a more meaningful

readout, we also calculated the relative impact of Vpu (‘Vpu

effect’) by normalizing virus release in wt-infected compared to

Dvpu-infected populations over a range of BIT225 concentrations.

At low concentrations of BIT225, Vpu promoted virus release in

all SupT1 cell lines, an effect that was antagonized by increasing

the concentration of BIT225 (Fig. 1E). As the SupT1-tetherinneg

cell line does not exhibit detectable levels of tetherin expression

(Fig. 2A), the Vpu-mediated impact is due to the viroporin

function of Vpu. Therefore, it is reasonable to argue that the

decreased impact of Vpu on virus release in the presence of

increasing levels of BIT225 is due to BIT225-mediated inhibition

of Vpu viroporin function. The same argument applies to the

SupT1-tetherinhTMa1 cell line, transduced with a tetherin variant

that is resistant to Vpu-mediated antagonism.

In this assay system and without the addition of drug, the

increased Vpu effect on virus release in SupT1-tetherinpos cells

compared to the other cell lines, is due to the Vpu-mediated

tetherin antagonism, which promotes virus release [15,16,23,32].

The Vpu effect appeared to be more sensitive to BIT225 in

SupT1-tetherinpos cells compared to the other SupT1 cell lines.

However, the similarity of the BIT225 therapeutic ratios (50%

viability concentration/IC50 concentration) in wt infection of

SupT1-tetherinpos (2.89) and SupT1-tetherinneg (2.68) cells does

not support such an interpretation.

In the CD4+ T-cell line CEM-SS, Vpu antagonized tetherin-

meditated restriction of virus release and downmodulated tetherin

from the cell surface (Fig. 1E & Fig. 2A&D [23]). Interestingly,

Figure 3. BIT225 does not affect Vpu-tetherin interactions. A
bioluminescence resonance energy transfer (BRET) assay was used to
study Vpu-tetherin interaction. Tetherin fused to RLuc (Renilla
luciferase) and Vpu fused to eYFP (enhanced yellow fluorescent
protein) were transfected into 293T cells. At 48 h post transfection,
eYFP emission was detected following RLuc excitation, representing
energy transfer between these two proteins at close proximity (,10 Å).
BRET assays were performed in the presence of BIT225 [10 mM] or its
absence (DMSO control). The negative control represents cotransfection
of an empty (Vpu-negative) eYFP vector and the tetherin-RLuc vector;
the positive control is a vector coding for eYFP-RLuc-fusion protein.
Data are derived from a minimum of three independent experiments,
performed in duplicate; error bars represent SEM.
doi:10.1371/journal.pone.0027660.g003

Vpu Inhibitor BIT225 and Vpu-Tetherin
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BIT225 did not cause detectable toxicity in this cell line. Also, and

in contrast to the panel of Sup-T1 cell lines, the ‘Vpu effect’ in

CEM-SS remained stable over the range of BIT225 concentra-

tions used (Fig. 1E & Fig. 2A&D). Taken together, this suggests a

reduced need for Vpu viroporin function in CEM-SS cells for viral

replication, and might also reflect a potential alteration of a

cellular function in this immortalized cell line, rendering it less

sensitive to BIT225 toxicity. The dependence of virus release on

Vpu-mediated tetherin antagonism, paired with apparent insen-

sitivity towards inhibition of Vpu-viroporin function in CEM-SS

cells, further supports the concept of tetherin antagonism and

viroporin activity as being separable functions of Vpu.

Investigation of the Vpu-tetherin interrelationship by detection

of Vpu-mediated tetherin cell surface downregulation was

performed by flow cytometry (Fig. 2). Vpu-tetherin interactions

were also studied using a BRET assay (Fig. 3). Both methods

confirmed the absence of additional effects of BIT225 on Vpu-

tetherin interactions. We have been able to induce tetherin

expression in SupT1-tetherinpos cells and SupT1-tetherinhTMa1

and to specifically detect cell surface tetherin expression using flow

cytometry (Fig. 2A). In SupT1-tetherinpos cells, wt infection led to

tetherin cell surface downregulation, while cell surface tetherin was

upregulated in cell populations following Dvpu infection compared

to uninfected cells, as previously described [47,51]. The presence

of BIT225 at levels of 10 mM neither affected cell surface tetherin

expression in uninfected cells nor Vpu-mediated tetherin down-

modulation or upregulation following Dvpu infections (Fig. 2B).

This shows that the sensitivity of wt infection (and the normalized

‘Vpu effect’) in regard to the tetherin expressing SupT1-tetherinpos

cell line is independent of interference with the Vpu function in

tetherin antagonism. Interestingly, BIT225 mediated an increase

in tetherin cell surface detection in SupT1-tetherinhTMa1 cells

(Fig. 2C). This was true in both uninfected cells and cells infected

with wt or Dvpu virus, although the effect was less pronounced in

the Dvpu infected population. HIV-1 Vpu was not able to

antagonize and downmodulate the hTMa1-tetherin variant from

the surface of wt infected cells; rather cell surface levels increased,

although to lower levels than in the Dvpu infected cells. The

resistance to Vpu-mediated downregulation is in agreement with

Vpu-resistance and virus release (Fig. 1; [32]). This different

tetherin expression profile in CEM-SS cells (Vpu-independent

tetherin downmodulation) has been previously described and

supports the existence of additional anti-tetherin mechanisms

following infection, which appear to not be affected by BIT225

(Fig. 2D [21,23]).

To examine the possible effect of BIT225 on Vpu-tetherin

interactions, we employed a Vpu-tetherin BRET assay that

specifically detects bioluminescence resonance energy transfer

between Vpu and tetherin when both are in immediate proximity

(,10 Å), indicative of direct interaction. Our findings support

the concept that Vpu and tetherin interact directly (Fig. 3)

[15,16,26,30,31,32,33]. However, BIT225 did not modulate the

BRET signal, indicating that BIT225 does not interfere with Vpu-

tetherin interaction (Fig. 3). As Vpu in regard to tetherin

antagonism might be outside-facing in Vpu multimers whereas

viroporin function is believed to be focused at the inner face of

Vpu multimers, the absence of BIT225-mediated Vpu-tetherin

interactions gives support to the idea that BIT225 specifically

targets the viroporin function, most likely on the inside of Vpu

multimers.

Furthermore, these results indicate that viroporin function and

tetherin antagonism represent distinct functions of the Vpu

transmembrane domain in agreement with a recent report that

studied this topic using a mutagenesis approach [42]. These

findings are also in agreement with the modeling of a putative

Vpu-tetherin interaction surface, based on nuclear magnetic

resonance (NMR) structures, and the discovery that amino acid

residues necessary for tetherin antagonism are outside-facing on

the Vpu multimer [5,33], while residues crucial for viroporin

function are predicted to face the inside of the Vpu multimer

[42,43]. However, both functions affect virus release and viral

infectivity at a late stage in the viral replication cycle [32,45].

Our data further support the characterization of BIT225 as a

specific inhibitor of the viroporin function of Vpu and a potentially

useful agent to target cellular viral reservoirs. Our results also

imply that Vpu viroporin function may be cell type specific, as the

efficacy of BIT225 has been reported to be greater in MDMs than

in T-cells. However, specific work with MDMs may be difficult to

achieve, due to a lack of functional MDM cell lines and a scarcity

of knowledge on the role of tetherin in MDMs.

Materials and Methods

Cells
CEM-SS cells were obtained from the NIH AIDS Research and

Reference Reagent Program [52] and were maintained in RPMI-

1640 culture medium (Gibco) supplemented with 10% bovine

serum albumin (BSA). Sup-T1 cells were also obtained from the

NIH AIDS Research and Reference Reagent Program [52].

Transduced Sup-T1 cells were maintained in RPMI-1640

supplemented with 10% tetracycline-free BSA, 2 mg/ml puromy-

cin (Sigma), and 1 mg/ml G418 (Sigma). Expression of human

tetherin or its variant hTMa1 in Sup-T1 cells, was induced using

100 ng/ml doxycycline (Sigma) [32,47,51]; Sup-T1 cells stably

transduced with the wt human tetherin gene (SupT1-tetherinpos),

an empty vector (SupT1-tetherinneg), or the Vpu-resistant variant

(SupT1-tetherinhTMa1), wherein the first nine amino acids of the

transmembrane domain are replaced by the respective residues of

tetherin from African green monkeys, were previously described

[32].

Viruses
Site-directed mutagenesis, using the QuickChange II XL Site-

Directed Mutagenesis Kit (Stratagene), was used to introduce

nucleotide changes into the coding regions of vpu, resulting in two

stop codons at the beginning of Vpu coding regions of the viral

clone pBR43-IRES-eGFP (NIH AIDS Research and Reference

Reagent Program), expressing enhanced green fluorescent protein

(eGFP) from an internal ribosomal entry site downstream of nef

[53]. Virus was produced in 293T cells using Lipofectamine2000

(Invitrogen) as a transfection reagent. Virus was collected after

48 h, filtered (0.45 mm), and viral capsid/p24 protein (CA p24)

content was quantified by a Vironostika HIV-1 Ag kit (bioMér-

ieux).

Compound
BIT225 (Batch 106R) was provided by Biotron Limited. The

compound was dissolved in anhydrous dimethyl sulfoxide (DMSO)

at 100 mM and was further diluted in culture media to working

concentrations of 0.04, 0.2, 1, 5, 10, 25 or 50 mM.

HIV-1 infections
Cell populations were infected with equal amounts of wt or Dvpu

virus to ,10% infection rates, as determined by flow cytometric

detection of virus-derived eGFP expression at 72 h p.i., in order to

minimize superinfection events. Sup-T1 cells were infected with

600 ng CA p24 per 106 cells (CEM-SS: 300 ng CA p24 per 106

cells) by spinoculation (1,500 x g, at 37uC for 2 h), followed by
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incubation for 1 h at 37uC, after which virus was removed by

centrifugation and cell washing. Cells (105 cells/ml) were then

cultured in media containing BIT225 at concentrations of 0.04,

0.2, 1, 5, 10, 25 or 50 mM. At 72 h p.i., virus release and tetherin

cell surface expression were assessed.

Virus release
Virus release into the supernatant was analyzed at 72 h p.i. using a

quantitative reverse transcription-based assay [54]. Virus release was

determined from populations infected with wt or Dvpu virus, cultured

in media containing BIT225 at concentrations of 0.04, 0.2, 1, 5, 10,

25 or 50 mM, or equivalent amounts of DMSO solvent only.

Cell viability
Cell viability was determined through flow cytometry detection of

forward scatter (FSC) and side scatter (SSC) of cells cultured in

BIT225-containg media (0.04, 0.2, 1, 5, 10, 25 or 50 mM) or media

with DMSO as a control for 72 h. Flow cytometry analysis was

performed on a minimum of 30,000 cells using a LSR II instrument

(Becton Dickinson) and FlowJo 7.5 software (Tree Star).

Cell surface tetherin
Levels of cell surface tetherin expression in uninfected popula-

tions or populations infected with wt or Dvpu virus were assessed by

flow cytometry for peridinin chlorophyll protein (PerCP) at 72 h

p.i.; populations were cultured either in the presence of 10 mM

BIT225 or DMSO (0.1 ml/ml). Staining for cell surface tetherin was

performed using a primary rabbit anti-human-tetherin polyclonal

antibody (1:3000) (NIH AIDS Research and Reference Reagent

Program [21]), followed by a PerCP-labeled secondary goat anti-

rabbit antibody (1:250) (Santa Cruz Biotechnology). Cells were

stained at 4uC for 30 min and fixed in 4% paraformaldehyde for

25 min. Uninfected and infected cells were distinguished by virus-

derived eGFP expression. Flow cytometry analysis was performed

on a minimum of 30,000 cells using a LSR II instrument (Becton

Dickinson) and FlowJo 7.5 software (Tree Star).

Vpu-tetherin bioluminescence resonance energy transfer
assay (BRET)

Human tetherin was cloned into the pRLuc-C3 vector (BioSignal

Packard). Vpu was cloned into the pEYFP-N1 vector (Clontech).

The constructs were transfected into HEK293T cells using

Lipofectamine2000 (Invitrogen) as a transfection reagent. After

6 h, transfection media were replaced by media containing either

10 mM BIT225 or DMSO (to equivalent amounts). Cells were

collected 48 h post-transfection and washed twice in PBS. Transfer

of bioluminescence was assessed using a SynergyTM 4 Multi-Mode

Microplate Reader (Bioteck). To measure fluorescence of RLuc,

coelenterazine H (Promega) was added to a final concentration of

5 mM in PBS. For measurement of EYFP only, cells were

resuspended in PBS. The negative control used was an empty

EYFP-N1 vector cotransfected with Rluc-tetherin and the positive

control was a vector with EYFP fused to RLuc (EYFP-RLuc). A

minimum of 105 cells were analyzed from each experiment.

Statistical analysis
Data from at least three independent experiments were analyzed

utilizing GraphPad PRISM 5 software. Differences were analyzed

for statistical significance using a one-way analysis of variance

(ANOVA) with Bonferroni’s post-test for groups and Student’s t-test

for pairs of data. GraphPad PRISM 5 software was also utilized to

determine IC50 values in a non-linear regression analysis.

Supporting Information

Figure S1 Cell viability assessment. SupT1-tetherinpos,

SupT1-tetherinhTMa1, SupT1-tetherinneg and CEM-SS cells were

cultured in media containing BIT225 at concentrations of 0.04,

0.2, 1, 5, 10, 25 and 50 mM or DMSO. At 72 h p.i., cell viability

was assessed, based on flow cytometry detection of forward scatter

(FSC) and side scatter (SSC). Representative dot plots are shown.

(PDF)

Figure S2 Gating strategy and readout for cell surface
tetherin expression. Representative gating for infected and

uninfected cell populations and representative readout of cell

surface tetherin modulation following infection are shown. SupT1-

tetherinpos cells, SupT1-tetherinhTMa1 cells, SupT1-tetherinneg and

CEM-SS cells were infected with equal amounts of wt BR-NL43-

IRES-eGFP. At 48 h p.i., live cells were detected according to

their flow cytometric FSC/SSC profiles. Live cells were gated into

uninfected and infected populations, based on their virus-derived

eGFP expression profile. Tetherin cell surface expression was

determined in uninfected populations (red) and infected popula-

tions (blue) via detection of PerCP and presented as overlays.

Geometric means of PerCP signal in uninfected and infected

populations were assessed for relative quantification and compar-

ison of cell surface expression levels of tetherin.

(PDF)
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