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Abstract

Synthetic biology is an emerging branch of molecular biology that uses synthetic genetic constructs to create man-made
cells or organisms that are capable of performing novel and/or useful applications. Using a synthetic chemically sensitive
genetic toggle switch to activate appropriate fluorescent protein indicators (GFP, RFP) and a cell division inhibitor (minC),
we have created a novel E. coli strain that can be used as a highly specific, yet simple and inexpensive chemical recording
device. This biological ‘‘nanorecorder’’ can be used to determine both the type and the time at which a brief chemical
exposure event has occurred. In particular, we show that the short–term exposure (15–30 min) of cells harboring this
synthetic genetic circuit to small molecule signals (anhydrotetracycline or IPTG) triggered long-term and uniform cell
elongation, with cell length being directly proportional to the time elapsed following a brief chemical exposure. This work
demonstrates that facile modification of an existing genetic toggle switch can be exploited to generate a robust,
biologically-based ‘‘nanorecorder’’ that could potentially be adapted to detect, respond and record a wide range of
chemical stimuli that may vary over time and space.
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Introduction

Synthetic biology or ‘‘synbio’’ is an emerging field of

biotechnology that combines molecular biology with genetic

engineering and protein engineering. Like synthetic chemistry,

synthetic biology involves the design and synthesis of novel entities

with unusual and/or useful functionalities. In synthetic biology,

the raw materials are DNA and proteins, while in synthetic

chemistry the raw materials are small molecule chemicals and

chemical catalysts. Over the past decade, synthetic biologists have

designed and developed a number of ‘‘synthetic prokaryotes’’

exhibiting completely novel or entirely un-natural functions such

as a bacterial oscillator [1], a toggle switch [2], a bacterial

photocopier [3], a bacterial drug delivery system [4], a biofilm-

destroying agent [5], an edge detection tool [6] and a bacterial

clock [7]. More recently the same synbio concepts have been

successfully applied to eukaryotic systems [8–11]. However,

constructing synthetic cells or organisms that respond in a robust

and precise manner still represents a significant challenge for

today’s synthetic biologists. In particular, gaps in our understand-

ing of the operational principles of natural biological systems,

coupled with the lack of tools to fully characterize synbio-inspired

devices has led to many more proof-of-principle demonstrations

than useful applications [12].

The bistable toggle switch is an example of a genetic ‘‘memory

element’’ that is among the most robust and useful synthetic

biology devices developed to date. This device is a synthetic

genetic circuit that generates a sustained cellular response to a

transient stimulus [2]. In its initial inception, the toggle switch

consisted of two constitutive promoters driving the expression of

mutually inhibitory repressor proteins. Other genetic memory

element circuits include the fimE-driven inversion recombination

switch [13], the conditional memory circuit, wherein a bistable

toggle switch is modified by the addition of two regulatory proteins

[14] and the riboregulator-/recombinase-based genetic counter

[15]. Because of its reliance on relatively few regulatory elements,

the toggle switch design is relatively tolerant of stochastic

fluctuations and has been exploited in a number of synbio

applications. These include an E.coli strain that responds by

biofilm formation upon transient exposure to a DNA-damaging

agent [16] and a cadmium biosensing Pseudomonas putida strain

[17].

Although the toggle switch represents an effective way to detect

and store the ‘‘memory’’ of an event, it is currently not possible to

‘‘time stamp’’ such a memory using the current toggle switch

configuration. In other words, it is not yet feasible to determine the

time when the toggle switch was initially exposed to a stimulus or

signal molecule without a continuous recording of the reporter

gene expression. Time stamping would obviously be a useful

feature for biologically based chemosensors, particularly if one is

interested in passive environmental monitoring, tracking the

occurrences of pulsed chemical releases or performing longer

term longitudinal chemosensing. This time stamp problem arises

because most synbio systems employing toggle switches have relied

on the expression of primary output responses that do not increase

predictably or in a retroactively measurable fashion following

exposure to the signal molecule. Indeed most biosensor or

chemosensor output responses are typically limited to fluorescent
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reporter proteins (namely GFP) or phenotypic alterations (viz.

biofilm formation) which cannot be readily used as a quantitative

measure of the time elapsed following an initial (or a brief) signal

exposure. Also, the visualization of a fluorescent reporter protein

necessitates the use of a well-equipped microscope facility and

hence cannot be used for routine or field-based detection.

To address this time-stamping and detection limitation with

today’s bacterial biosensors we decided to utilize a number of pre-

existing synbio circuits to create a time-stamping, chemo-sensing

bacterium or more simply, a bacterial ‘‘nanorecorder’’. This

bacterial time-recording device has been designed so that it could

1) respond to a brief event or stimulus; 2) maintain a memory of

that event/stimulus; and 3) time stamp that event or stimulus. In

other words we wanted to create a synthetic bacterium that could

register a long-term phenotypic response following short-term

exposure to a chemical and utilize the elicited phenotypic response

to estimate the time elapsed after chemical exposure. One suitable

phenotypic response capable of being able to time-stamp events in

bacteria could be to arrest the cell division process, and instead

activate cell elongation. Utilizing this response has three benefits:

1) the detection of activated cells becomes much easier (light

microsopy vs. fluorescence microscopy); 2) the length of the cell is

proportional to the time following exposure and 3) the system is

self-limiting (cells stop generating viable progeny after exposure to

the chemical stimulus). Therefore to create this bacterial time-

recording device we coupled the expression of the cell division

inhibitor gene, minC [18–20], with a standard genetic toggle switch

to engineer a phenotypic response (i.e. filamentation) that can be

used to calculate the time of initial signal exposure. Specifically, in

this report we describe the modification of two well-studied

bistable toggle plasmids (namely, pTAK117 and pIKE107) [2] to

support the co-expression of physiologically relevant levels of

MinC protein. Transforming these plasmids into suitable host cells

led to the production of E. coli strains that fluoresce with different

colors (depending on the type of chemical exposure) and elongate

up to 306 their normal length (allowing quantitative determina-

tion of time elapsed following initial signal exposure) upon short-

term exposure to different signal molecules (namely IPTG or

anhydrotetracycline). The length of the cells corresponds to the

time (in cell division ‘‘units’’) since exposure or activation, allowing

quantitative determination of time elapsed following initial signal

exposure. By analogy to the manner in which the length of paper

produced from a chart recorder corresponds to the length of time

since the start of recording, this system resembles a recorder

device. The term ‘‘nanorecorder’’ was coined because this system

uses specially engineered nanoscale devices, including proteins,

plasmids and bacteria (width = 500 nm), to create a functioning

recorder.

This work demonstrates how the careful modification of an

existing genetic toggle switch can be exploited to generate a

biologically-based ‘‘nanorecorder’’ that could potentially be

adapted to detect, respond, recall and record a wide range of

chemical stimuli that may vary over time and space.

Materials and Methods

Bacterial strains, growth conditions and chemicals
E. coli strain XL-1-Blue (obtained from Stratagene, USA) was

used for the construction of all plasmids described in this work.

The E. coli strains PB103 [21], PB103:pDR175 and PB103:l
DR144 were obtained as gifts from Dr. Piet A. J. de Boer (Case

Western Reserve University, Cleveland, OH). Plasmid pDR175

[20] is a pGB2 [22] derivative wherein expression of the MinC

protein is induced by a 42uC heat-shock, while the integrated

prophage l DR144 (imm21 bla+ lacIq+ Plac::sfiA) encodes an IPTG-

inducible SfiA protein. The host strain PB103 was used to test the

effect of expression of two different cell division inhibitors, namely

MinC and SfiA, on cell elongation. Cells were grown in Luria-

Bertani (LB) medium at 37uC and plasmids were selected using

50 mg/L ampicillin and 25 mg/L spectinomycin. Ampicillin,

spectinomycin and IPTG were procured from Gold Biotechnol-

ogy, MO, Anhydrotetracycline was manufactured using our in-

house chemical synthesis facility, while LB medium was prepared

using DifcoTM LB broth Miller (BD Biosciences, Canada).

Restriction enzymes were obtained from New England Biolabs,

Canada and primer sequences were commercially synthesized

from Integrated DNA Technologies, Canada. For expression

studies, the cells were cultured at 31uC. All molecular cloning

manipulations were performed according to standard protocols

described in the Molecular Cloning Manual [23].

Plasmid construction
Toggle switch plasmids, pTAK117 and pIKE107 [2], were

obtained as gifts from Dr. Jim Collins (Centre for Biodynamics,

Boston, MA) and used as the basis for constructing derivative

plasmids. The pTAK117 derivative, pTAK117-minC, was

designed to express green fluorescent protein (GFP) and MinC

upon exposure to IPTG, while the pIKE107 derivative, pIKE107-

RFP-minC, was designed to express red fluorescent protein (RFP)

and MinC upon exposure to anhydrotetracycline (i.e. aTc). The

minC coding sequence was amplified by PCR using E. coli genomic

DNA (strain MG1655, ATCC number 700926D-5) as a template

with the primers minC-FW1 and minC-RW1 and ligated into

PCR 2.1-TOPO (Invitrogen, Canada) to obtain PCR 2.1-minC.

The 59 primer sequence also included ribosome-binding sites

(RBSs) of different strengths to confer translational control on

MinC expression levels. The IPTG-inducible promoter, pTrc2,

was amplified using pTAK117 as a template with primers (pTrc2-

KpnI-FW, pTrc2-BamHI-RW) and cloned into pGEMT. The

pTrc2 promoter fragment (KpnI-BamHI) was ligated into KpnI-

BamHI digested PCR 2.1-minC to obtain pTrc-minC. This

plasmid was co-transformed with the toggle switch plasmid,

pTAK117, into the PB103 host cells by heat shock transformation

and co-transformants were selected on ampicillin and kanamycin.

In independent experiments, the minC coding sequence was

amplified using primers having NheI overhangs at both ends

(minC-FW2, minC-RW2) and cloned downstream of the GFP

gene into NheI-digested pTAK117. The ligation mixture was

transformed into XL-1 blue host cells and plasmid DNA was

isolated from all the putative recombinant clones (regardless of the

minC orientation), followed by independently transforming the

isolated plasmids into PB103 host cells. Recombinants having minC

gene cloned in the sense orientation (with respect to the pTrc2

promoter) were identified using a phenotypic screen (as described

in the Results and Discussion section), confirmed by plasmid DNA

sequencing and were designated as pTAK117-minC (Figure 1A).

A ‘‘toggle-less’’ version of the IPTG-nanorecorder (pTAK117-

minC*) was made by digesting pTAK117-minC with SphI-KpnI (to

get rid of the pTrc2-cI fragment) followed by ligating a

commercially synthesized SphI-KpnI fragment (comprising the

pTrc2 promoter). Due to this manipulation, PB103 cells

transformed pTAK117-minC* would be unable to synthesize the

cI repressor and hence require continuous IPTG exposure to

induce GFP and MinC expression.

In order to construct pIKE107-RFP-minC, GFP was excised

from pIKE107 by a KpnI-NheI digest followed by blunting and self-

ligation of the vector backbone. The RFP gene was then amplified

from the Biobrick plasmid BBa_J23018 using primers having NheI
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overhangs at both ends (RFP-FW, RFP-RW), subcloned into

PCR2.1-TOPO (to obtain PCR2.1-TOPO-RFP) before its

ligation as an AscI fragment in AscI-digested pIKE107 to obtain

pIKE107-RFP. The RFP-FW primer sequence included the RBSc

(used earlier to control MinC expression in pTAK117). The minC

fragment (obtained as an NheI digest from pTAK117-minC) was

blunt-ended using T4 DNA polymerase and ligated (downstream

of RFP) in NheI-digested and blunt-ended pIKE107-RFP.

Recombinant clones wherein minC was ligated in the sense

orientation (with respect to the anhydrotetracycline-inducible

PLtetO-1 promoter) were identified using the phenotypic screen,

validated using DNA sequencing and were designated as

pIKE107-RFP-minC (Figure 1B). Sequences for the primers used

in these experiments are listed in Figure 1C. Restriction maps of

pTAK117-minC, pIKE107-RFP-minC and the nucleotide se-

quence of the commercially synthesized SphI-KpnI fragment are

provided in Supporting information as Figures S1 and S2

respectively.

Characterization of the bacterial nanorecorders
The IPTG-inducible version of the bacterial nanorecorder

strain (PB103:pTAK117-minC) was characterized in order to

determine the limits of its sensitivity and its potential suitability as a

time-stamping or recording device. To monitor the behavior of the

cell population under continuous IPTG induction, the cells were

grown in the presence of 2 mM IPTG at 31uC and aliquots were

observed via microscopy at 30 min-intervals to record their

fluorescence signal intensity and cell length. In order to determine

the minimum IPTG concentration and the shortest time of cellular

exposure necessary to register a long-term response, the cells were

incubated with 2 mM, 5 mM, 10 mM and 20 mM IPTG for

15 min, 30 min and 60 min. After exposure the cells were briefly

pelleted, washed twice in LB medium before suspending them in

LB (50 mg/L ampicillin, without IPTG) and retransferred to

culture tubes for further growth. The cells were observed at 30-

min intervals to record their fluorescence signal intensity and cell

length. Aliquots from the same culture grown with 2 mM IPTG

Figure 1. Representation of modified toggle switch plasmids and primer sequences. A. pTAK117-minC functions as an IPTG-sensitive
nanorecorder. The repressor, cI, inhibits transcription from the PLs1con promoter while the lacI repressor inhibits transcription from the pTrc2
promoter. Transient addition of IPTG derepresses pTrc2 and initiates long-term expression of GFP and MinC reporter genes. B. pIKE107-RFP-minC is
the anhydrotetracycline-responsive nanorecorder. The lacI repressor prevents transcription from the pTrc2 promoter while the TetR repressor inhibits
transcption initiation from the PLtetO-1 promoter. Transient exposure to anhydrotetracycline relieves PLtetO-1 from TetR-mediated repression,
stimulating sustained expression of RFP and minC reporter genes. C. Primers used for construction of toggle switch plasmids. RBS represents
ribosome binding sequences, RBSa: aaagaggagaaa, RBSb: tcacacaggaaag, RBSc: tcacacaggaaacc. The sequences in italics represent the restriction sites
used for cloning.
doi:10.1371/journal.pone.0027559.g001
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and in IPTG-less media were included as positive and negative

controls. The anhydrotetracycline-inducible version of the bacte-

rial nanorecorder strain (PB103:pIKE107-RFP-minC) was char-

acterized similarly upon exposure to 0.05 nM, 0.1 nM, 0.25 nM,

0.5 nM, 1 nM, 2 nM, 5 nM and 10 nM anhydrotetracycline and

the responses obtained were compared to those obtained with the

IPTG-inducible version of the nanorecorder.

Microscopy, data collection and analysis
Twenty microlitres of actively growing cultures were transferred

to a glass slide and visualized by phase contrast microscopy at 206
magnification (Olympus IX81 inverted microscope). Images were

collected using Image Pro Plus software (Media Cybernetics). To

measure cell length, the image was calibrated to the magnification

used and cells selected using the software’s ‘‘Select ranges’’

function. The selected cells were distributed into various bin sizes

(class 1: 0.5 mm–4 mm, class 2: 4.1 mm–8 mm, class 3: 8.1 mm–

16 mm, class 4: 16.1 mm–32 mm, class 5: 32.1 mm–64 mm, class 6:

64.1 mm–132 mm) using the ‘‘Count’’ and ‘‘Measure’’ functions of

the software. Cells in class 1 correspond to those having gone

through one doubling without cytokinesis; cells in class 2

correspond to those having gone through two doublings without

cytokinesis; cells in class 3 correspond to those that have doubled

at least three times without cytokinesis, cells in class 4 correspond

to those that have doubled at least four times without cytokinesis

and cells in class 5 correspond to those that have doubled five

times or more without cytokinesis. Note that a range of cell lengths

are used for each doubling category because the variable

orientation of the cells in the microscope viewing plane causes

optical foreshortening of the true cell length. The data obtained

was transferred to MS Excel and used to calculate the number of

cells measured in each class (Figure 2 A–F) and the corresponding

standard deviation of the cell length distribution for each class. All

measurements were obtained from three independent cultures

maintained under identical conditions. Each experiment was

repeated at least three times. For each treatment, at least 500 cells

were counted. The average cell length was also plotted versus time

elapsed for better data visualization (Figure 2G). GFP and RFP

expression in cells was visualized under UV fluorescence using

FITC and TRITC filters, respectively.

Results and Discussion

Synthetic biology relies on the construction of man-made or

synthetic genetic devices to produce cells with predictable yet

fundamentally un-natural properties. This is most often done by

harnessing and modifying endogenous pathways to generate

artificial genetic networks. For example, the genetic bistable

toggle switch [2] has been exploited as a means to program cells

using a modular design strategy, thereby paving the way for the

development of ‘‘plug-and-play’’ genetic circuit devices. A number

of synthetic gene networks designed to function as memory

elements have already been described [13–16]. However, these

systems cannot be used to estimate the time elapsed following

exposure (either brief or continuous) to a signal molecule. Because

of this limitation we decided to generate a bacterial time-stamp

device (a biological nanorecorder) that, upon transient (or

continuous) exposure to a signal molecule, would generate an

easily quantifiable phenotypic response that would allow us to

estimate the time elapsed following signal exposure.

Figure 3 conceptualizes the expected behavior of the proposed

time stamp devices. It describes what we expect to happen if we

prepared a bacterial system that contained i) only a chemically

activated toggle switch coupled to a fluorescent signal, ii) no toggle

switch but had chemically activated cell elongation coupled to a

fluorescent signal, and iii) both a chemically activated toggle switch

and a cell division inhibitor coupled to a fluorescent signal. As part

of the proposed time stamp devices, we first explored the feasibility

of an alternative approach for time recording, wherein transient

exposure to a signal molecule rapidly induces expression of a

fluorescent reporter and the time elapsed following signal exposure

can be estimated by monitoring the periodic reduction in

fluorescence intensity (Figure 3B). We found that this approach

could be used to time-stamp a 30 min pulse for 3 h and a 45 min

pulse for 4 h (see Supporting information, Figure S3 for details).

However, we experienced that measuring fluorescence intensity

and quantifying fluorescent decay was relatively tedious and time

consuming (as one needs to carefully normalize fluorescence

intensities) and is very sensitive to minor changes in the focal plane

and could be easily affected external parameters (such as the life of

the mercury lamp used for visualizing fluorescence). Additionally,

fluorescence intensities were also dependent on media used for cell

culture (intensities were higher by up to 20% in M9 medium as

compared to LB medium). Although there could be promoter-

reporter-strain-media combinations where the fluorescence-inten-

sity based method could yield better results, we explored a toggle-

switch based approach to time-stamping. Accordingly, we were

interested to investigate cell length as an alternative reporter

system because cell length can be easily visualized using a simple

light microscope, can be potentially quantified without the use of

sophisticated software and is independent of media type. As shown

in Figure 3C, exposing bacteria containing only the toggle switch-

fluorescent reporter combination to a short pulse of the signaling

molecule would result in many fluorescent progeny but no

elongated cells. While the presence of fluorescent cells would

indicate an exposure event, without knowing the initial number of

cells that were exposed or the number of cells that were activated,

it would not be possible to calculate when the exposure event

occurred. As shown in Figure 3D, exposing bacteria containing a

combination of a fluorescent reporter and cell division inhibitor

but no toggle switch, to a short pulse of the signaling molecule

would temporarily inhibit division in the progenitor cells but after

a short time the cells would lose their memory of the exposure

event and essentially nothing useful could be detected. Finally, as

shown in Figure 3E, exposing bacteria containing both the toggle

switch and the cell division inhibitor to the signaling molecule

would result in an easily detected phenotypic response where the

length of the elongating bacterial cell could be used to calculate the

time elapsed following exposure. Based on these scenarios, we

constructed a bacterial system that contained a chemically

activated toggle switch and a cell division inhibitor coupled to a

fluorescent signal. Balancing physiological levels of this reporter

gene (minC) in bacterial cells proved to be critical to the

development of this kind of bacterial nanorecorder (For further

details, refer to Supporting information, Text S1-Optimization of

the MinC reporter system. For example, Figure S4 demonstrates

that MinC expression resulted in better inhibition of cell division

than SfiA expression).

Characterization of the IPTG-sensitive bacterial ‘‘time-
stamp’’ device

The following experiments were initiated to explore the

potential suitability of PB103 cells harboring the modified IPTG

toggle switch (pTAK117-minC) as a ‘‘time-stamp’’ device and

determine the limits of its sensitivity.

Time course of cell elongation upon continuous IPTG

exposure. PB103:pTAK117 cells cultured under continuous

exposure to 2 mM IPTG at 31uC in LB medium were 2 mm long
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and divided every 35 min in their exponential phase. On the other

hand, PB103 cells (transformed with the modified toggle switch,

pTAK117-minC) cultured under identical conditions displayed

uniform cell elongation in a time-dependent manner (Figure 2).

After 30 min of incubation, the PB103:pTAK117-minC cell

population showed no visible signs of cell elongation in either

the induced or non-induced treatments (Figure 2). However, after

60 min of incubation (Figure 2B), the induced cell population

comprised of 61% cells in class 2 (4.1 mm–8 mm) and 8% cells in

class 3 (8.1 mm–16 mm). The induced cell population continued to

elongate in a time-dependent manner and reached maximal cell

lengths after 150 min (Figure 2E), wherein all the cells were found

to be in class 5 (32.1 mm–64 mm). Further cell elongation was not

observed beyond this incubation period. Meanwhile, after

180 min of incubation more than 90% of the uninduced

PB103:pTAK117-minC cell population consisted of cells in class

1 (0.5 mm–4 mm), thereby displaying negligible background

elongation in the absence of IPTG.

The maximal length of the filaments obtained upon continuous

exposure of the PB103:pTAK117-minC to 2 mM IPTG was

58 mm (nearly 306 the length of their uninduced counterparts).

Arends and Weiss [24] noted that long-term inhibition of cell

division in E.coli apparently did not affect the growth rate, DNA

replication or chromosome segregation and the only obvious

effects were morphological wherein these cells grew into long,

aseptate filaments that ultimately lysed, eventually resulting in

lethality.

Overall, we found that cell elongation of PB103 cells

(pTAK117-minC), following exposure to the signal molecule

(IPTG), occurred in a time-dependent manner and that it was

Figure 2. Time course of cell elongation upon continuous exposure to 2 mM IPTG. PB103:pTAK117-minC cells observed at A) 30 min, B)
60 min, C) 90 min, D) 120 min, E) 150 min and F) 180 min post-IPTG exposure. Class sizes are as follows: class 1: 0.5 mm–4 mm, class 2: 4.1 mm–8 mm,
class 3: 8.1 mm–16 mm, class 4: 16.1 mm–32 mm, class 5: 32.1 mm–64 mm, class 6: 64.1 mm–132 mm. G. Average cell length versus elapsed time upon
constant exposure to 2 mM IPTG. PB103:pTAK117-minC cells observed at different time intervals (30 min, 60 min, 90 min, 120 min, 150 min and
180 min) following continuous IPTG exposure to 2 mM IPTG following which the averaged cell length was plotted with respect to time elapsed post-
IPTG exposure.
doi:10.1371/journal.pone.0027559.g002
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accompanied by the appearance of different-sized cells at discrete

time intervals up to 2.5 h. These data suggest that cell length can

be used to detect and calculate the time elapsed following exposure

to a signal molecule. To illustrate, a cell population consisting of

ca. 60% cells in class 3 (8.1 mm–16 mm) and 40% cells in class 4

(16.1 mm–32 mm) would suggest that these cells were exposed to

the signal molecule 90 min (3–4 doublings) prior to measurement,

while a cell population consisting of ca. 40% cells in class 4

(16.1 mm–32 mm) and 60% cells in class 5 (32.1 mm–64 mm) would

be indicative of an exposure event that occurred 120 min (4–5

doublings) in the past. It should be noted that because cell

doubling times are dependent on growth medium and culture

temperature, we would advocate that the nanorecorder’s time

should ideally be measured in units of cell doublings rather than in

standard units of hours or minutes. Plotting the average cell length

(without binning the cells into different class sizes) versus elapsed

time also demonstrated that there was a consistent increase in the

average measured cell length for up to 150 min of continuous

IPTG exposure (Figure 2G).

Utility and sensitivity of cell elongation and toggle-

switching as a time-stamp device. Upon confirming that

continuous signal molecule (IPTG) exposure of PB103 containing

the modified toggle switch plasmid (pTAK117-minC) led to the

phenotype of interest, (i.e. chemo-selective time-dependent cell

elongation), we decided to determine the utility and sensitivity

limits of this IPTG nanorecorder. In particular, we wanted to

answer four questions: 1) What is the minimum length of time and

minimum IPTG concentration needed to activate the

nanorecorder? Within the context of the MinC reporter system

2) Is the toggle switch necessary for proper time stamping? 3) Is

continuous exposure of a chemical stimulus required to activate

cells without the toggle switch? and 4) Is cell elongation absolutely

necessary to record time stamping or can it be inferred by other

means? To answer these questions we prepared two separate E. coli

strains. The first strain consisted of PB103 cells transformed with a

‘‘toggle-less’’ version of pTAK117-minC (i.e. PB103:pTAK117-

minC*) that is incapable of synthesizing the cI repressor and hence

express MinC only upon continuous IPTG exposure. The second

strain consisted of PB103 cells transformed with the original toggle

switch plasmid (pTAK117). These PB103:pTAK117 cells do not

express MinC and therefore continue to divide normally following

exposure to IPTG.

Gardner et al. [2] reported that the toggle switch plasmid,

pTAK117, begins switching from the ‘‘low’’ state (pTrc2

repressed, no cI repressor, no GFP) to the ‘‘high’’ state (i.e.

derepression of pTrc2 leading to cI and GFP expression) after 3–

4 h of IPTG induction. To address the first question, PB103 cells

transformed with pTAK117-minC were exposed to 2 mM, 5 mM,

10 mM and 20 mM IPTG for 15 min, 30 min and 60 min. After

exposure, the 12 sets of cells were pelleted and washed twice with

Figure 3. Schematic illustration of the proposed bacterial time-stamp devices. Panel B outlines the expected behavior of cells wherein
transient exposure to a signal molecule rapidly induces expression of a fluorescent reporter protein followed by periodic reduction in fluorescent
intensity upon removal of the signal molecule. Brief signal exposure of bacteria containing only the toggle switch driving expression of a fluorescent
reporter protein (C) would result in fluorescence in the dividing progeny, while identical signal exposure in bacteria containing a plasmid capable of
constitutive expression of a cell-division inhibitor and a fluorescent reporter protein (D) would eventually result in non-elongating and non-
fluorescent progeny. Only bacteria containing a toggle switch driving expression of a fluorescent reporter protein and a cell-division inhibitor protein
(E) are expected to display fluorescence and sustained cellular elongation in progenitor cells, the length of which could be used to calculate time
elapsed following signal exposure. Control bacteria devoid of toggle switch are represented as (A).
doi:10.1371/journal.pone.0027559.g003
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plain LB medium before their final resuspension and incubation in

IPTG-less LB amp50 medium. The exposed cultures were

monitored for 180 min post-IPTG exposure and the population

was sorted into different classes based on observed cell lengths.

Irrespective of the duration of exposure, PB103:pTAK117-minC

cells exposed to 2 mM or 5 mM IPTG did not elongate or express

GFP after transfer to IPTG-less growth medium. Filamentation

was observed in cultures exposed to 10 mM (and 20 mM) IPTG

for 30 min (Figure 4G). In other words, the IPTG nanorecorder

required at least a 30 min exposure to a minimum concentration

of 10 mM IPTG to register the presence of the chemical signal

and begin recording. After 180 min, 62% of the induced

nanorecorder cell population belonged to class 1 (0.5 mm–4 mm),

6% was in class 2 (4.1 mm–8 mm) and 32% of the population

belonged to class 3 (8.1 mm–16 mm). Instead of calculating the

averaged length of all the transiently cells induced cells, we could

estimate the time elapsed post-signal exposure by measuring

length of the most elongated cells. Also, GFP expression was

observed in all filamenting cells exposed to a 30 min, 10 mM

IPTG pulse, but the GFP intensity was 3–4 fold lower than seen in

PB103:pTAK117-minC cells that were grown under the contin-

uous presence of 2 mM IPTG (Figure 4H). Further increases in

the frequency (i.e. total number of filamentous cells) or the extent

of cell filamentation (i.e. the increase in filament lengths of the

responding cell population) were not observed upon increasing the

duration of cell exposure to 60 min (at 10 mM IPTG) or upon

increasing the IPTG concentration (e.g. to 20 mM). Therefore,

our results indicate that the switching process is dependent on the

concentration of the signal molecule and that the bacterial

nanorecorder can begin switching from the ‘‘low’’ to ‘‘high’’ state

at 30 min post-exposure to 10 mM IPTG.

By contrast, the PB103:pTAK117-minC* cells (the ‘‘toggle-less’’

version) could filament and express GFP only upon continuous

exposure to 2 mM IPTG. Therefore these toggle-less cells had no

‘‘memory’’ of a short-term exposure event, although they could

effectively record the duration of continuous signal exposure. In

parallel experiments performed with PB103:pTAK117, we found

that 56% of the population expressed GFP when exposed to

10 mM IPTG for 30 min. As expected, none of these cells showed

any elongation. It is worth noting that with these PB103:pTAK117

cells, the level of fluorescence decayed after 24 h post-transfer to

IPTG-less growth medium. Therefore these continuously dividing

cells had only a partial or fading ‘‘memory’’ of an exposure event.

Consequently they could not be used to effectively record the

duration or the time since IPTG exposure. The results of these

control experiments show that the use of a toggle switch in

combination with cell elongation and an optional chemo-specific

fluorescent signal is an effective route to generating an easy-to-

visualize and hence useable nanorecorder. It is also worth

mentioning that PB103:pTAK117 cells could express GFP for

up to 48 h post-IPTG exposure, but this was only possible if the

cells were subcultured at 3-h intervals into fresh growth media.

Our results with the pTAK117 plasmid (Supporting informa-

tion, Figure S5) were interesting, especially in light of what is

currently understood about toggle switch behavior. As noted

earlier, Gardner et al. [2] reported that the toggle switch plasmid

began switching from the ‘‘low’’ (no GFP expression) to the ‘‘high’’

(i.e. GFP expressing) state after three hours of exposure to 2 mM

IPTG. We observed that PB103:pTAK117 cells exposed for as

little as 30 min expressed GFP (Figure S5-D), although a higher

concentration of IPTG (10 mM) was required. This suggests that

exposing cells to higher IPTG concentrations results in faster

quenching of the unbound intracellular LacI repressor molecules

as well as quickly derepressing the pTrc2-bound LacI repressor,

thereby reducing the exposure time necessary to toggle the genetic

switch from a ‘‘low’’ to a ‘‘high’’ state.

Although phenotypic diversity of a clonal bacterial culture is

stochastic [25], such cells also display subpopulations with

heritable phenotypic differences [26]. The toggle switch is a cyclic

digenic (two-gene) system comprised of two promoter-repressor

cassettes, arranged so that each promoter is inhibited by the

repressor expressed by the opposing promoter. This framework is

considered robust enough to tolerate inherent stochastic fluctua-

tions in gene expression. Consequently it will switch to either of

Figure 4. ‘‘Memory effect’’ upon short-term IPTG exposure.
Visible light and UV-light images of PB103: p TAK117-minC exposed to
10 mM IPTG for 15 min (E, F),30 min (G, H) and 60 min (I, J) before
washing and resuspending the cells in IPTG-less LB amp50 medium.
Controls include cells not exposed to IPTG (A, B) and cells grown under
continuous exposure to 2 mM IPTG (C, D). Images were taken after 2 h
30 min of exposure to 10 mM IPTG. Scale bar is 50 mm.
doi:10.1371/journal.pone.0027559.g004
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the two alternate stable states only by the addition of specific

external inducers (such as IPTG and temperature in the case of the

toggle plasmid pTAK117). Our demonstration that the ‘‘memory

response’’, characteristic of the toggle switch, is obtained only

when cells are kept at low density (through continuous

subculturing every 3 h) corroborates the findings of Stupak et al.

[27] that the functional state of a bistable toggle switch in the

absence of inducers is also dependent on bacterial cell metabolism.

In their study, Stupak et al. [27] demonstrated that increasing the

time interval between cell subculture lowered the cellular growth

rate, decreased the level of metabolism and resulted in the switch

of these cyclic systems from bistable to monostable functioning

regime. While decreased levels of cellular metabolism are known

to result in stochastic changes in the ratios of cellular proteins,

Stupak et al. [27] also proposed that a low cellular growth rate

could also affect the levels and/or stability of the repressor proteins

that regulate the toggle switch. Although other mechanisms, which

may alter the levels of the repressor proteins or other components

of the toggle switch, cannot be ruled out, our study suggests that

stochastic fluctuations in gene expression may be accentuated by

subtle changes in growth conditions and result in long-term

changes in epigenotypes. In the reverse case scenario, Tan et al.

[28] reported that changes in bacterial host physiology were

responsible for a counter-intuitive situation, wherein bistable gene

expression was displayed by a simple positive feedback circuit.

These studies along with our results suggest that unexpected

interactions between a genetic circuit and its host can result in

unintended perturbations in the dynamics of gene expression.

Therefore, properly accounting for these factors is important for

engineering any kind of robust behavior in synthetic biological

systems.

Anhydrotetracycline-sensitive version of the bacterial
‘‘nanocrecorder’’

Similar in configuration to pTAK117, the anhydrotetracycline-

sensitive toggle plasmid, pIKE107, switches from the ‘‘high’’ state

(reporter gene expression) to the ‘‘low’’ state (no expression of

reporter genes) upon short-term exposure to anhydrotetracycline.

Using this toggle switch we decided to make a anhydrotetracy-

cline-responsive version of the ‘‘time-stamp’’ device that would

express the reporter genes upon anhydrotetracycline exposure.

While MinC expression remained our choice for phenotype-based

detection of an exposure event, we chose to express the red

fluorescent protein (RFP) to differentiate its read-out response

from the GFP-based output obtained from the IPTG-nanorecor-

der. This modification enabled colour-coded chemo-selective

detection.

Optimizing expression of RFP reporter gene. Although

RFP expression was detected both in E. coli transformed with a

template Biobrick plasmid (i.e. BBa_J23018) and in E. coli

transformed with PCR2.1-TOPO-RFP (data not shown), our

initial attempts to express the RFP coding sequence in pIKE107

were unsuccessful. Pfleger et al. [29] demonstrated that the

problems related to RFP expression in E. coli were due to the

formation of strong base-pairing between a GC-rich region

present near the 59 end of the RFP gene and the RBS used for

translational initiation. Using saturation mutagenesis, Pfleger et al.

[29] modified the nucleotides of these 59 RFP codons (without

altering the amino acid sequences) and effectively restored RFP

expression by minimizing base-pairing between the 59 end of the

RFP gene and the RBS. Similarly, we hypothesized that our

inability to obtain expression of the RFP-encoding open reading

frame upon transfer from a Biobrick plasmid (BBa_J23018) to a

toggle plasmid (pIKE107) stemmed from the potential base-

pairing between the 59 RFP sequence and the RBS used for

translational initiation. Based on this premise, the RFP gene

amplified using the native Biobrick RBS (identified by sequencing

BBa_J23018) was able to express RFP when cloned into pIKE107.

A comparison of the RBS’s used for RFP expression using a

secondary structure prediction program did not suggest any

differences in their base pairing abilities with the 59 end of the RFP

gene. It is therefore possible that the Biobrick RBS was stronger

and was responsible for RFP expression in pIKE107.

Comparative behavior of the IPTG- and aTc-sensitive

time stamp devices. Although PB103:pIKE107-RFP-minC

cells displayed uniform elongation upon continuous exposure to

1 nM anhydrotetracycline, the response time (i.e. the time taken

for RFP and MinC expression) was much longer than that

observed upon continuous exposure of PB103:pTAK117-minC

cells to 2 mM IPTG. For instance, the anhydrotetracycline-

induced population reached maximal cell lengths after 4 h, while

their IPTG-induced counterparts required only 2.5 h to attain this

stage (Figure 5). Our observation that both the fluorescence and

the MinC-induced cell elongation is delayed in PB103:pIKE107-

RFP-minC compared to PB103:pTAK117-minC may be due to

the higher transcription efficiency of the pTrc-2 promoter relative

to pLtetO-1 and the higher repression efficiency of cI compared to

the TetR [2]. Our studies also revealed that just a 15 min

exposure of PB103:pIKE107-RFP-minC cells to 0.5 nM

anhydrotetracycline was sufficient to trigger cell elongation.

After 210 min of culture in LB medium (50 mg/L ampicillin, no

anhydrotetracycline), 55% of the aTc nanorecorder cell

population was in class 1 (0.5 mm–4 mm), 9% in class 2 (4.1 mm–

8 mm) and 36% of the population in class 3 (8.1 mm–16 mm).

These results demonstrate the pulsed exposure also works with a

anhydrotetracycline-inducible system. Independent experiments

wherein a mixed culture of PB103:pTAK117-minC and

PB103:pIKE107-RFP-minC cells were exposed sequentially to

Figure 5. Comparative behavior of the IPTG- and aTc-sensitive
time stamp devices. Visible light images of PB103:pTAK117-minC and
PB103:pIKE107-RFP-minC upon continuous exposure to 2 mM IPTG and
1 nM anhydrotetracycline, respectively. Overnight cultures (initiated
from glycerol stocks and grown at 37uC in LB amp50) were sub-cultured
to fresh LB amp50 for 90 min and used at a 100-fold dilution to
inoculate fresh LB amp50 supplemented with IPTG and anhydrote-
tracycline. Cells were observed after 90 min (A, D); 2 h 30 min (B, E) and
4 h (C, F). Scale bar is 50 mm.
doi:10.1371/journal.pone.0027559.g005
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IPTG and anhydrotetracycline demonstrated the utility of these

nanorecorders to simultaneously respond and generate a time-

dependent response to two different chemical stimuli (Figure 6).

Summary
We have shown that the facile modification of an existing

genetic toggle switch can be exploited to generate a robust,

biologically-based ‘‘nanorecorder’’ that could potentially be

adapted to detect, recall and record a wide range of chemical

stimuli. By embedding the expression of MinC, a cell division

inhibitory protein, within a standard toggle switch framework, we

demonstrated that a transient exposure to a selected signal

molecule (namely IPTG or anhydrotetracycline) was sufficient to

trigger a long-term cell elongation response in more than one-third

of the exposed cells. As shown here, this induced response can be

used to predict the time elapsed since signal exposure, thereby

providing a time stamp to the exposure event. Also, slow growing

bacterial cells harboring this gene circuit would be capable of

recording longer time intervals post-signal exposure. While these

biological nanorecorders exhibit many of the desired features that

were designed into them, they are relatively imperfect devices, at

least in terms of their sensitivity (in the case of IPTG, requiring

millimolar instead of micromolar or nanomolar concentrations of

the signal molecules), their fidelity (a 33% response rate instead of

100%) and required exposure times (minutes instead of seconds).

Despite this, we believe these results provide the first instance of a

synbio-inspired approach to use organisms as event-recording

devices. We are currently looking at expanding the scope of this

work to construct real-world nanorecorders for sensing pollutants

and toxins (such as heavy metals, phenols) and clinically useful

metabolites (nitrates, urea).

Supporting Information

Figure S1 Schematic restriction maps of A) pTAK117-
minC and B) pIKE107-RFP-minC.

(TIF)

Figure S2 DNA sequence of the synthesized SphI-KpnI
fragment. RBS denotes the Ribosome Binding Site, while 210

and 235 represent the consensus 235 and 210 sequences of the

pTrc2 promoter.

(TIF)

Figure S3 A. Fluorescence decay of GFP following short-
term IPTG exposure. BL21(DE3) cells transformed with

pET15b-GFP were grown at 37uC in LB medium supplemented

with 50 mg/L ampicillin to mid-log phase (OD600 nm,0.5) and

were subcultured at a 1: 30 dilution into LB medium supple-

mented with 50 mg/L ampicillin and 1 mM IPTG. Following

subculture, 1 ml aliquots were withdrawn at set time intervals

(15 min, 30 min, 45 min and 60 min), briefly spun to remove

IPTG and the pelleted cells were resuspended and cultured as

before in 1 ml IPTG-less LBamp50 medium. The cells were

observed under a fluorescence microscope at hourly intervals for a

total of 10 h post-transfer to IPTG-less LBamp50 medium. Images

were adjusted for adjusted for background intensities before

recording cellular fluorescence intensities. Image processing was

done using the software MetaMorph Basic (Molecular Devices Inc.

version 7.7) while average fluorescence intensities and standard

deviation were calculated using MS Excel. B. Schematic
restriction map of pET15b-GFP. The coding sequence of

GFP was amplified from pGFP [4] using primers having NdeI and

BamHI overhangs and cloned into NdeI-BamHI digested pET15b

(Novagen Inc. USA).

(TIF)

Figure S4 Relative efficacy of cell division inhibition.
Visible light images of PB103 cells expressing MinC under A)

uninduced and B) induced conditions and SfiA under C)

uninduced and D) induced conditions. MinC expression was

initiated by transferring freshly grown culture (OD600 nm,0.3) of

PB103:pDR175 (grown at 31uC in LB medium supplemented with

25 mg/L spectinomycin) to 42uC. SfiA expression was elicited by

addition of 2 mM IPTG to a freshly grown culture

(OD600 nm,0.3) of PB103:l DR144 (grown at 37uC in LB

medium supplemented with 50 mg/L ampicillin). Cells were

observed following 2 h 30 min of induction. Scale bar is 20 mm.

(TIF)

Figure S5 Response of PB103:pTAK117 cells to short-
term IPTG exposure. A freshly grown culture of

PB103:pTAK117 was used to inoculate LBamp50 supplemented

with 2 mM IPTG and 10 mM IPTG followed by culturing the

cells for 30 min at 31 deg C at 225 rpm. After 30 min, cells were

washed off IPTG, cultured in LB amp50 only and visualized after

3 hours. A, B are visible and UV-light images, respectively, of cells

exposed to 2 mM IPTG for 30 minutes while C,D are visible and

UV-light images respectively, of cells exposed to 10 mM IPTG for

30 minutes. E and F represent visible and UV-light images

respectively, of the control treatment wherein cells were grown in

continuous presence of LBamp50 supplemented with 2 mM

IPTG. Scale bar is 20 mm.

(TIF)

Figure 6. Response of mixed culture IPTG- and aTc-sensitive nanorecorders. Visible light (A) and false coloured fluorescence microscopy
image of a mixed culture of PB103:pTAK117-minC (labeled green) and PB103:pIKE107-RFP-minC (labeled red). The culture was exposed to a 15 min,
0.25 nM anhydrotetracycline (aTc) pulse and after 2 h, the culture was exposed to a 30 min, 10 mM IPTG pulse. The culture was effectively grown for
90 min post-IPTG exposure and 4 h post-aTc exposure and imaged using TRITC and FITC filters. Scale bar is 50 mm.
doi:10.1371/journal.pone.0027559.g006

The Bacterial Nanorecorder

PLoS ONE | www.plosone.org 9 November 2011 | Volume 6 | Issue 11 | e27559



Text S1 Optimization of the MinC reporter system.
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