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Abstract

Background: BCG, the only licensed vaccine against tuberculosis, provides some protection against disseminated disease in
infants but has little effect on prevention of adult pulmonary disease. Newer parenteral immunization prime boost regimes
may provide improved protection in experimental animal models but are unproven in man so that there remains a need for
new and improved immunization strategies.

Methods and Findings: Mice were immunized parenterally, intranasally or simultaneously by both routes with BCG or
recombinant mycobacterial antigens plus appropriate adjuvants. They were challenged with Mycobacterium tuberculosis
(Mtb) and the kinetics of Mtb growth in the lungs measured. We show that simultaneous immunization (SIM) of mice by the
intranasal and parenteral routes is highly effective in increasing protection over parenteral BCG administration alone.
Intranasal immunization induces local pulmonary immunity capable of inhibiting the growth of Mtb in the early phase (the
first week) of infection, while parenteral immunization has a later effect on Mtb growth. Importantly, these two effects are
additive and do not depend on priming and boosting the immune response. The best SIM regimes reduce lung Mtb load by
up to 2 logs more than BCG given by either route alone.

Conclusions: These data establish SIM as a novel and highly effective immunization strategy for Mtb that could be carried
out at a single clinic visit. The efficacy of SIM does not depend on priming and boosting an immune response, but SIM is
complementary to prime boost strategies and might be combined with them.
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Introduction

Development of effective booster vaccines is hampered by lack

of understanding of protective immunity to tuberculosis or BCG-

induced protection [1]. In animals, parenteral immunization with

recombinant (rec) viruses containing Mtb genes generates powerful

immune responses, but has only weak or transient protective

effects. Nor have these vectors generally boosted protection

effectively when administered parenterally after BCG priming

[2–8]. Several adjuvanted rec Mtb proteins have shown protection

equal to BCG; however, after BCG priming the increase in

protection afforded by parenteral boosters is variable. The most

effective regimes require repeated administration of rec Mtb fusion

proteins [9–11], sometimes combined with further booster doses of

BCG [12]. In contrast, immunization via the respiratory tract is

frequently highly effective: both rec proteins and viral vectors

induce protective immunity and boost parenteral BCG-induced

protection [5,13–16]. Respiratory administration of spray dried

BCG is highly effective in guinea pigs [17].

Following aerosol infection of mice with Mtb, activated antigen

specific T cells are not detected in the mediastinal lymph nodes until

9 days and in the lungs until 14 days post infection. During this early

phase of infection the mycobacterial load increases logarithmically,

but after the first few weeks the primary response to mycobacteria

partially contains mycobacterial growth, so that the mycobacterial

load stabilizes and increases much more slowly or not at all [18,19].

Remarkably, parenteral immunization with BCG, Mtb or subunit

vaccines only slightly accelerates the immune response, so that when

mice are challenged with Mtb the kinetics of pulmonary Mtb growth

do not differ between naı̈ve and immune mice for the first 14 days

[2,20,21], although after the initial phase of logarithmic growth the

mycobacterial load stabilizes at a lower level than in naı̈ve mice.

Thus it appears that systemic immunity only begins to inhibit Mtb

growth relatively late after pulmonary infection. In contrast,

protective immunity following intranasal (i.n.) immunization of

mice with a rec adenovirus expressing Mtb antigen 85A (Ad85A)

induces a large pulmonary population of activated, dividing CD8

effector T cells, many of which can be recovered by broncho-

alveolar lavage (BAL) [2,22]. Mtb growth in Ad85A i.n. immunized

mice is inhibited during the first week after infection but the

mycobacteria then grow logarithmically before the mycobacterial

load again stabilizes at a lower level than in naı̈ve mice [2].

Stabilization may be due both to a primary response to

mycobacterial antigens absent from the vaccine, as well as

recruitment of cells induced in the systemic immune compartment

by i.n. immunization. Nevertheless, these data suggest that
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combining i.n. and parenteral immunization might be effective

because i.n. immunization generates a pulmonary immune response

that can inhibit Mtb growth early after infection, while parenteral

immunity can further inhibit growth later. If this is the case,

simultaneous immunization (SIM) with pulmonary and parenteral

vaccines might be as effective as priming and boosting by these two

routes and would have the advantage of requiring only one

simultaneous immunization procedure. In this study we set out to

test whether SIM by the parenteral and intranasal routes in mice

would provide improved protection over the ‘‘gold standard’’

immunization procedure of parenteral BCG. Here we report that

SIM, which harnesses both local pulmonary and systemic

immunity, induces much more powerful protective immunity than

BCG alone and indeed does not depend on priming and boosting.

Methods

Ethics
All animal work was carried out in accordance with the UK

Animal (Scientific Procedures) Act 1986 and was approved by the

animal use ethical committee of Oxford University.

Animals and Immunization
All experiments were performed with 6–8 week old female

C57BL/6 mice (Harlan Orlac, Blackthorn, UK). Mice were

immunized with 26105 colony forming units (cfu) BCG (SSI,

Copenhagen, Denmark) s.c. on the flank in 200 ml PBS. For i.n.

immunization, mice were anesthetized with isoflurane and

26105 cfu BCG in 40 ml PBS was administered with a pipette,

divided between the two nostrils. For SIM with BCG 16105 cfu

were administered s.c. and 16105 cfu i.n. Mice were also

immunized with 4 mg rec antigen 85A protein (85A), prepared

as described previously [23], 20 mg of a synthetic peptide encoding

the first 20 amino acids of the 6 kDa early secreted antigenic target

(E6) (Peptide Protein Research Ltd, Fareham, UK), 4 mg rec

antigen TB10.4 (Proteix, Prague, Czech Republic) or 4 mg of the

enduring hypoxia response protein Rv1284 [24]. Rv1284 was sub-

cloned into the expression vector pET104-DEST42 (Invitrogen,

Paisley, UK) from a complete Gateway Clone set from Mtb

obtained through NIAID’s Pathogen Functional Genomics

Resource Center, managed and funded by Division of Microbi-

ology and Infectious Diseases, NIAID, NIH, DHHS and operated

by the J. Craig Venter Institute. After expression in BL21(DE3) E.

coli cells (Invitrogen) as a His-tagged protein it was purified using

His SpinTrap columns (GE Healthcare, Chalfont St Giles, UK).

Subcutaneous (s.c.) immunization was performed by injecting each

of the antigens, half subcutaneously and half intra-muscularly in

200 ml monophosphoryl lipid A Sigma adjuvant system (MPL)

(Sigma, Poole, UK) prepared according to the manufacturer’s

instructions. For i.n. protein immunization, mice were anesthe-

tized with isoflurane and the same doses of the antigens mixed

with 2 mg of cholera toxin (CT) (Sigma) were pipetted into the

nostrils in a total volume of 40 ml. In most experiments, proteins

were administered 3 times at 2 weekly intervals as indicated in the

figure legends. Mice were also immunized once at the same time

with BCG s.c. and either 4 mg 85A, 20 mg E6 or 4 mg TB10.4. The

subunit vaccine was administered either s.c. with MPL or i.n. with

CT as described above. Three types of experiment were

performed. 1) BCG was administered s.c. alone or administered

simultaneously with a recombinant protein or synthetic peptide

antigen s.c. with MPL or i.n. with CT. The mice were challenged

10 weeks later with Mtb (see Fig. 1 and 2) Subunit antigens were

administered three times s.c., i.n. or simultaneously, with MPL or

CT as appropriate, by the two routes at two weekly intervals.

Adjuvant only controls were included in some experiments. Six

weeks after the last immunization, the mice were challenged with

Mtb (see Fig. 2 and 3) BCG only was administered without

adjuvant, s.c., i.n. or simultaneously by both routes (Fig. 3). The

mice were challenged 10 weeks later.

Isolation of lung and spleen lymphocytes
Lungs were perfused with PBS, cut into small pieces and

digested with 0.7 mg/ml collagenase type I (Sigma) and 30 mg/ml

DNase I (Sigma) for 45 min at 37uC. Lung fragments were then

crushed through a cell strainer using a 5 ml syringe plunger,

washed, layered over Lympholyte (Cederlane, Ontario, Canada)

and centrifuged at 10006g for 25 min. Interface cells were

collected and washed. Spleens were passed through a cell strainer

using a 5 ml syringe plunger, red blood cells were lysed using RBC

lysis buffer (Qiagen, Crawley, UK) and the cells were washed.

Flow cytometry
Cells were cultured in Hepes buffered RPMI supplemented with

10% heat-inactivated FCS, L-glutamine, penicillin and strepto-

mycin for 6 hours. Cells were stimulated with Mtb purified protein

derivative (PPD) at 10 mg/ml (SSI) for 12 hours, or a pool of 66

15mer peptides overlapping by 10 amino acids and covering the

entire sequence of 85A or E6 20mer (Peptide Protein Research

Ltd) for 6 hours. Each peptide was at a final concentration of

2 mg/ml during the stimulation. After 6 (for PPD) and 2 (for the

peptide pool) hours at 37uC, Golgi Plug (BD Biosciences, Oxford,

UK) was added according to the manufacturer’s instructions

before intracellular cytokine staining.

Cells were washed and incubated with CD16/CD32 monoclo-

nal antibody to block Fc binding. Subsequently the cells were

stained for CD4 (RM4-5), CD8 (53-6.7) (BD Bioscience, Oxford,

UK) IFNc (XMG1.2), IL-2 (JES6-5H4) and TNF (MP6-XT22)

(eBioscience, Hatfield, UK) using the BD Cytofix/Cytoperm kit

according to the manufacturer’s instructions. Cells were fixed with

PBS+1% paraformaldehyde, run on a LSRII (BD Biosciences) and

analyzed using FlowJo software (Tree Star Inc, Ashland, Oregon,

USA). Three or 4 mice from each experimental group were used

for immunological analysis.

Infection with Mtb and determination of mycobacterial
load

Five to 7 mice were anesthetized with isoflurane and infected

i.n. with Mtb (Erdman strain, kindly provided by Dr. Amy Yang,

CBER/FDA) in 40 ml PBS. Lung cfu were enumerated 24 hours

after challenge to determine the number of organisms deposited,

which was of the order of ,200 cfu. Mice were sacrificed at

indicated times, the lungs were homogenized and the lung

mycobacterial load determined by plating 10-fold serial dilutions

of tissue homogenates on Middlebrook 7H11 agar plates (E&O

Laboratories Ltd, Bonnybridge, UK). Colonies were counted after

3–4 weeks of incubation at 37uC in 5% CO2.

Statistical Analysis
All results are representative of at least 2 independent

experiments with similar results. Data were analyzed using one-

way ANOVA followed by Tukey’s multiple comparison test.

Results

SIM with BCG and subunit vaccines
We first tested the efficacy of SIM by administering BCG

subcutaneously (s.c.) and recombinant Mtb antigen 85A protein

SIM against TB
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(85A) i.n. with cholera toxin (CT) as a model mucosal adjuvant. In

this experiment 85A with CT was given only once at the same

time as BCG s.c. so that conventional priming and boosting was

not possible. SIM animals were compared to naive or BCG s.c.

controls or mice given both BCG and 85A s.c. with mono-

phosporyl lipid A (MPL) as adjuvant (Fig. 1a). As expected, BCG

s.c. suppressed Mtb growth by 0.8 log10 compared to naive

animals. However, SIM with BCG s.c./85A i.n., targeting both

pulmonary and systemic immunity, provided strikingly increased

protection, reducing Mtb colony forming units (cfu) by an

additional 1.3 log10 compared to BCG s.c. alone. BCG s.c./85A

s.c., targeting only systemic immunity, did not differ from BCG

alone (Fig. 1a). To confirm the generality of this effect we carried

out SIM with two other Mtb antigens, a synthetic peptide encoding

the first 20 amino acids from the 6 kDa early secretory antigenic

target ESAT6 (E6) and rec protein TB10.4. Both BCG s.c./E6 i.n.

Figure 1. Mtb cfu after SIM with BCG and subunit vaccines. a. C57BL/6 mice were immunized once with BCG with or without simultaneous
administration of 85A s.c. or 85A i.n., or b, once with BCG with or without simultaneous administration of E6 s.c. or E6 i.n. and c, once with BCG with
or without simultaneous administration of 10.4 s.c. or 10.4 i.n.. Ten weeks after the last immunization they were challenged with Mtb i.n. and a further
5 weeks sacrificed later for enumeration of lung Mtb cfu. Representative data from one of two experiments with 5–7 mice/group are shown.
***p,0.001, **p,0.01, * p,0.05 between the indicated groups, one-way ANOVA with Tukey’s post test. Data are means 6 s.e.m.
doi:10.1371/journal.pone.0027477.g001

SIM against TB
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or BCG s.c./10.4 i.n. induced significant additional decreases in

pulmonary Mtb load (by 0.6 log10) compared to BCG alone), while

BCG s.c./E6 s.c. and BCG s.c./10.4 s.c. did not (Figs. 1b and c).

SIM with two subunit vaccines
Since SIM with BCG s.c./E6 i.n. provided additional protection

over BCG s.c. alone and BCG does not contain E6, this

experiment strongly suggested that SIM does not require priming

and boosting. To establish this more definitively, we used two non

cross-reactive antigens, 85A and E6. Since adjuvanted rec protein

vaccines are generally administered repeatedly [9,10], we gave the

2 subunit vaccines together or separately with appropriate

adjuvants by the parenteral or pulmonary routes three times at

2 weekly intervals. The mice were challenged with Mtb 6 weeks

after the last immunization (Fig. 2a). SIM with 85A and E6,

targeting pulmonary and systemic immunity, decreased the

mycobacterial load by 1.6 log10 compared to naı̈ve mice.

Immunization with one antigen by either the pulmonary or

parenteral route alone had a lesser effect (Fig. 2a) and when both

antigens were given together either s.c. or i.n., there was no

significant increase compared to one subunit alone (Fig. 2b and c).

In one experiment (not shown), both 85A i.n./E6 s.c. (as in 2A)

and 85A i.n./E6 i.n. (as in 2C) were included. In this experiment,

there was no significant difference between these two groups but

only the SIM group (85A i.n./E6 s.c.) differed significantly from

the single antigen controls, implying that SIM is more effective

than two antigens i.n.

These subunit vaccine experiments show that the increased

protection of SIM is not due to a prime boost effect. However,

because adjuvant effects are important in immunity to Mtb

[12,25], we also immunized mice 3 times with 85A i.n.+CT, 85A

s.c.+MPL or with CT i.n., MPL s.c. or both simultaneously

(Fig. 2d). The mycobacterial burden in the adjuvant controls did

not differ from naı̈ve animals even when calculated by T test

(naı̈ve v CT p = 0.33, naı̈ve v MPL p = 0.41 and naı̈ve v CT/

MPL p = 0.29), although 85A given i.n. or s.c. with appropriate

adjuvants provided significant protection. Additionally we

immunized mice 3 times with the hypoxia induced rec protein

Rv1284 [24] s.c. or i.n. with CT or MPL. Rv1284 immunized

mice (Fig. 2e) did not differ from naive animals, indicating that

the efficacy of SIM is dependent on induction of antigen specific

immune responses in the lungs and systemically. This result

provided further evidence for the lack of effect of CT or MPL

without an effective antigen. We hypothesize that Rv1284 may be

ineffective in C57Bl/6 mice because it lacks H-2b restricted T cell

epitopes.

Figure 3. Mtb cfu after SIM with BCG. a and b. In two experiments, C57BL/6 mice were immunized once with BCG s.c. or BCG i.n. or
simultaneously with the same dose of BCG divided between the s.c./i.n. routes. Ten weeks later they were challenged with Mtb and lung cfu
enumerated 5 weeks later. Data from the two experiments with 5–7 mice/group are shown. ***p,0.001, **p,0.01, * p,0.05 between the indicated
groups, one-way ANOVA with Tukey’s post test. Data are means 6 s.e.m.
doi:10.1371/journal.pone.0027477.g003

Figure 2. Mtb cfu after SIM with subunit vaccines. a. C57BL/6 mice were immunized 3 times at 2 weekly intervals with 85A s.c., or E6 i.n. either
alone or in combination with appropriate adjuvants. Six weeks after the last immunization mice were challenged with Mtb and sacrificed for lung cfu
enumeration 5 weeks later. b. Mice were immunized 3 times with 85A s.c. or E6 s.c. with MPL, separately or in combination and then challenged. c,
the same antigens were administered 3 times i.n. with CT before challenge. d. Mice were immunized with 85A i.n. or s.c. in appropriate adjuvants or
MPL or CT were administered 3 times s.c. or i.n separately or simultaneously and e, Rv1284 was administered s.c. or i.n. 3 times with appropriate
adjuvants before Mtb challenge and enumeration as in a. Representative data from one of two experiments with 5–7 mice/group are shown.
***p,0.001, **p,0.01, * p,0.05 between the indicated groups, one-way ANOVA with Tukey’s post test. Data are means 6 s.e.m.
doi:10.1371/journal.pone.0027477.g002
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SIM with BCG/BCG
Finally, since BCG is the gold standard vaccine for animal

experiments and the only available human tuberculosis vaccine, we

tested SIM with BCG s.c./BCG i.n. This combination was highly

effective, reducing the mycobacterial load in two separate experiments

by an additional 1.1 and 2.0 log10 compared to BCG given by either

route alone (1.7 and 3.1 log10 compared to naı̈ve mice) (Fig. 3a and b).

Mechanism of SIM induced additive protection
To investigate the mechanisms underlying the efficacy of SIM,

we assayed antigen specific responses in the lungs and spleen at the

time of Mtb challenge by intra-cytoplasmic cytokine staining (ICS)

and flow cytometry [2,5] for the experiments shown in Figs. 1a,

2a,b,c and 3b. We also analyzed numbers of single or multiple

cytokine producing cells in lungs and spleens (data not shown) [5].

In the experiment shown in Figs. 1a and 4a, in which mice were

immunized only once with BCG and rec 85A, the responses to 85A

in the lungs were low and similar in all groups at 10 weeks post-

immunization (Fig. 4a) although the mice immunised with BCG

s.c./85A i.n. were very well protected (Fig. 1a). In the experiments

shown in Figs. 2a,b,c and 4b, or 3b and 4c, lung responses were

higher in i.n. or simultaneously immunized mice. In all experiments

the percentages of antigen specific cells in the spleen were lower

than in the lungs and overall there were no consistent differences

between mice immunized s.c., i.n. or simultaneously. Therefore in

these experiments protection did not correlate clearly with the

number of antigen specific cells in the lungs or spleen.

Although we could not discern a definitive correlation between

the number and quality of antigen specific cells and protective

immunity and both immunization routes induced splenic respons-

es of approximately equal magnitude (Fig. 4), the fact that i.n. but

not s.c. immunization always induced populations of antigen

specific cells in the lungs, suggested that these may be important

for the success of SIM. We therefore turned to in vivo analysis of

immune function to determine the effect of i.n. or SIM

immunization and examined the kinetics of Mtb growth after

challenge in mice given antigen i.n., s.c. or simultaneously by both

routes. All i.n. vaccines that provide additional protection when

given simultaneously with parenteral vaccines, inhibited Mtb

growth by 7 days post-challenge and inhibition compared to

naı̈ve mice was also seen at later time points. In contrast, effective

parenteral vaccines, including BCG, did not inhibit growth at 7

days but began to do so at 14 days and continued to inhibit at later

time points. When the kinetics of mycobacterial growth were

examined in SIM mice, both early and additional later inhibition

were seen. Figures 5 and 6 show the data from these experiments,

either as the kinetics of growth (Fig. 5) or as growth inhibition for

individual mice at each time point (Fig. 6).

Discussion

A distinctive feature of pulmonary infection of mice with Mtb is

the delay in initiation of a primary immune response in the

draining mediastinal lymph nodes, so that Mtb grows logarithmi-

cally in the lungs during the early phase of infection [18,19,26].

Only after the primary response generates effectors that recirculate

to the lung does the mycobacterial load stabilize. Even after

parenteral immunization with an effective vaccine, BCG, the

kinetics of mycobacterial growth are not changed during the first 7

days after challenge, although the mycobacterial load later

stabilizes at a lower level than in naı̈ve mice [2]. In contrast, in

mice immunized i.n. early Mtb growth is inhibited, as well as

stabilizing at a lower level than in naı̈ve mice [2]. Intranasal

vaccines are often more effective than parenteral immunization

against Mtb [5,13,14,17] perhaps because i.n. vaccines induce

pulmonary immunity that inhibits early mycobacterial growth,

while the primary response to non-vaccine antigens may

contribute to the later stabilization of mycobacterial load. In any

case, we hypothesize that i.n. and parenteral immunization are

additive because i.n. immunization induces a pulmonary immune

response that inhibits mycobacterial growth early after challenge,

while systemic immunity induced by parenteral immunization

inhibits mycobacterial growth only later. Because parenteral and

pulmonary immunization induce populations of immune cells with

differing localization and effects on mycobacterial growth kinetics,

we reasoned that their additive effect might not depend on a

prime/boost effect and that simultaneous immunization (SIM)

should be effective.

The data shown here confirm that BCG s.c. combined with one

of three i.n. subunit vaccines, rec 85A, rec TB10.4 or E6 peptide

provides increased protection compared to BCG alone. All of the

i.n. subunit vaccines or i.n. BCG, inhibit early growth of

mycobacteria in the lungs (Figs. 5 and 6). Furthermore, SIM is

effective with two non-crossreacting vaccines, rec 85A adminis-

tered i.n. with cholera toxin as a mucosal adjuvant and ESAT61–20

peptide given parenterally with monophosphoryl lipid A as

adjuvant. These experiments demonstrate that prime/boosting is

not needed to obtain the additive effect of SIM. Interestingly SIM

with BCG s.c./BCG i.n. is also highly effective, a result that

contrasts with the finding that boosting BCG primed animals with

BCG is generally ineffective. SIM with BCG may be effective not

only because it induces early and late inhibition of Mtb growth

after challenge (Figs. 5 and 6), but also because it circumvents the

problem of inhibition of growth of booster BCG in BCG primed

animals.

Although inhibition of early and later growth of Mtb clearly

contribute to the efficacy of SIM, the immune mechanisms require

further investigation. Even parenterally administered BCG has

been shown to induce changes in expression of lung genes involved

in connective tissue responses that last for at least 6 weeks [25] and

are important in the host response to Mtb [27]. These changes may

contribute to the efficacy of SIM when BCG is given s.c. with a

second antigen i.n. Furthermore, although we have not seen

protective effects of CT and MPL when used without antigens or

with Rv1284, the effects of these adjuvants on lung gene

expression have not been investigated and may contribute to

Figure 4. Cytokine responses of lung and spleen T cells to antigens. a. Mice were immunized with BCG s.c., BCG s.c./85A s.c. or BCG s.c./85A
i.n. as in Fig. 1a. Lung and spleen cells were isolated 10 weeks after immunization and stimulated with pooled 85A peptides for 6 hours. b. mice were
immunized 3 times at 2 weekly intervals with 85A s.c., 85A i.n., E6 s.c. or E6 i.n. either alone or in combination as in Fig. 2a,b,c and cells isolated 6
weeks after immunization and stimulated with pooled 85A peptides or E6 for 6 hours. c, mice were immunized with BCG s.c., BCG i.n. or BCG s.c./i.n.
as in Fig. 3b and lung cells were isolated 10 weeks after immunization and stimulated for 12 hours with PPD. After stimulation the proportion of IFNc,
IL-2 and TNF producing cells was determined by flow cytometry of CD4 gated cells (numbers of responding CD8 cells were too low for reliable
analysis). Results are expressed as the means 6 s.e.m. of 3 or 4 mice per group and are representative of 2 independent experiments. In a,
***p,0.001, **p,0.01 indicate significant differences between numbers of spleen IL-2 producing cells only. In b,**p,0.01 between all cytokines in
the indicated groups and in c, **p,0.01 for TNF only. All other groups differ significantly from the naı̈ve group but these comparisons are omitted for
simplicity. One-way ANOVA with Tukey’s post test.
doi:10.1371/journal.pone.0027477.g004
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Figure 5. Kinetics of Mtb growth after s.c. and i.n. immunization. C57BL/6 mice were immunized once with BCG s.c., BCG i.n. or BCG s.c./BCG
i.n. or 3 times at two weekly intervals with 85A s.c., 85A i.n., E6 s.c. or E6 i.n. Ten weeks after immunization with BCG or 4 weeks after the last
immunization with 85A or E6, mice were challenged with Mtb and groups of 3–5 mice sacrificed 7, 14, 21 and 28 days later for enumeration of lung
Mtb cfu. # indicates a significant difference between s.c immunized and naı̈ve mice and * a significant difference between i.n. or SIM immunized
mice and naı̈ve controls, one-way ANOVA with Tukey’s post test. Data are means 6 s.e.m. Standard errors are small, so that the error bars are within
the symbols when not visible.
doi:10.1371/journal.pone.0027477.g005

SIM against TB
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pulmonary protective immunity. It is also known that the

protective effects of BCG against virulent mycobacteria may be

lost with time after challenge [28], so that it will be very important

in future investigation of SIM, to study both the duration of

protective immunity after immunization and the long term

maintenance of protection post challenge.

While effects on innate and connective tissue responses may be

important for protective immunity to Mtb, the adaptive response is

clearly also important. Both CD8 T cells induced by Ad85A i.n.

[2] or CD4 T cells as shown here and elsewhere [29], can mediate

early inhibition of mycobacterial growth. It is also clear that their

location within the lung is crucial since although significant

numbers of antigen specific cells may sometimes be present in the

lungs after parenteral immunization [29,30], these are found in the

lung interstitium, while in contrast i.n. immunization establishes a

long-lived population of lung resident, activated, antigen-specific T

cells, recoverable by BAL [2,22,29]. The BAL population

expresses CXCR6 and is highly protective [22,29]. In the present

experiments we did not see a clear correlation between the

numbers of antigen-specific cells in the lungs and protective

Figure 6. Mtb growth in individual mice after s.c. and i.n. immunization. The figure shows results for individual mice from the experiments
shown in Fig. 5. C57BL/6 mice were immunized once with BCG s.c., BCG i.n. or BCG s.c./BCG i.n. or 3 times at two weekly intervals with 85A s.c., 85A
i.n., E6 s.c. or E6 i.n. Ten weeks after immunization with BCG or 4 weeks after the last immunization with 85A or E6 mice were challenged with Mtb
and groups of 3–5 mice sacrificed 7, 14, 21 and 28 days later for enumeration of lung Mtb cfu. Representative data from one of two experiments are
shown. Horizontal lines show group means. # indicates a significant difference from naı̈ve mice and * a significant difference between indicated
groups. One-way ANOVA with Tukey’s post test.
doi:10.1371/journal.pone.0027477.g006
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immunity. However we did not study activation-antigen expres-

sion on lung lymphocytes, nor did we separate BAL and interstitial

lymphocytes. The lack of an observed correlation may therefore

indicate that the location within the lung and state of activation of

lymphocytes, are more critical than the overall numbers. In future

studies of i.n. immunized or SIM mice, it will be important to

dissect responses in different lung compartments before drawing

conclusions as to the hallmarks of protective i.n. or SIM induced

immunity.

SIM with BCG s.c./BCG i.n. is highly effective and sets a new

gold standard against which to measure Mtb vaccine efficacy

(Fig. 3). Another SIM regime, BCG s.c./85A i.n., is highly

effective (Fig. 1a) but clearly there are many possibilities for

improvement of SIM with subunits, such as the use of multiple

antigens (including latency antigens) as fusion genes [11], or

recombinant mycobacteria over-expressing immunogenic antigens

[1,31]. Adjuvants and vectors for pulmonary delivery also need to

be further developed. SIM has several potential advantages: first, it

is highly effective and rapidly establishes a much higher level of

protection than BCG alone; second, it only requires immunization

procedures that might be performed at a single clinic visit; third, it

is compatible with further boosting with subunit vaccines or the

employment of recombinant mycobacteria. Some of the latter are

as effective as BCG in inducing protective immunity but may be

less pathogenic, an important property in HIV+ immuno-

compromised individuals [32]. The long-term efficacy, practicality

and safety of pulmonary vaccines remain to be thoroughly

investigated. However, BCG, rec adenoviruses and rec proteins

with adjuvants have all been shown to induce long lasting

protection [2,12]. Cheap, disposable devices to administer spray

dried particles or nebulised aerosols for pulmonary vaccination

have been developed [33,34], while respiratory immunization

against measles has been shown to be safe and highly efficient.

Nebulised BCG has been safely administered to the lungs of .100

children and young adults with no reported ill effects [35].

SIM harnessing both local and systemic immunity is a novel

strategy for immunization against Mtb, complementary to current

parenteral prime boost regimes and with the potential to enhance

greatly the efficacy of existing promising subunit vaccines. SIM

merits further investigation and development.
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