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Abstract

Although the intestinal tract plays a major role in early human immunodeficiency virus (HIV) infection, the role of immune
activation and viral replication in intestinal tissues is not completely understood. Further, increasing evidence suggests the
early leukocyte activation antigen CD69 may be involved in the development or regulation of important T cell subsets, as
well as a major regulatory molecule of immune responses. Using the simian immunodeficiency virus (SIV) rhesus macaque
model, we compared expression of CD69 on T cells from the intestine, spleen, lymph nodes, and blood of normal and SIV-
infected macaques throughout infection. In uninfected macaques, the majority of intestinal lamina propria CD4+ T cells had
a memory (CD95+) phenotype and co-expressed CD69, and essentially all intestinal CCR5+ cells co-expressed CD69. In
contrast, systemic lymphoid tissues had far fewer CD69+ T cells, and many had a naı̈ve phenotype. Further, marked,
selective depletion of intestinal CD4+CD69+ T cells occurred in early SIV infection, and this depletion persisted throughout
infection. Markedly increased levels of CD8+CD69+ T cells were detected after SIV infection in virtually all tissues, including
the intestine. Further, confocal microscopy demonstrated selective, productive infection of CD3+CD69+ T cells in the
intestine in early infection. Combined, these results indicate CD69+CD4+ T cells are a major early target for viral infection,
and their rapid loss by direct infection may have profound effects on intestinal immune regulation in HIV infected patients.
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Introduction

It is increasingly clear that the pathogenesis of HIV/SIV

infection and AIDS is closely related to the activation state of the

host immune system, and the immunologic and virologic events

that occur during the earliest stages of infection may have a strong

impact on disease progression [1,2,3,4]. However, the relationship

between the immune activation status of the host, viral replication,

and infection or loss of specific immunoregulatory cells in tissues is

not completely understood. Further, considerable debate exists as

to what molecular markers truly define ‘‘activated’’ versus

‘‘resting’’ cells, particularly in mucosal tissues, and increasing

evidence suggests CD69, previously considered to be an early

activation marker, may also play a major role in immune

regulation [5,6,7].

Several immunophenotypic markers have been used to evaluate

the level of lymphocyte activation, including CD69, HLA-DR,

CD25 (interleukin-2 (IL-2) receptor), CD38, Ki-67, and CD95. Of

these, CD69 has been identified as the earliest activation marker

on the surface of antigen- or allergen-specific activated lympho-

cytes, preceding the appearance of HLA-DR, CD25 and CD71

(transferrin receptor) [8]. Further, CD69 has been shown to be

selectively expressed in chronic inflammatory infiltrates, and at the

sites of active immune responses in vivo [9]. Although the specific

role(s) of CD69 in vivo is not fully known, in vitro studies suggest it

may act as a co-stimulatory molecule for T-cell activation and

proliferation [10]. Moreover, CD69 is rapidly expressed upon T-

cell activation in response to various stimuli, and is readily

amenable to detection by immunofluorescence and flow cytom-

etry, increasing its utility as a rapid response marker in assays of

immune activation [11,12]. Other activation markers are only

upregulated late after activation (CD25, HLA-DR) and/or

associated more with antigen experience (CD95) or cell prolifer-

ation (Ki-67) than activation per se.

Most of our evidence for CD69 as an activation marker comes

from assays based on responses of peripheral blood lymphocytes.

For example, CD69 is considered an early activation marker as it

is rapidly upregulated on essentially all bone marrow derived

lymphocytes following in vitro stimulation [5,13]. However, CD69

is also transiently expressed on developing T lymphocytes in the

thymus [14,15,16] and recent evidence suggests there may be

multiple roles for CD69 expression including immune regulation,

inflammation, trafficking, and possibly even in the development of

anergy or tolerance [5,6,7]. Thus, while CD69 is clearly associated

with early cell activation, its role may differ in various tissues or

cellular microenvironments. Further, more recent evidence

suggests CD69 may directly influence the development of Treg

CD4+ T cells, enhance differentiation of Th17 cells [13], and
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regulate TGF-beta secretion [13,17], and thus may play a major

role in regulating immune responses to infections such as SIV/

HIV.

Studies have consistently confirmed that memory CD4+ T cells

are rapidly depleted in tissues of SIV and HIV-infected hosts, and

this depletion is much more profound in the intestine than in

peripheral lymphoid tissues [18,19,20,21,22]. Although it has been

proposed that this rapid and dramatic loss of intestinal CD4+ T

cells is due to the high proportion of ‘‘activated’’ memory CD4+ T

cells expressing CCR5 which are more permissive of viral infection

[23], the mechanisms by which these cells are eliminated remain

controversial. Here we evaluated the expression of CD69 on T cell

subsets from various tissues of normal rhesus macaques, and

assessed dynamic changes in activated T cells throughout SIV

infection.

Results

Distribution of CD69+ CD4+/CD8+ T cells in tissues of
normal rhesus macaques

By flow cytometry, percentages of both CD4+ and CD8+ T cells

co-expressing CD69 were markedly lower in blood compared to

other tissues (Fig. 1) consistent with circulating T cells having a

mostly ‘‘resting’’ phenotype. In contrast, most CD4+ T cells in the

intestine co-expressed CD69 (mean 87%, range 80–95%), and a

large percentage of CD4+ T cells in the mesenteric lymph node

(33%) and spleen (21%) co-expressed CD69. Expression of CD69

on CD8+ T cells showed a similar distribution. Specifically, most

CD8+ cells (86.9%) in the intestine co-expressed CD69, and to a

lesser extent, spleen (mean 21.8%) and mesenteric lymph nodes

(mean 22%). Only 3.6% of blood CD8+ T cells co-expressed

CD69 (Fig. 1). Interestingly, CD69 expression on T cells was

higher in mesenteric lymph nodes (GALT) than in axillary lymph

nodes (systemic lymphoid tissue), but these differences were not

significant (data not shown). Combined, these data indicated that

intestinal sites and their draining tissues (mesenteric LN) have

higher levels of CD69 expression than systemic tissues. In the

blood, percentage of circulating CD8+ T cells co-expressing CD69

was higher than that of CD4+ T cells (P = 0.002) despite the

overall low levels of CD69 expression in this tissue. However, there

were no such significant differences between CD69 expression on

CD4 and CD8 T cells in other tissues examined.

Intestinal processing procedures do not artificially
upregulate CD69 expression

Procedures required to prepare single cell suspensions from the

intestine require 2–3 hours to perform due to sequential incubation

with a variety of chemicals and potential antigens including EDTA,

collagenase, and fetal calf serum. Since CD69 is rapidly upregulated

upon antigen or mitogen exposure in vitro, it was conceivable that

these procedures could artificially upregulate CD69 ex vivo. To

address this concern, we processed and treated PBMCs and

lymphocytes from blood, lymph node, and spleen using identical

procedures as used for intestinal cell isolation including serial

incubations in media with EDTA followed by collagenase treatment

exactly as above with rapid shaking at 37 degrees for the same time

intervals. As shown in Fig. 2, there was essentially no increase in

CD69 expression or changes in any other markers on T cells in the

blood, lymph node or spleen after cells were subjected to identical

treatments as intestinal cells. Therefore, the intestinal flow

cytometry data we obtained from examining cell suspensions

prepared from intestinal tissues are indeed representative of the cell

phenotypes observed in situ.

Intestinal CD4+T cells expressing CD69 have a ‘‘memory’’
phenotype

To further characterize and phenotype CD69+ T cells subsets, we

examined the co-expression of CD95 (memory marker) and CCR5

(major co-receptor for HIV/SIV) on CD69+ CD4+ and CD8+ T

cells. Significant differences in levels of co-expression of CD95 and

CCR5 were detected on CD4 and CD8+ T cells between tissues of

normal rhesus macaques. Nearly all CD69+CD4+ T cells in the

intestine lamina propria co-expressed CD95, yet many mesenteric

LN, and even more spleen CD69+CD4+ T cells lacked CD95 co-

expression (Fig. 3A). In addition, CCR5 expression was differentially

expressed on CD69+ T cells in tissues as essentially all intestinal

CD4+ T cells that co-expressed CCR5 also expressed CD69, yet

CCR5 was expressed on both CD69+ and CD69neg T cells in

mesenteric LN and spleen. In contrast, neither CD95+ nor CCR5+
T cells in blood co-expressed CD69. Generally, CD8+ T cells showed

similar patterns for co-expression of CCR5 and CD95 (Fig. 3B).

Combined, these data show that CD69 expression is differentially

expressed on naı̈ve and memory T cell subsets in tissues, and that the

vast majority of CD4+CD69+ T cells in the intestinal lamina propria

have a memory phenotype (CD95+). Further, these data confirm that

the vast majority of these activated CD4+ T cells in the intestine are

memory and many co-express CCR5, and are thus optimal target

cells for HIV infection and replication.

Examining CD69 expression in tissues (in situ)
To visualize CD69 positive cells in tissues, and determine if such

activated T cells are the initial targets for SIV infection, we

attempted immunohistochemistry and immunofluoresence for

CD69 on formalin-fixed, paraffin embedded tissue sections

following routine protocols. However, in contrast to the flow

cytometry data, very few CD69+ cells were detected in formalin-

fixed tissues (best staining is represented in Fig. 4A and C). Since

formalin can cross-link proteins/antigens of interest, we attempted

several different antigen retrieval methods that we have used

successfully, including high-pressure steam, pressure cooking,

proteinase K treatment, and high pH unmasking buffer treatment,

none of which improved the detection of CD69 on formalin fixed

tissues (data not shown). Thus, we hypothesized that formalin

fixation irretrievably cross-linked CD69 expression in tissues, and

thus resorted to snap frozen tissues for immunofluoresence and

confocal microscopy analysis of CD69 expression in situ.

Figure 1. Expression of CD69 on CD4+ and CD8+ T cell in
tissues of normal (non-infected) adult rhesus macaques. Note
the intestine has far more CD69+ T cells than other peripheral lymphoid
tissues, and T cells in blood lack CD69 expression. Bars represent mean
percentages of CD69+ cells when gating through either CD3+CD4+
(black) or CD3+CD8+ (white) T cell subsets 6 SEM. Significant
differences between CD4 and CD8 are indicated by asterisks as;
**P,0.01 using a Mann Whitney U test.
doi:10.1371/journal.pone.0027207.g001

CD69 Expression in SIV Infection
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Comparing the expression of CD69 on frozen sections obtained

from adjacent blocks of snap-frozen tissue from the same animal,

we found markedly higher CD69 expression on frozen sections

(Fig. 4B and D) than on formalin fixed tissues (Fig. 4A and C).

Further, CD69+ cells co-expressed either CD4 or CD8, and CD3

(Fig. 5A, B, C and D), consistent with the flow cytometry data on

cell suspensions from the same animals. Combined, these findings

demonstrated that detection of CD69 on formalin fixed, paraffin

embedded tissues is problematic and that frozen sections must be

used to evaluate CD69 expression in situ.

Using three color immunofluorescence and confocal microsco-

py, we simultaneously examined P28 antigen (SIV gag), CD69 and

CD3 expression on frozen tissues from 3 early SIV infected

macaques (8 d.p.i.), and found that most SIV-infected T cells

(P28+CD3+) in both mesenteric lymph node (mean 62%) and

jejunum (mean 80%) also co-expressed CD69 (Fig. 5E and F),

verifying that CD69+ T cells were indeed major initial targets for

SIV infection in vivo. Further, at least 70% of the SIV+ cells co-

expressed CD3 but it was not determined whether the few CD3

negative SIV+ cells represented macrophages, dendritic cells, or

even T cells that had down regulated CD3.

Dynamics of CD69+ CD4+ and CD69+CD8+ T cells in vivo
during acute SIV infection

To evaluate the effects of SIV infection on activated T cells in vivo,

we also compared levels of CD69+ expression on T lymphocytes

from the blood, spleen, mesenteric LN and intestine of animals at

various stages of SIV infection. We found SIV infection had

profound effects on both activated CD4 and CD8 T cells. As shown

in Fig. 6, SIV infection resulted in significantly increased levels of

CD69+CD8+ T cells in all tissues examined, including blood

(P = 0.0072), spleen (P,0.0001), mesenteric lymph node (P,0.0001)

and jejunum (P,0.0001). In blood, there was a transient yet

significant (P,0.0001) increase in percentages (Fig. 6A) and

absolute numbers (Fig. 6B) of CD69+CD4+ T cells at 10 days of

infection, but this subsequently declined. Marked declines in

CD4+CD69+ T cells were observed in jejunum (P,0.0001) and

mesenteric lymph node (P = 0.002) by 13 days of infection and

declined thereafter throughout infection. No significant differences

in CD69+CD4+ T cells were detected in spleen (P = 0.29) between

uninfected and SIV-infected macaques. Combined, these results

indicate that there are markedly different responses between CD4+
and CD8+ T cells expressing CD69 in tissues; CD8+CD69+ cells

generally increase, whereas CD4+CD69+ cells are rapidly and

persistently depleted in tissues, particularly in GALT.

Although circulating T cells lack CD69 expression in normal

macaques, both CD4+ and CD8+ T cells expressing CD69

increased in blood 10 days after SIV-infection. These CD69+ T

cells mostly co-expressed CD95 (data not shown) indicating these

were cells that had previously encountered antigens and were

currently activated. These cells likely support direct SIV infection

and may play a role in trafficking and dissemination of infected

cells through the blood to tissues in very early infection.

Correlation between viremia and T-cell activation
SIVmac251 infected macaques

As previously reported [5,20,24] we found that peak viral loads

of 107 to 108 SIV RNA copies/ml were detected in plasma around

Figure 2. Flow cytometry plots showing CD69 and CD25 expression on lymphocytes from peripheral lymphoid tissues immediately
ex vivo (left) and after treatment using the same EDTA/collagenase digestion procedures used to extract intestinal lymphocytes.
Note that these procedures do not artificially up-regulate either activation markers on CD4+ T lymphocytes. Plots were generated by gating on CD3+
lymphocytes, and then CD4+ T cells. Data are representative of tissues from 5 animals performed in 3 separate experiments.
doi:10.1371/journal.pone.0027207.g002

CD69 Expression in SIV Infection
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10 days of infection, then declined to a viral ‘‘set point’’, until the

onset of AIDS (data not shown). Further, plasma viral loads

throughout SIV infection paralleled the levels of CD69+CD4+ T

cells in examined tissues, especially in the intestine (Spearman

r = 0.4, P = 0.01), and to a lesser extent, in blood (Spearman

r = 0.3, P = 0.046) and spleen (Spearman r = 0.3, P = 0.041),

suggesting levels of activated CD4 T cells closely correlate with

plasma viremia. Moreover, gating through the remaining T cells

revealed that the most profound changes in CD69 expression on T

cell subsets were found in blood. As shown in Fig. 7, increased

levels of CD69+ T cells were detected at 8 d.p.i. which peaked at

10 d.p.i., then declined after 13 d.p.i., but were still sustained at

high levels through primary infection. This suggests persistent

immune activation in SIV infection is associated with progression

to AIDS. Similar to activated (CD69+) CD4+ T cells, a positive

correlation was found between plasma VL and CD8+CD69+ cells

in blood (Spearman r = 0.35, P = 0.03). However, changes in

CD69 expression on T cells in other tissues differed, especially in

intestine. Specifically, despite large numbers of CD69+CD8+ T

cells persisting in the intestine throughout SIV infection,

percentages of remaining intestinal CD4 T cells expressing

CD69 rapidly and continuously declined after 13 days of SIV

infection (Fig. 7) again reflecting differential effects of SIV

infection on CD4+ and CD8+ T cells. Further, a negative

correlation was detected between activated CD8+ T cells and

plasma VLs in both the jejunum (Spearman r = 20.4, P = 0.01)

and mesenteric lymph nodes (Spearman r = 20.4, P = 0.02)

suggesting mucosal or GALT CD8+ T cell activation correlates

with control of plasma viremia.

Discussion

Both HIV and SIV cause rapid, persistent depletion of memory

CD4+ T-cells soon after infection, suggesting early immunologic

effects of infection may play a critical role in determining the

subsequent disease. These and prior results have suggested rapid

Figure 3. Phenotyping activated (CD69+) T cells using CD95 (memory marker) and CCR5 (HIV/SIV co-receptor) expression on CD4
or CD8+ T cell subsets from various tissues of normal rhesus macaques. Note the vast majority of the memory CD95+CD4+ (A) and
CD95+CD8+ (B) T cells in the intestine co-express CD69+, while far fewer memory cells co-express CD69 in other tissues. Also note CCR5 expression is
limited to CD69+ T cells in the jejunum, but expressed on both CD69+ and CD69 negative cells in other tissues. Plots were generated by gating
through CD3+ lymphocytes and then CD4+ or CD8+ T cells.
doi:10.1371/journal.pone.0027207.g003

CD69 Expression in SIV Infection
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and selective depletion of intestinal CD4+ T cells was due to a

combination of their state of activation and expression of high levels

of CCR5 [20,25,26]. We originally proposed that cell activation,

particularly in tissues plays a major role in viral replication,

amplification, and systemic spread of infection through such

activated cells [25,27]. More recently, mucosal (gut) damage has

also been shown to promote systemic immune activation fueling

HIV-1 persistence and replication in systemic tissues as well [4,28].

Thus, examining levels of immune activation in situ (tissues) is of

critical importance for understanding these early events. However,

markers of immune activation, and assessing levels of immune

activation in vivo is controversial and sometimes problematic due to

both cellular and viral dynamics and the technical limitations of

tracking individual cells in vivo [29]. Moreover, emerging evidence

indicating CD69 is a major immunoregulatory molecule involved in

Treg and Th-17 cell development and regulation [13] merited

further analysis of the dynamics of CD69 expression in early SIV

infection. Examining the distribution and dynamics of CD69

expression in tissues, particularly in early SIV/HIV infection may

provide important clues to the immune dysregulation that is

associated with progression to AIDS.

Of known activation markers, CD69 has been shown to be the

earliest marker for T cell activation. It is expressed by T cells

within 30 min of T-cell receptor ligation, and is readily amenable

to detection by immunofluorescence and flow cytometry

[11,12,30]. Flow cytometry data revealed levels of CD69

expression markedly differed on T cells isolated from different

tissue sites in uninfected macaques (Figs. 1 and 3). Further, both

flow cytometry and immunohistochemistry (on frozen tissues) were

concordant, demonstrating that intestinal lamina propria T cells

are overwhelmingly CD69+. The co-expression of CD95 on all,

and CCR5 on most CD69+ T cells in the gut suggests that these

are activated memory T cells, rather than resting or naı̈ve T cells.

These data are consistent with the hypothesis that intestinal lamina

propria T cells have increased states of activation, which may be

the result of their continuous exposure to foreign antigens from the

intestinal lumen. In other tissues however, many CD69+ cells did

not co-express CD95 or CCR5, suggesting that differential

regulation of CD69 expression may exist in different tissue sites.

Circulating CD4+ T cells in the blood of normal macaques had

minimal CD69 expression, yet substantial percentages of activated

CD69+ T cells were detected in other lymphoid tissues (spleen and

mesenteric lymph node). However, the latter tissues displayed very

different patterns of CD95 and CCR5 expression on CD69+ T

cell subsets. Conceivably, CD69 is only transiently expressed in

peripheral tissues in response to early activation, and may be lost

on cells once they migrate into the blood for recirculation and

trafficking. Alternatively, CD69+ cells may reflect acutely

activated cells that have not had time to convert to a memory

phenotype. Regardless these data demonstrate that virtually all

jejunum lamina propria CD4+ T cells are antigen-experienced

memory cells (CD95+) and co-express CD69, suggesting they are

still in an activated state. Conceivably however, CD69 in intestinal

tissues may be associated with local immune regulation rather than

early ‘‘activation’’, since very few CD69 negative cells could be

detected in this tissue.

Figure 4. Comparison of immunohistochemistry results on formalin fixed (left) and tissues. Figures A and C show CD69 expression in
formalin-fixed, paraffin-embedded intestinal tissues and B and C are snap frozen intestinal tissue sections from adjacent regions of tissue from the
same animal. Note that markedly higher numbers of CD69+ cells are detected when using frozen tissues.
doi:10.1371/journal.pone.0027207.g004

CD69 Expression in SIV Infection
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Levels of CD69 expression on total T cells increased after SIV

infection in most tissues examined, consistent with SIV infection

inducing immune activation. However, we found markedly

decreased levels of CD4+CD69+ T cells in the intestine and

mesenteric LN of infected macaques, whereas markedly increased

levels of CD8+CD69+ cells were detected in the same tissues.

This differential response is strongly suggestive of a direct effect of

SIV infection of CD4+ T cells rather than non-specific immune

activation or bystander apoptosis, since activated CD8+ T cells

are actually increased throughout infection (Figs. 6, 7).

Furthermore, phenotyping SIV infected cells in situ demonstrated

marked and selective infection of CD69+ T cells in tissues, which

is also consistent with direct infection of CD4+ T cells (Figs. 5E
and F). Combined, these findings provide additional evidence

that intestinal CD4+ T cells are highly susceptible targets for viral

infection and lysis in early infection, and that activated CD4+ T

cells are selectively depleted in primary infection. The dynamics

of CD4+ T cell destruction and turnover in vivo, particularly in

tissues, make it very difficult to definitively prove the mechanisms

of CD4+ T cell destruction when examining ‘‘snapshots’’ of data

collected at single timepoints [29]. However, the fact that

CD3+CD69+ cells are infected at greater rates than

CD3+CD69neg T cells throughout infection (Fig. 5), combined

with the fact that CD8+CD69+ cells increase and CD4+CD69+
T cells decrease in most tissues (Fig. 6) strongly suggest that

CD69+CD4+ T cells are lost through direct infection and lysis,

rather than ‘‘bystander’’ apoptosis or chronic immune activation

of uninfected cells. If activation-induced bystander apoptosis were

involved, it would seem that CD8+ T cells would also be lost

because they demonstrate even higher levels of activation

(CD69+) than the residual CD4+ T cells, yet both proportions

and numbers of activated CD8+CD69+ T cells show a sustained

increase after SIV infection in all tissues, particularly in intestinal

tissues (Fig. 6). Thus, we believe these data provide solid

evidence that infected, activated CD4+ T cells are being

destroyed, yet the actual mechanism of this loss (apoptosis versus

Figure 5. Phenotyping activated T cells in lymph node (left) and intestine (right) by multilabel immunofluoresence and confocal
microscopy. Note that essentially all intestinal CD4+ (B) and CD8+ (D) T cells co-express CD69 (yellow/white), as most easily observed in images
from individual channels on the left of each figure. Note there are no single positive ‘‘red’’ CD4+CD69neg cells in the intestine (B, D) but some are
present in the lymph nodes (A, C) of . uninfected macaques. Panels E and F show productively SIV-infected cells as indicated by SIV p28 staining (red)
and demonstrate most SIV-infected cells in tissues co-express CD3 and CD69 (purple) in both lymph node (E) and intestine (F) in early SIV infection. A
single large ‘‘pure red’’ SIV+ cell not expressing CD69 or CD3 is visible in the upper left quadrant of E which may be a dendritic cell or macrophage.
This macaque was examined 10 days after SIV infection.
doi:10.1371/journal.pone.0027207.g005

CD69 Expression in SIV Infection
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lysis) will remain debated. Definitively determining the mecha-

nism of CD4+ T cell depletion remains a central unresolved issue

in AIDS research [31].

There is abundant circumstantial and in vitro evidence, yet a

limited amount of direct experimental evidence, that immune

activation drives HIV replication in vivo. Further, it is still unclear

Figure 6. Changes in CD69 expressing CD4+ (solid lines) and CD8+ (dotted lines) T cells in various tissues after SIV infection
expressed as (A) percentages of total T cells gated through CD3+ lymphocytes in tissues and (B) absolute counts of CD69+CD4+
and CD69+CD8+ T cells in blood. Note that levels of CD69+CD8+ T cells are increased in all tissues examined. In blood, CD4+CD69+ T cells are
transiently increased at day 10, but rapidly decline to undetectable levels thereafter. In contrast, CD4+CD69+ T cells are rapidly, markedly, and
persistently depleted in the intestine and to a lesser extent in the mes LN (bottom). Moreover, sustained increases in absolute counts of CD69+CD8+
T cells were found in the blood (6A), suggesting the increase in the percentage CD69+ CD8+ T cells showing in Fig. 6A is not due to the proportional
loss of CD69+CD4+ cells in the CD3 gated populations. Combined, these data indicate CD4+CD69+ T cells are rapidly destroyed, whereas CD8+CD69+
T cells rapidly increase in SIV infection. This rapid, profound, and selective loss of intestinal CD69+CD4+ T cells is likely the result of direct viral
infection as evidenced in Fig. 5. Data in A represent mean percentages of T cells gated first through CD3+ T lymphocytes (mean 6SEM).
doi:10.1371/journal.pone.0027207.g006

CD69 Expression in SIV Infection
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as to whether immune activation is a cause or consequence (or

both) of viral replication in infected hosts, particularly since most

of the activation is nonspecific for HIV/SIV antigens. Unfortu-

nately, use of CD69 as an activation marker alone may not fully

characterize the status of immune activation. In the intestine,

CD69 appears to be constitutively expressed on CD4+ and CD8+
T cells, since few to no CD69 negative cells were detected in the

lamina propria of the jejunum. This was further supported by the

co-expression of CD95 on virtually all CD69+ cells in the intestine.

Interestingly however, cells in other tissues did not reflect such

concordant expression of CD95 and CD69 expression, suggesting

different functions or regulation of CD69 expression in different

tissue sites.

Although the expression of CD69 has been well documented in

systemic cells (PBMC) the true function of CD69 and/or these

‘‘activated’’ T cells in the intestine remains uncertain, as increasing

evidence shows multiple roles for CD69 as a potential immune

regulator, possibly by, suppressing or dampening immune

responses [17,32] or even regulating the differentiation or

production of key T cell subsets such as Th-17 and CD4+ Treg

cells [13]. It is tempting to speculate that CD69+ cells in the

intestine may be playing a role in the ‘‘oral tolerance’’ of the gut, a

feature thought to be important in suppressing immune responses

to ‘‘food’’ antigens. Further, ‘‘activated’’ T cells in the gut may

simply have higher rates of turnover than those in circulation, and

our data may reflect large percentages of newly arrived T cells that

will soon be replaced by other activated T cells. Although we could

not determine if these cells are being rapidly replaced or had

suppressive functions, our combined data suggest that these are

indeed antigen activated memory cells and are major targets for

early SIV infection, and likely, subject to direct viral-mediated

lysis.

Further, the observation that peak levels of CD69+ expression

occur on both CD4+ and CD8+ T cells in the blood at 10 days

post infection suggest primary SIV infection induces rapid

systemic immune activation in response to infection, and thus

provides even more activated CD4+ T cells, which HIV may use

for additional infection, dissemination, and spread to other tissue

sites in primary infection. Clearly, more studies are needed to

validate these findings in HIV infected patients, but these results

suggest that CD69 expression may play a major role in the early

pathogenesis of HIV infection, and particularly in the rapid

depletion of memory CD4+ T cells in tissues. Early infection and

destruction of intestinal CD4+ T cells appears to be selective for

memory CD4+ T cells co-expressing CD69, which are likely much

more susceptible to infection through expression of appropriate

co-receptors (CCR5) and their increased state of activation.

Nonetheless, since emerging evidence indicates CD69 is a major

Figure 7. Changes in CD69 expression on individual CD4+ (solid lines) and CD8+ (dotted lines) T cell subsets from various tissues in
SIV uninfected and infected macaques. Note that percentages of CD4+ T cells co-expressing CD69 spiked at day 10 post infection in all tissues
and subsequently declined, until the onset of symptoms, when levels again started to rise (compare these to viral load data in Fig. 7). In contrast,
CD4+CD69+ T cells in the jejunum declined after peak viremia. Data represent total mean percentages of CD69+ cells when gating through either
CD3+CD4+ (black) or CD3+CD8+ (white) T lymphocytes (mean 6SEM).
doi:10.1371/journal.pone.0027207.g007
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regulator of immune responses and T cell development, selective

loss of CD4+ T cells expressing CD69 may have profound

consequences for local immune regulation in specific tissues.

Methods

Ethics Statement
The Institutional Animal Care and Use Committee (IACUC) of

Tulane University approved all macaque procedures described

(protocol permit number 3562). This study was carried out in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of

Health (NIH) and with the recommendations of the Weatherall

report; ‘‘The use of non-human primates in research’’. All

procedures were performed under anesthesia using ketamine,

and all efforts were made to minimize stress, improve housing

conditions, and to provide enrichment opportunities (e.g., objects

to manipulate in cage, varied food supplements, foraging and task-

oriented feeding methods, interaction with caregivers and research

staff).

Animals and virus
Rhesus macaques (Macaca mulatta) were obtained from and

housed at the Tulane National Primate Research Center. Eight

uninfected rhesus macaques were euthanized for tissue collection

as controls, and another 37 were infected with SIVmac251 or

SIVmac239 and euthanized for tissue collection at various time

points, including very early (acute) at 8 days (n = 6), 10 days (n = 3),

13 days (n = 5) and 21 days (n = 4) post infection, or in chronic

infection (defined here as infected over 42 days) with either no

overt signs of disease (chronic asymptomatic, n = 6), or with illness

that could not be definitively attributed to AIDS (e.g., nonrespon-

sive diarrhea or weight loss; n = 6), and 7 animals with overt signs

of AIDS, all of which had AIDS defining lesions and/or

opportunistic infections including Pneumocystis carinii pneumonia

(n = 4), disseminated Mycobacterium avium infection (n = 2) or SIV

encephalitis (n = 1).

All animals examined in acute infection (21 days or less) were

intravenously infected with 100 TCID50 SIVmac251 to reduce

variation that can occur with mucosal inoculations, but macaques

in chronic infection were either intravenously or intravaginally

inoculated and grouped together irrespective of route of

inoculation.

Cell isolation and flow cytometry
Tissues for flow cytometry and immunohistochemistry were

collected from the jejunum, spleen, mesenteric and axillary lymph

nodes within minutes of necropsy and transported to the lab on ice

for immediate processing. Lymphocytes from the intestine were

isolated and stained for flow cytometry as previously described

[19]. Briefly, intestinal pieces were subjected to serial incubations

with EDTA to remove the epithelium, followed by digestion with

collagenase to extract lamina propria lymphocytes. Peripheral

blood and spleen cells were stained using a whole blood lysis

technique. Blood, spleen, lymph node, and intestinal lymphocytes

from all 45 animals were examined by four color flow cytometry

with fluorescently conjugated monoclonal antibodies to CD4-APC

(L200), CD8-PerCP (SK1), CD25-FITC (M-A251) or CD3-FITC

(SP34-2) combined with CCR5-PE (3A9) or CD69-PE (FN50, BD

Biosciences) in separate tubes. Samples were acquired on a FACS

Calibur flow cytometer (Becton Dickinson) and analyzed with

Flowjo software (Tree star, Inc.). To further characterize CD69+
CD4+ or CD8+ cells in blood and tissues, nine-color flow

cytometry using appropriately diluted, directly conjugated mono-

clonal antibodies to CD45RA-FITC (5H9), CCR5-PE, CD95-PE-

Cy5 (DX2), CD25-PE-Cy7, CD28-APC (28.2), CD69-APC-Cy7,

CD3-Pacific Blue (BD Biosciences) CD8-PE-TR (3B5, Caltag

Laboratories), and CD4-Qdot655 (L200, NIH) was performed on

the same tissues from 5 normal macaques. These samples were

resuspended with BD Stabilizing Fixative (BD Biosciences) and

acquired on an LSRII flow cytometer (Becton Dickinson). Data

were analyzed with Flowjo software (Tree star, Inc.).

Immunohistochemistry and confocal microscopy
Three color immunofluorescent staining for CD69, CD4 or

CD8 and CD3 (T cells) was performed on formalin-fixed, paraffin-

embedded tissues from selected animals (uninfected and through

day 21 of infection) to visualize and phenotype the distribution of

CD69+ T cell subsets in tissues by confocal microscopy as

previously described [33]. In brief, formalin-fixed, paraffin

embedded sections were de-paraffinized and antigens ‘‘unmasked’’

using high temperature antigen retrieval consisting of heating

slides in a steam bath chamber (Black and Decker Flavor Center

Steamer Plus) with 0.01 M citrate buffer, pH 6.0 for 20 min,

cooled, and washed twice in PBS.

Three-color fluorescent immunostaining was also compared on

snap-frozen tissues. Briefly, intestinal tissues were rapidly frozen in

optimum cutting temperature compound (Tissue-TekH O.C.T.

Compound, Sakura Finetek) submersed in dry-ice cooled 2-

methylbutane, and 5 mm sections were fixed with cold acetone,

then incubated with CD4 (1F6) or CD8 (1A5, Novocastra

Laboratories Ltd.) or P28 (3F7, Trinity Biotech). Slides were then

washed with PBS and incubated with Alexa Fluor 568 (red) labeled

secondary antibody (goat anti-mouse IgG1, Invitrogen, Carlsbad,

CA), for 30 min, washed and incubated with appropriately diluted

primary antibodies, CD69 (CH/4, Invitrogen, Carlsbad, CA) and

CD3 (rabbit polyclonal, Dako Inc.), washed, and incubated with

Alexa Fluor 488 (green) labeled goat anti-mouse IgG2a (Invitro-

gen, Carlsbad, CA) and Alexa Fluor 633 labeled anti-rabbit IgG

(H+L), (Invitrogen, Carlsbad, CA) secondary antibody to detect

CD4 or CD8 (red) and CD3 (blue), respectively. Finally, slides

were mounted with fluorescent mounting medium (Dako, Inc.)

and visualized using a confocal microscope. Isotype mouse serum

controls were performed on both frozen and paraffin-embedded

slides and no false positive signals were detected for any of these

markers. To determine the proportion of activated cells infected

with SIV, lymph nodes and intestinal tissues from 3 macaques in

primary infection (day 10) were sectioned and triple labeled as

above for P28, CD3 and CD69, and the total number of SIV

infected T cells (P28+CD3+) and SIV infected activated T cells

(P28+CD69+CD3+) were counted and the proportion of infected

activated T cells was calculated.

Confocal microscopy was performed using a Leica TCS SP2

confocal microscope equipped with three lasers (Leica Micro-

systems, Exton, PA). Individual optical slices represent 0.2 mm,

and 32–62 optical slices were collected at 5126512 pixel

resolution. NIH Image (version 1.62) and Adobe Photoshop

(version 7.0) was used to assign colors to the channels collected.

Statistics
Graphical presentation and statistical analysis of the data were

performed using GraphPad Prism 4.0 (GraphPad Software Inc.,

SanDiego, CA). A Mann Whitney U test was used for comparison

of CD69 expression between CD4+ and CD8+ T cells in tissues of

normal macaques. Comparisons of CD69 expression in tissues

during SIV infection were analyzed by a one-way ANOVA and

Dunnett’s Multiple Comparison Test to compare data from

infected and control macaques (P,0.01). Correlations between
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samples were calculated and expressed using the Spearman

coefficient of correlation.
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