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Abstract

Hypermethylation of the promoter of the tumor suppressor gene, adenomatous polyposis coli (APC), occurs in various
malignancies, including hepatocellular carcinoma (HCC). However, reports on the specificity of the methylation of the APC
gene for HCC have varied. To gain insight into how these variations occur, bisulfite PCR sequencing was performed to
analyze the methylation status of both sense and antisense strands of the APC gene in samples of HCC tissue, matched
adjacent non-HCC liver tissue, hepatitis, cirrhosis, and normal liver tissues. DNA derived from fetal liver and 12 nonhepatic
normal tissue was also examined. These experiments revealed liver-specific, antisense strand-biased CpG methylation of the
APC gene and suggested that, although methylation of the antisense strand of the APC gene exists in normal liver and other
non-HCC disease liver tissue, methylation of the sense strand of the APC gene occurs predominantly in HCC. To determine
the effect of the DNA strand on the specificity of the methylated APC gene as a biomarker for HCC detection, quantitative
methylation-specific PCR assays for sense and antisense strand DNA were developed and performed on DNA isolated from
HCC (n = 58), matched adjacent non-HCC (n = 58), cirrhosis (n = 41), and hepatitis (n = 39). Receiver operating characteristic
curves were constructed. With the cutoff value set at the limit of detection, the specificity of sense and antisense strand
methylation was 84% and 43%, respectively, and sensitivity was 67.2% and 72.4%, respectively. This result demonstrated
that the identity of the methylated DNA strand impacted the specificity of APC for HCC detection. Interestingly, methylation
of the sense strand of APC occurred in 40% of HCCs from patients with serum AFP levels less than 20 ng/mL, suggesting a
potential role for APC as a biomarker to complement AFP in HCC screening.
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Introduction

Hepatocellular carcinoma (HCC) is the fourth leading cause of

cancer and the third leading cause of cancer deaths in the world.

Although the 5-year survival rate for patients with liver cancer is

14%, it increases to 26% in patients in whom cancer is found at an

early stage, compared with only 2% when it is found after it

spreads to distant organs [1]. Unfortunately, it is difficult to detect

HCC early using current screening methods.

Cancer is a disease of the genome; thus, detection of genetic or

epigenetic changes underlying HCC development should provide

unambiguous tumor detection at a curative stage [2]. Methyla-

tion of multiple tumor suppressor genes has been shown to play a

role in the genesis of HCC [3,4,5,6]. These hypermethylation

markers offer promise as tools to detect cancer cells in tissue and

body fluids [7,8] with the use of simple PCR technology

[9,10,11]. Proof of principle for the clinical value of methylation

markers has been reported for the early detection and

classification of cancer [12,13,14,15,16,17,18,19,20,21], risk

assessment and prognosis [19,22,23,24], and prediction of

therapy response [25,26,27], with some already having shown

their importance in (pre)clinical practice. Thus, the use of

methylation markers as a powerful diagnostic and predictive tool

is becoming a reality [7].
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Recent evidence, as reviewed by van Vlodrop, has implicated

the location of aberrant CpG dinucleotide methylation on gene

expression and on its clinical value in cancer [28]. This work

suggests that the current data on hypermethylation markers

require a more comprehensive and critical evaluation prior to its

implementation in clinical practice.

Inactivation of one of the many tumor suppressor genes, the

adenomatous polyposis coli (APC) gene, by genetic or epigenetic

modifications, particularly methylation, appears to be a key event

in several cancers, including HCC [4,5,26,29,30,31,32]. Although

an association between HCC and the hypermethylation of the

APC gene (mAPC) has been described in more than 30 publications,

the degree of association varies among these studies, as shown in

Table 1. As indicated, some studies reported up to 90% association

of mAPC with HCC and no mAPC in non-HCC livers [4,6,32],

whereas others report a predominance of mAPC in both HCC and

non-HCC liver samples [33,34,35]. Interestingly, the primary

variable in these studies was the DNA strand analyzed. That is,

either the sense strand or the antisense strand was examined

(Table 1). We thus hypothesized that the variable specificity of

mAPC for HCC is due to differences in the methylation status

between the sense and antisense strands, suggesting the existence

of strand-specific bias in the methylation of the promoter and the

first exon regions of the APC gene in liver tissue.

In this study, we performed comprehensive bisulfite-specific

PCR (BSP) sequencing of the sense and antisense strands of 250

base pairs (bp) of the promoter and the first exon region of the

APC gene followed by quantitative methylation-specific PCR

assays of both DNA strands on DNA isolated from HCC,

matched adjacent non-HCC, cirrhosis, hepatitis, and normal

liver tissues. We demonstrated that the extent of HCC

specificity of mAPC varies with the DNA strand analyzed.

Although the existence of liver-specific antisense strand-biased

methylation in non-HCC includes normal liver tissue, methyl-

ation of both sense and antisense strands is evident in HCC

tissue. This finding indicates that only sense-strand methylation

is specific to HCC when an end-point methylation-specific PCR

(MSP) assay is used for analysis.

Results

Antisense strand-biased methylation of the promoter
and first exon regions of the APC gene in human liver
tissue determined by bisulfite-specific PCR sequencing

To test the hypothesis that the variable HCC specificity of mAPC

found in previous studies was due to differences in methylation

status between the sense and antisense strands of the APC gene in

normal and diseased liver tissues, we designed BSP primers to

determine the methylation status of the sense and antisense strands

of APC by BSP sequencing. Figure 1A shows CpG sites (vertical

bars) in the promoter and first exon regions of the APC gene, along

with locations of BSP primers (primer sequences are listed in Table

S1). Thirty CpG sites within the 575-bp region studied were

numbered from 1 to 30 in the 59 to 39 direction.

To control for the efficiency of the bisulfite conversion, we

determined the percentage of cytosine (C) to thymine (T)

conversions that occurred in non-CpG cytosines within the

analyzed region after DNA sequencing of BSP product from each

sample. Only samples yielding a C-to-T conversion rate higher

than 95% for these non-CpG Cs were analyzed further.

To analyze the extent of methylation at each CpG site by BSP

sequencing, we established a reference index (Fig. 1C and 1D) on

the basis of the BSP sequencing data of the reconstituted standards

(Fig. 1B). We categorized the mCpG into four groups: (1) T only

(0% methylation detected, open boxes); (2) C less than or equal to

T (mC detected on less than 10% of total DNA, dotted boxes); (3)

C greater than T (mC detected on ,10%–25%, hatched boxes); (4)

C only (mC detected on ,25% or more of the DNA, solid boxes),

as shown in Figure 1D and illustrated in the chromatograms from

the BSP sequencing of normal liver and heart and a BSP clone

derived from normal liver DNA (Fig. 1C).

BSP sequencing was performed on bisulfite-treated DNA

samples from HCC (n = 32), matched adjacent non-HCC

(n = 32), normal liver (n = 6), hepatitis (n = 4), and cirrhotic tissues

(n = 6) as described in Materials and Methods. The demographic

profiles of the subjects are summarized in Table 2. The BSP

sequencing data were analyzed using the reference index

established by the reconstituted standards (Fig. 1). Because the

presence of one 16–bp poly-T sequence in the antisense strand

after bisulfite conversion rendered it unreadable by sequencing

after CpG site 20, we only analyzed CpG sites 1 to 20 (Fig. 2). As

expected, we detected mCpG in both the sense and antisense

strands of the APC gene in most HCC DNA samples (27/32).

Interestingly, we observed an antisense-biased methylation pattern

in matched adjacent non-HCC tissue (19/32), in normal liver (5/

6) samples, and in samples of liver from patients with hepatitis (3/

4) and cirrhosis (2/6). The methylation of the sense strand for

these non-HCC tissues was not detected by BSP sequencing

whereas the antisense strand showed variable densities of

methylation. One cirrhosis sample, C3, showed symmetrical

methylation, whereas two others, C4 and C5, showed no

methylation (Fig. 2A).

Table 1. Comparison of primer locations and association between APC promoter methylation and HCC in previously published
articles.

Study
[reference] Primer location

Assay
format Percent of tissue methylated (sample size)

Non-HCC HCC

1 [4] Sense MSP 0 (20) 81.7 (60)

2 [32] Sense MSP 14.3 (14) 53 (51)

3 [6] Sense MSP NA (95% specificity, n = 20 for HCC and non-HCC tissue)

4 [34] Antisense MethyLight-Taqman 81 (19) 100 (19)

5 [35] Antisense MethyLight-Taqman 48 (25) 78 (40)

6 [33] Antisense Quantitative MSP 100 (16) 100 (34)

Note: NA, not applicable.
doi:10.1371/journal.pone.0026799.t001

APC Methylation Pattern in HCC and Normal Liver
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Figure 1. Establishment of a reference index for BSP sequencing. A, diagram of the locations of bisulfite sequencing primers and the CpG
sites, indicated by vertical bars, in the promoter and the first exon regions of the APC gene (Genebank accession # NG_0084811, nt. 34,793—36,093).
The ATG site is also indicated. The CpG sites bracketed by the bisulfite sequencing primers for the sense strand ‘‘APC-S’’ and the antisense strand

APC Methylation Pattern in HCC and Normal Liver
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To test our hypothesis, we determined the specificity of the mAPC

sense strand and antisense strand to HCC based on the BSP

sequencing data (Fig. 2A). We defined the ‘‘positive’’ as the DNA

strand in which methylation was detected in $50% of CpG sites

analyzed by BSP sequencing. The specificity of mAPC sense and

antisense strands to distinguish HCC from all non-HCC tissue,

including normal liver, hepatitis, cirrhosis, and adjacent non-HCC,

was 79% and 19%, respectively, suggesting that methylation of only

the sense strand of the APC had significant HCC specificity.

Methylation density of the antisense strand in HCC tissues
was significantly higher than that in non-HCC tissues

Next we analyzed the methylation density at the level of the

CpG site of the antisense strand of the APC promoter and first

exon regions by BSP direct sequencing. The number of CpG sites

of each of four categories was calculated. The overall percentage

of mCpG detected in the antisense strand of the APC gene among

each disease category of liver tissue samples is summarized in

Table S2 and plotted in Figure 2B. We did not detect any ‘‘C

only’’ (filled boxes) in a total of 295 CpG sites analyzed (0/295) in

normal, hepatitis, or cirrhosis liver samples, whereas 46.1% (295/

640) of CpG sites in HCC DNA and 5.4% (29/542) of CpG sites

in matched non-HCC DNA showed ‘‘C only’’ in their antisense

strand sequencing chromatograms (Fig. 2A). Although methyla-

tion of the antisense stand of the APC gene was not specific to

HCC (specificity, 19%), the methylation density of the antisense

strand in HCC tissues was significantly higher than that in normal

liver tissue or in adjacent non-HCC tissues (P,0.0001) as analyzed

by the Pearson x2 test (Fig. 2B).

To confirm that methylation of the antisense strand of the APC

gene increased with HCC, as suggested by BSP sequencing

(Fig. 2B), we used a different approach, BSP cloning and

sequencing, for the antisense strands from 4 normal livers, 4

HCC, and 4 matched adjacent non-HCC tissue samples. We

sequenced 7 to 19 individual clones from each DNA sample.

Because the BSP product for DNA sequencing was derived from

an individual clone, the sequencing chromatogram showed either

a ‘‘T only’’ or ‘‘C only’’ peak for each CpG site examined. This

result differed from that obtained with the DNA isolated from liver

tissue where a mix of ‘‘C’’ and ‘‘T’’ peaks was often observed

(Fig. 1C). The representative sequencing results from each group

are shown in Figure S1 (A–C), and the percentage of clones that

were methylated at each CpG site (percent methylation) in each

DNA sample and in each tissue group was calculated as

summarized in Figure S1D, graphed in Figure S1E, and analyzed

by the Pearson x2 test. Consistent with the data from BSP

sequencing (Fig. 2B), the density of methylation of the antisense

strand in HCC tissues as determined by BSP cloning and

sequencing was significantly higher than that in normal liver

tissue and adjacent non-HCC tissue (P,0.0001).

Methylation-specific PCR assays confirm antisense
strand-biased methylation of the APC gene in normal
liver; only methylation of the sense strand is HCC-specific

To confirm that existence of antisense strand-biased methylation

of the APC gene in normal liver resulted in inconsistent HCC

specificity, as suggested by BSP sequencing, and to evaluate the

specificity of mAPC sense and mAPC antisense as potential

biomarkers of HCC, we developed quantitative MSP assays for

the sense strand (APC_MSP_S) and antisense strand (APC_M-

SP_AS) of the APC gene. The APC_MSP_S assay targets CpG sites

7–17 on the sense strand, whereas the APC_MSP_AS targets CpG

sites 11–18 on the antisense strand. Primers and Taqman probe

sequences for these two MSP assays are listed in Table S1. The

sensitivity and linearity of these two MSP assays were determined

using serial reconstituted samples, as described in Materials and

‘‘APC-AS’’ were numbered from 1 to 30 on the basis of the sense strand 59 to 39 direction. B, representative chromatograms of BSP sequencing of the
reconstituted standards: 0% methylated+100% unmethylated DNA (0%);10% methylated DNA+90% unmethylated DNA (10%); 25% methylated
DNA+75% unmethylated DNA (25%); 50% methylated DNA+50% unmethylated DNA (50%); and 100% methylated DNA (100%), from three pairs of
bisulfite specific primers, APC_BSP_S, APC_BSP_AS-1, and APC_BSP_AS-2, as indicated. The boxed areas show the relative ‘‘C’’ and ‘‘T’’ peaks in the
chromatogram from each sample of the reconstituted standards by each primer set as indicated. C, the index for analysis of the methylation status of
each CpG site based on the DNA sequencing chromatograms obtained from heart, liver, and one liver bisulfite-specific PCR clone, ranging from CpG
site #8 to #14. At each CpG site, indicating four possible ‘‘C/T’’ peaks and summarized in a reference index (D) based on the analysis from panel B, as
following: (1) only C was detected (C only, black box, indicating methylation); (2) the C peak was higher than the T peak (C.T, hatched box); (3) the C
peak was equal to or lower than the T peak (C = T & C,T, dotted box); and (4) only T was detected (T only, open box, indicating no methylation).
doi:10.1371/journal.pone.0026799.g001

Table 2. Summary of clinicopathological characteristics of the tissues analyzed by BSP.

Characteristic
Normal*
N = 6

Hepatitis
n = 4

Cirrhosis
n = 6

HCC and adjacent non-HCC
n = 32

Mean age ± SD?, years 6467.5 60613.39 51618.53 58611.11

Male/female 4/2 2/2 4/2 20/12

HBV/HCV/HBV and HCV/nonviral or unknown 0/0/0 0/0/0 0/5/1 20/7/1/4

Stage1 1/2/3/4/unknown - - - 14/7/0/1/10

Grade 1/2/3/unknown - - - 6/13/3/10

Mean size of tumor ± SD? - - - 5.663.6

AFP levels (ng/ml)
#20/.20/unknown

- - - 12/10/10

*4 of these 6 normal livers are normal liver tissues with concomitant cholangiocarcinoma.
1HCC tumors were staged using the tumor-node-metastasis (TNM) staging system.
?SD, standard deviation.
doi:10.1371/journal.pone.0026799.t002

APC Methylation Pattern in HCC and Normal Liver
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Methods. Both assays exhibited linear amplification characteristics

with the limit of detection of 6 copies per assay (Fig. S2).

Next, we determined the extent of methylation of normal and

diseased liver DNA on both sense and antisense strands of the

APC gene, using two quantitative MSP assays. Unlike BSP

sequencing, MSP assays are easier and less expensive to

perform. We included additional samples of hepatitis (n = 39),

cirrhosis (n = 41), and HCC (n = 58) so that the performance of

this potential biomarker could be evaluated with sufficient

statistical power. This group of subjects included those studied

by BSP sequencing; clinical information regarding tumor stage,

grade, and serum level of AFP is summarized in Table 3. To

perform MSP assays, as detailed in Materials and Methods, we

first quantified each bisulfite-treated DNA sample using a BS-

actin PCR assay. Next, approximately 150 copies of each DNA

sample were subjected to MSP assays for the sense and antisense

strands of the APC gene, respectively, using reconstituted

standards. The amount of methylated DNA from each input

sample was obtained by referencing the standard curve

generated.

APC sense strand methylation as a DNA marker and its
detection in AFP-negative HCC

As suggested previously, methylation of the APC gene is a

potential biomarker for HCC detection, despite the fact that some

studies showed little or no HCC specificity when the antisense

strand of DNA was analyzed. To evaluate the performance of

mAPC as a marker to distinguish HCC from non-HCC tissues

including normal, hepatitis, cirrhosis, and non-HCC liver from

HCC patients, we constructed receiver operating characteristic

(ROC) curves for both sense and antisense mAPC using data

generated by the quantitative MSP assays developed in this study

(Fig. 3). The area under the curve (AUROC) was calculated as

0.795 for sense mAPC and 0.712 for antisense mAPC. Pairwise

comparison of the two ROC curves yielded a P value of 0.0276,

suggesting that there was no significant difference between sense

Figure 2. Methylation profiles of the sense and antisense strands of the APC gene by BSP sequencing of DNA isolated from normal
liver and diseased liver tissues. A, methylation status of each CpG site in both sense (S) and antisense (AS) strands of the promoter and the first
exon regions of the APC gene in hepatocellular carcinoma (HCC, n = 32) tissue, matched adjacent non-HCC liver tissue (Adj Non-HCC, n = 32), and
normal (n = 6), hepatitis (n = 4), and cirrhosis (n = 6) tissues. The data were analyzed as described in Figure 1. Because of the large amount of T in the
DNA template after bisulfite conversion, sequencing results from some CpG sites were not available and are designated as ‘‘x.’’ B, histogram
comparing the density of mCpG detected in the antisense (AS) strand of the APC gene in HCC vs. adjacent non-HCC (***P,0.0001), and HCC vs.
normal liver (***P,0.0001) tissue by BSP sequencing analyzed as shown in panel A.
doi:10.1371/journal.pone.0026799.g002

APC Methylation Pattern in HCC and Normal Liver
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and antisense mAPC as biomarkers in distinguishing between HCC

and non-HCC liver tissues. However, when we defined a cutoff

value as any detectable methylation per 150 copies input DNA by

MSP assay, we observed a significant difference in the specificity of

sense vs. antisense strand methylation, as shown in Figure 3B.

Little or no specificity (43%) was observed when we analyzed the

antisense strand, whereas very high specificity (84%) was obtained

when the sense strand was analyzed. This result is consistent with

previous reports listed in Table 1, in which end-point MSP was

analyzed. The sensitivities of both sense and antisense methylation

as biomarkers for HCC were comparable (67% vs. 72%).

Because sense strand mAPC exhibited significantly higher

specificity as a biomarker for HCC when a cutoff value was

applied and mAPC was detected in the blood of patients with

HCC, suggesting it as a potential circulating DNA marker for

HCC screening [36,37], we compared sense mAPC with the

current accepted biomarker for HCC screening, the serum AFP

level. A scatter plot was generated by plotting the serum AFP level

(ng/mL) on the x-axis and the sense mAPC level in HCC on the y-

axis (Fig. 4). According to the American Association for the Study

of Liver Diseases, positive AFP for HCC is defined as $20 ng/

mL; in our study population, 43% of HCC tissues (n = 53 for

which AFP levels were available) were positive for AFP. We found

66% (35/53) of HCC samples to be positive for sense mAPC. When

we combined these two biomarkers, 83% of HCC samples were

positive for at least one marker. Interestingly, 60% of mAPC-

positive HCCs (21/35) were negative for AFP. Spearman’s

correlation was used to compare sense mAPC and AFP, suggesting

that these two factors are not correlated or are independent of

each other (P = 0.535).

The relationship between the status of the APC sense
strand methylation and clinicopathological variables

The methylation status of the sense strand of the APC gene as

determined by the MSP assay was compared to various

clinicopathological variables and the major etiologies of HCC as

summarized in Table 4. The clinicopathological data for five

subjects were not available, and these subjects were not included in

the analysis. A comparison of stage 1 (n = 28) with stages 2 through

4 (n = 21, 1, and 5, for stages 2, 3, and 4, respectively) indicated

that mAPC was significantly higher (P = 0.017) in stage 1 than in

the later stages (stages 2–4). No significant difference was found

between low (grade 1) and high (grade 2 and 3) tumor grades

(P = 0.401), AFP-negative and AFP-positive tumors (P = 0.963),

HBV-infected and non-HBV-infected HCC (P = 0.985), and/or

HCV status (P = 0.445).

APC antisense strand-biased methylation is liver tissue-
specific and does not occur in murine liver

To our knowledge, antisense strand-biased methylation has not

been reported previously. Therefore, to determine whether the

observed novel finding was tissue-specific, we analyzed DNA

isolated from thirteen different normal tissue types: pancreas,

peripheral blood mononuclear cells, brain, trigeminal ganglion,

lung, heart, colon, esophagus, stomach, kidney, breast, spleen, and

fetal liver. Because direct BSP sequencing indicates the net overall

methylation status of DNA and avoids differential biases that can

occur during bacterial cloning, we used BSP sequencing to

compare and analyze other tissue samples using the reference

index that we established (Fig. 1). As shown in Figure 5A, we did

not detect any antisense strand-biased methylation in any of the

nonliver tissues or fetal liver tissues studied. Methylation of the

promoter 1A of the APC gene occurred in normal gastric DNA in

a monoallelic and age-dependent but not in an antisense strand-

biased manner [38,39,40]. By studying stomach tissue DNA from

four individuals of different ages, 27, 29, 50, and 58 years, we

confirmed that the APC gene is methylated in normal gastric tissue

DNA but in an antisense strand-biased manner.

Mice are frequently used as animal models for studying human

diseases, including cancers. Demethylating agents have been tested

in mice as potential anticancer drugs [41]. Thus, it was of interest

to determine whether antisense strand-biased methylation of the

APC gene also occurred in mouse liver. Liver tissue DNA from

three individual BALB/c female mice was subjected to BSP direct

sequencing. No mCpG was detected in the three mice livers

studied (Fig. 5B).

Discussion

Four major findings are discussed in this study. First, we

discovered an antisense strand-biased methylation pattern in the

CpG island of the promoter and first exon regions of the tumor

suppressor gene APC in normal liver. This finding supports our

hypothesis that the previously reported variable HCC specificity of

mAPC, as summarized in Table 1, may have been due to

differences in methylation status between sense and antisense

Table 3. Summary of clinicopathological characteristics of the tissues analyzed by the MSP assays.

Characteristic
Normal{

(n = 6)
Hepatitis
(n = 39)

Cirrhosis
(n = 41)

HCC and adjacent non-HCC
(n = 58) P value

Mean age ± SDe 6467.5 55611.9 56614.4 58.69611.89 0.191

Male/female 4/2 19/20 27/14 39/19 0.2981

HBV/HCV/others 0/0/0 12/31/5 6/22/13 30/15/13 -

Stage11 1/2/3/4/unknown - - - 28/21/3/1/5 -

Grade 1/2/3/unknown - - - 11/33/9/5 -

Mean size of tumor ± SD - - - 5.8964.09 cms -

AFP levels (ng/ml)
.20/#20/unknown

- - - 30/23/5 -

eSD, standard deviation.
1Across all subjects (n = 144), age was analyzed by the Student t test and gender, by the Fisher exact test.
11HCC tumors were staged using TNM staging system.
{4 of these 6 normal livers are normal liver tissues with concomitant cholangiocarcinoma.
doi:10.1371/journal.pone.0026799.t003

APC Methylation Pattern in HCC and Normal Liver
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strands of APC in normal and diseased liver tissues. Second,

although antisense strand methylation occurs in normal liver,

methylation related to HCC carcinogenesis occurs on both

strands. The density of both antisense and sense strand

methylation increased significantly in HCC (P,0.0001) compared

to non-HCC tissues; thus, the ROC curves of sense mAPC and

antisense mAPC are not statistically different. However, given the

background level of antisense methylation of the APC gene that

exists in normal liver, methylation of the sense strand should be

used to distinguish HCC from non-HCC for a higher specificity,

particularly when end-point MSP is performed.

Third, antisense strand-biased methylation of the APC gene was

not observed in any of the 13 nonliver normal human tissues

studied, suggesting a liver tissue-specific epigenetic pattern. It has

been reported that CpG methylation may differ among different

tissues and can be associated with tissue-specific expression

[42,43]. The liver-specific antisense strand-biased methylation of

the APC gene shown in this study serves to further suggest that

DNA methylation in a tissue-specific manner should be taken into

consideration when studying disease-related epigenetic events.

Lastly, when comparing the sense mAPC to the currently

accepted HCC marker, serum AFP level, we found that these two

markers are independent, as shown by Spearman’s correlation

test. The sense mAPC marker identified an additional 40% of the

HCC cases in our study population that would otherwise have

been missed by serum AFP level alone. Currently, no biochemical

marker is available for detecting AFP-negative HCC, which

constitutes approximately 50% of HCC cases in the general

population [44]. Although the mAPC detected in this study was

found in HCC tissue, mAPC DNA has been detected previously in

the circulation of patients with HCC [36,45]. It is encouraging

that mAPC could be a potential biomarker complementary to AFP

in identifying AFP-negative liver tumors and that it occurs

frequently in early stage (stage 1) HCC (Table 4), which is

important for the early detection of HCC. Interestingly, we did not

find a significantly higher incidence of mAPC in HBV-infected

HCC than non-HBV-infected HCC in this study, nor in HCV-

infected HCC, although it has been suggested that HBV or HCV

infection increases the aberrant methylation of tumor suppressor

genes in HCC, including the APC gene [32,46]. This discrepancy

could be due to the differences in clinicopathological character-

istics of the HCC tumors used in different studies.

The antisense strand-biased methylation pattern of APC

appeared in most of the non-HCC liver tissues analyzed except

Figure 3. Receiver operating characteristic (ROC) curves of sense strand methylation (solid line, panel A) or antisense strand
methylation (dashed line, panel A) of the APC gene as a marker to discriminate HCC (n = 58) from all non-HCC liver tissues including
normal (n = 6), hepatitis (n = 39), cirrhosis (n = 41), and matched adjacent non-HCC (n = 58). The amount of methylated DNA was the
average of two duplicate MSP assays as detailed in Materials and Methods. The area under the curve of each ROC curve and statistical analyses are
shown in panel B.
doi:10.1371/journal.pone.0026799.g003
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for cirrhosis, in which only two of six cirrhotic tissues were found

to exhibit antisense strand-biased methylation by BSP sequencing.

Cirrhotic tissue is a mixture of regenerated hepatic tissue and scar

tissue. It is possible that the tissue used for DNA isolation was

predominantly fibrotic tissue and that relatively insensitive BSP

direct sequencing was therefore unable to detect strand-biased

methylation in the small hepatic component. One of the six

cirrhotic tissue samples exhibited symmetrical methylation similar

to that of the HCC samples. This result was not surprising, since

other researchers have also reported APC promoter methylation in

cirrhotic tissues [4,5]. Because we did not detect any strand-biased
mCpG in DNA isolated from any of the other 13 tissues tested,

including fetal liver, we concluded that antisense strand-biased

methylation of the APC gene occurs uniquely in adult liver. We did

not find any evidence of APC antisense strand-biased methylation

in murine liver tissue. This result may have implications regarding

the extrapolation of results in humans to experiments in mouse

models, such as the testing of potential anticancer drugs with

demethylating properties.

Cancer is a disease of the genome and epigenome; thus, the

detection of genetic and epigenetic changes underlying the

development of HCC should aid in the unambiguous detection

of tumors. Interestingly, one of the potential HCC epigenetic

DNA markers we examined, mAPC, exhibits liver-specific

methylation patterns, suggesting that, in the search for epigenetic

DNA markers for detection of HCC, the methylation status of

normal liver in both the sense and antisense strands should be

taken into consideration when developing a sensitive and specific

assay for the detection of HCC.

Materials and Methods

Subjects
The archived DNA isolated from 66 HCC tissue samples and

adjacent non-HCC liver samples used in this study was obtained

with written informed consent from patients who underwent

radical resection at Zhong Shan Hospital, Shanghai, China (n = 8)

and the National Cheng-Kung University Medical Center,

Tainan, Taiwan (n = 58) in accordance with the guidelines of

the respective institutional review boards. The institutional review

boards of Drexel University College of Medicine, National Cheng-

Kung University Medical Center, and Zhong Shan Hospital

specifically approved this study.

The archived DNA isolated from 4 normal liver (N3–N6), 4

hepatitis-infected liver (H1–H4), 6 cirrhotic liver (C1–C6), esoph-

ageal, and colonic tissues was obtained from the Johns Hopkins

University School of Medicine in accordance with Institutional

Figure 4. Scatter plot distribution of serum AFP levels (y-axis) and the amount of methylated sense strand APC DNA for 53 HCC
samples. Each circle represents the value for an individual HCC case. A vertical reference line intersects at 20 ng/ml AFP value. A horizontal reference
line intersects right above the MSP value of 0 as the reference for undetectable (ND), which is less than 10 copies per assay. The number of HCC cases
and the percent of the total HCC in each of four areas are indicated.
doi:10.1371/journal.pone.0026799.g004

Table 4. Statistical analysis of the amount of sense mAPC in
each subclinical group of HCC patients.

Comparison of HCC samples (n = 53) P value

Stage1 (1 vs 2,3,4) 0.017*

Grade (1 vs 2,3) 0.401

HBV status 0.985

HCV status 0.445

AFP levels (,20, .20) 0.963

*P,0.05.
1HCC tumors were staged using the TNM staging system.
doi:10.1371/journal.pone.0026799.t004
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Review Board protocols. Additional archived DNA samples (35

hepatitis and 35 cirrhosis) were obtained from the Buddhist Tzu Chi

Medical Center, Hualien, Taiwan, in accordance with Institutional

Review Board protocols. Archived DNA from normal liver sample

#N1 and from heart and lung tissue samples obtained from the

National Disease Research Interchange, Philadelphia was donated

by Immunotope, Inc. (Doylestown, PA).

Thirty-two of the matched HCC tissue samples were used for

BSP and sequencing, and 58 of the matched HCC tissue samples

were analyzed by MSP. The profiles for this group are shown in

Tables 2 and 3. Normal peripheral blood mononuclear cell DNA

was obtained as a gift from the laboratory of Dr. Pooja Jain

(Drexel University College of Medicine, Philadelphia, PA).

Normal liver N2 tissue DNA was purchased from Capital

Biosciences (Rockville, MD), and stomach 1–4, pancreas, kidney,

spleen, breast, brain, trigeminal ganglion, and fetal liver DNAs

were purchased from the BioChain Institute (Hayward, CA).

Individual subject information is listed in Table S3. Mouse livers

from Balb/c female mice were obtained from Charles River

Laboratories (Wilmington, MA).

Figure 5. Methylation profiles for sense (S) and antisense (AS) strands of the promoter and the first exon regions of the APC gene in
nonliver normal human tissues (A) and mouse normal liver (B). DNA sequencing data were obtained using BSP sequencing and analyzed as
described in Figure 1.
doi:10.1371/journal.pone.0026799.g005
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DNA isolation and bisulfite treatment
DNA was isolated using Qiagen DNeasy Blood and Tissue kits

(Qiagen, Valencia, CA) according to the manufacturer’s instruc-

tions. DNA concentration was measured using a Nanodrop 1000

spectrophotometer (Thermo Fisher Scientific, Inc., Wilmington,

DE) at 260 nm absorbance. Bisulfite treatment was performed

using Qiagen EpiTect Bisulfite conversion kits (Qiagen) following

the guidelines of the manufacturer.

Bisulfite-specific PCR sequencing
BSP primers were designed using Methyl Primer Express

software (Applied Biosystems, Life Technologies Corp, Carlsbad,

CA) to amplify the promoter regions of the APC (APC_BSP_S,

APC_BSP_AS1,and APC_BSP_AS) for both the sense and

antisense strands; primer sequences are described in Table S1.

PCR was performed in an Eppendorf Mastercycler thermocycler

for 40 cycles with hot-start Taq polymerase (Qiagen). The PCR

program started with activation of the polymerase at 95uC for

15 min, followed by denaturation at 95uC for 30 s, annealing at

the respective annealing temperature (Table S1) for 30 s, and

extension at 72uC for 30 s, then followed by a final 4-min

extension at 72uC and cooling at 4uC for all primer sets. The

reaction was assembled in a final volume of 20 ml containing 0.5 U

HotStart Taq (Qiagen), 16 PCR buffer, 200 mM of dNTPs,

0.5 mM each of primer, and bisulfite-treated DNA templates. PCR

products were run on 1% agarose gel with 16 TAE buffer. The

PCR product of the correct size was excised, purified with a

Qiagen Gel Purification kit (Qiagen), and sent with the

appropriate primer for sequencing to the NAPCore facility at

the Children’s Hospital of Philadelphia, Philadelphia, PA.

Sequencing results were analyzed using ClustalW software

(available at http://www.ch.embnet.org/), the Chromas 2.3

software (Technelysium, Tewantin, Queensland, Australia), and

Finch TV version 1.4.0 (GeospizaInc, Seattle, WA).

Preparation of reconstituted standards of methylated
and unmethylated DNA for BSP sequencing and MSP
assays

To determine the sensitivity of BSP sequencing and MSP assays to

detect methylated DNA and estimate the relative amount of

methylated DNA in a given sample, we prepared a reconstituted

sample set (i.e., a known amount of methylated DNA in a background

of unmethylated DNA). Bisulfite-converted human universal meth-

ylated DNA control (Zymo Research, Seattle, WA) was used as the

methylated DNA standard. Bisulfite-treated DNA from normal

human peripheral blood mononuclear cells that was confirmed by

sequencing to be unmethylated in the APC region of interest was used

as a source of unmethylated DNA. To quantify bisulfite-converted

DNA for both methylated and unmethylated control DNA, we

developed a real-time PCR assay, BS-actin, targeting the BS-

converted actin gene sequences. The primers of the BS-actin PCR,

listed in Table S1, were designed within regions lacking CpG sites, so

that CpG methylation status would not affect primer binding. This

assay was tested for linearity and sensitivity using 10-fold dilutions of

bisulfite-converted human universal methylated control DNA (Zymo

Research). A conversion factor of 6 pg of DNA per cell was used to

calculate the amount of DNA. On the basis of quantification by BS-

actin PCR, reconstituted sample sets were prepared in the following

ratios: (1) 0% methylated DNA, 100% unmethylated DNA; (2) 10%

methylated DNA, 90% unmethylated DNA; (3) 25% methylated

DNA, 75% unmethylated DNA; (4) 50% methylated DNA, 50%

unmethylated DNA; and (5) 100% methylated DNA.

BSP cloning and sequencing
BSP cloning and sequencing were performed for four normal

liver samples (N2, N3, N5, N6) and four sets of HCC plus matched

adjacent non-HCC bisulfite-treated DNA samples (HCC 2–4,

HCC6, non-HCC 2–4, non-HCC 6). BSP products obtained from

the APC_BSP_AS1 and the APC_BSP_AS2 reactions were gel-

purified using a Qiagen Gel Purification kit (Qiagen) followed by

polishing, ligation, and transformation performed according to the

protocols of the PCR-script Amp Cloning kit (Stratagene, Santa

Clara, CA). The white colonies were screened for the insert using

T3 and T7 primers. The PCR product obtained from each

positive clone thus isolated was then gel-purified using a Qiagen

Gel Purification kit (Qiagen) and sent for sequencing to the

NAPCore facility at the Children’s Hospital of Philadelphia.

Sequencing results were analyzed using ClustalW software

(available at http://www.ch.embnet.org/) and Chromas 2.3

software (Technelysium). Seven to nineteen clones were sequenced

for each sample.

Methylation-specific PCR assay
Two quantitative methylation-specific PCR assays for the sense

strand (APC_MSP_S) and the antisense strand (APC_MSP_AS) of

the APC gene were developed. The primer pairs and TaqMan

probes of these two assays are shown in Table S1. For the

APC_MSP_S assay, a 10-ml reaction was assembled using

FastStart TaqMan Probe Master mix (Roche Applied Science,

Mannheim, Germany). This reaction contained 16 FastStart

TaqMan Probe Master mix, 1.0 mM primers, 2.5 mM MgCl2, and

the DNA template. Using a Roche LightCycler 480 Real-Time

PCR system, PCR reactions were performed under the following

conditions: 95uC 10 min (95uC610 s, 65uC630 s,

72uC610 s)650 cycles, 40uC630 s. For the APC_MSP_AS assay,

a 10-ml reaction was assembled using LightCycler Taqman Master

mix (Roche Applied Science, Mannheim, Germany). This reaction

contained 16 Taqman Master Mix, 1.0 mM primers, 2.5 mM

MgCl2, and the DNA template. Using a Roche LighCycler 2.0

Real-Time PCR system, PCR reactions were performed under the

following conditions: 95uC 10 min (95uC610 s, 56uC615 s,

72uC610 s)650 cycles, 40uC630 s. Approximately 150 copies of

DNA, as estimated by the BS-actin PCR assay, were used in each

MSP reaction in duplicate. The average of two assays was used for

the analysis.

Statistical analysis
Methylation density for BSP sequencing and BSP cloning and

sequencing was evaluated statistically using a two-sided Pearson x2

test to compare HCC with adjacent non-HCC liver and HCC

with normal liver from control patients. Contingency tables were

constructed for each comparison group (e.g., HCC vs. adjacent

non-HCC liver) containing the total number of sites in each of the

four methylation density groups (C only, C.T, C,T, or T only).

For BSP sequencing, analysis was performed in two ways: (i)

including data for all available CpG sites; and (ii) ignoring CpG

sites that had data unavailable for any of the samples. For HCC vs.

normal liver, sites #3 to #6 and #10 to #17 were used; for HCC

vs. adjacent non-HCC liver, sites #2 to #17 were used. For BSP

cloning and sequencing methylation density analysis, the total

number of methylated CpG sites for each tissue group (HCC vs.

normal liver and HCC vs. adjacent non-HCC liver) was compared

using the Pearson x2 test.

To test whether age and gender were evenly distributed across

both HCC and non-HCC groups, the Student t test was

performed for age and Fisher’s exact test was performed for

gender. To study the distribution of APC sense-MSP values in
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HCC tissues across the categories of stage, grade, HBV status,

HCV status, and AFP groups (,20 or .20 ng/ml), a Kruskal-

Wallis test was performed. Stages 2, 3, and 4 were combined into

one group, and Grades 2 and 3 were combined into one group

because the numbers of samples in stage 3 (n = 3), stage 4 (n = 1),

and grade 3 (n = 9) were low. To study the correlation between

AFP levels and APC sense MSP values, Spearman’s correlation test

was used. Receiver-operating characteristic (ROC) curves, areas

under the ROC curves, and comparisons between ROCs were

generated using MedCalc for Windows, version 11.5.0.0 (Med-

Calc Software, Mariakerke, Belgium). The scatter plot distribution

of serum AFP levels (y-axis) and of the amount of methylated sense

strand APC DNA distribution was constructed using the PASW

software (IBM, New York).

Supporting Information

Figure S1 Methylation density of each CpG site ob-
tained by DNA sequencing of each BSP clone. An example

of DNA sequencing results obtained from 14 BSP clones isolated from

cloning the BSP product derived from normal liver sample 2 (A), 19

BSP clones from HCC sample 6 (B), and 17 BSP clones from adjacent

non-HCC sample 6 (C). The percent of methylation for each CpG site

was calculated using the number of mCpGs detected per total number

of clones analyzed, as listed at the bottom of the figure. D, summary of

the percent of methylation for each CpG site from DNA isolated from

4 normal livers, 4 HCC samples, and the matched adjacent non-HCC

tissue. E, histogram showing the percentage of each CpG site

methylation for all CpG sites as tabulated in D (***P,0.0001 for

HCC vs. normal liver and ***P,0.0001 for HCC vs. adjacent non-

HCC). E, The methylation density of the antisense strand of the APC

promoter and first exon regions increase with HCC as determined by

BSP cloning and sequencing. The methylation density (percent of

methylated CpG sites) of each CpG site of each indicated DNA

sample as summarized in panel D. The data are plotted per CpG site

on the y-axis of each DNA sample and analyzed by the Pearson x2

test. *** indicates P,0.0001.

(TIF)

Figure S2 Amplification and standard curves of the
sense (A) and antisense (B) MSP assays. Serial 1:10

dilutions of human methylated bisulfite-converted genomic DNA

were amplified by the APC sense and antisense MSP assays as

detailed in Materials and Methods. The curves generated by

different amounts of input DNA (copies) per reaction are

indicated.

(TIF)

Table S1 Primer and probe sequences used for bisulfite DNA

sequencing and methylation-specific PCR for both sense and

antisense DNA strands (Genbank accession number: APC:

NG_0084811).

(DOCX)

Table S2 Percent of mCpG detected in the antisense
strand of the promoter and the first exon regions of the
APC gene in each pathological group of liver tissue*.
(DOCX)

Table S3 Subject information for nonliver tissues.
(DOCX)
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