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Abstract

Background: Sound production and hearing sensitivity of ectothermic animals are affected by the ambient temperature.
This is the first study investigating the influence of temperature on both sound production and on hearing abilities in a fish
species, namely the neotropical Striped Raphael catfish Platydoras armatulus.

Methodology/Principal Findings: Doradid catfishes produce stridulation sounds by rubbing the pectoral spines in the
shoulder girdle and drumming sounds by an elastic spring mechanism which vibrates the swimbladder. Eight fish were
acclimated for at least three weeks to 22u, then to 30u and again to 22uC. Sounds were recorded in distress situations when
fish were hand-held. The stridulation sounds became shorter at the higher temperature, whereas pulse number, maximum
pulse period and sound pressure level did not change with temperature. The dominant frequency increased when the
temperature was raised to 30uC and the minimum pulse period became longer when the temperature decreased again. The
fundamental frequency of drumming sounds increased at the higher temperature. Using the auditory evoked potential
(AEP) recording technique, the hearing thresholds were tested at six different frequencies from 0.1 to 4 kHz. The temporal
resolution was determined by analyzing the minimum resolvable click period (0.3–5 ms). The hearing sensitivity was higher
at the higher temperature and differences were more pronounced at higher frequencies. In general, latencies of AEPs in
response to single clicks became shorter at the higher temperature, whereas temporal resolution in response to double-
clicks did not change.

Conclusions/Significance: These data indicate that sound characteristics as well as hearing abilities are affected by
temperatures in fishes. Constraints imposed on hearing sensitivity at different temperatures cannot be compensated even
by longer acclimation periods. These changes in sound production and detection suggest that acoustic orientation and
communication are affected by temperature changes in the neotropical catfish P. armatulus.
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Introduction

Ectothermic animals are dependent on environmental heat

sources and control their body temperature through external

means. Compared to endothermic animals, they maintain

relatively low metabolic rates. In general, the speed of all

metabolic processes is influenced by the body temperature, which

depends on the ambient temperature [1,2,3,4,5]. Therefore,

ambient temperature affects various physiological processes such

as neuronal and muscular activities, including all sensory systems

in ectothermic animals [6,7,8,9,10,11].

In various climates, fish have to deal with seasonal and diurnal

fluctuations in water temperature. Fish either cope with temper-

ature fluctuations or they migrate. Thus, the thermal tolerance

range of fish species differs to some degree. Certain physical

constraints cannot be compensated for even when animals are

acclimated [12,13], suggesting the presence of an optimum

temperature range.

Fish have evolved the largest diversity of sound-producing

mechanisms among vertebrates, and sounds are emitted in

numerous contexts: e.g. disturbance situations, during courtship,

competitive feeding, territorial encounters (for reviews see

[14,15,16,17]. Representatives of some catfish families possess

two different sound-producing mechanisms [18,19]. High-fre-

quency stridulation sounds are emitted when pressing ridges of the

dorsal process of the pectoral spine against the groove of the

pectoral girdle while abducting or adducting pectoral spines

[20,21,22,23,24]. In contrast, vibrations of the swimbladder by

sonic muscles result in the emission of low-frequency drumming

sounds [15,18,25]. In the family Doradidae or thorny catfishes, a

thin round bony plate termed elastic spring (‘Springfeder’; [26])

vibrates the swimbladder. The elastic spring is rapidly pulled

forward during contractions of sonic muscles which originate at

the occipital bone and insert at the elastic spring [19,27].

Effects of temperature have not been studied in broadband

stridulation sounds so far, but have been studied in low-frequency
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sounds such as drumming sounds. In general, the sound duration

and the fundamental frequency increased with rising ambient

temperature, whereas the pulse period decreased due to the higher

muscle contraction rate (Gobiidae: [28,29]; Sciaenidae: [30];

Triglidae: [31]; Batrachoididae: [32,33]. Brawn [34] observed a

temperature-dependent increase in the number of sounds

produced in the cod Gadus callarias.

Fish depend on hearing for analyzing the acoustic scene, for

orientation, prey and predator detection and for intraspecific

communication [35,36,37]. Ambient temperature affects hearing

in invertebrates and ectothermic vertebrates. Such effects have

been examined in insects [38,39,40], amphibians [41,42,43] and

reptiles [44,45]. In general, raising the temperature increased both

the most sensitive (best) frequency and the absolute sensitivity

[46,47]. The number of action potentials increased and the

temporal tuning of auditory neurons shifted to higher rates of

amplitude modulation [48]. Similar results have been found in the

tuning of the auditory system in cicadas and locusts [38,40].

In fish, only a few studies investigated the effects of temperature

changes. Dudok van Heel [49] found that the European minnow,

Phoxinus phoxinus, can discriminate between higher frequencies at

higher ambient temperature. In goldfish, Carassius auratus, warming

increased the spontaneous activity and sensivity of auditory

neurons, the best frequency at a given signal level and the

responsiveness to an acoustic stimulus [50]. The walleye pollock,

Theragra chalcogramma, showed a reduced auditory sensitivity at

lower ambient temperature within hours [51]. Wysocki et al. [13]

showed that the eurythermic channel catfish, Ictalurus punctatus, and

the stenothermic tropical catfish Pimelodus pictus exhibited higher

hearing sensitivity at higher temperatures, especially at the highest

frequency tested. Differences between temperatures were more

pronounced in the eurythermic catfish species.

Sound characteristics are important for coding information in

agonistic and reproductive contexts (conflict resolution, distress

situations, courtship, establishment of territories). Fish often

produce series of short broad-band pulses, for example in the

stridulation sounds of catfishes and gouramis [18,52], with distinct

temporal patterns and variable interpulse intervals [52,53].

Severals studies suggest that temporal patterns are important

carriers of information in fish [53,54]. Wysocki and Ladich [54]

showed that the auditory system of the catfish Platydoras armatulus

(formerly P. costatus) and the croaking gourami Trichopsis vittata

were able to process each pulse within a stridulation sound.

The present study was designed to investigate the effects of

temperature on (1) sound production and sound characteristics, (2) the

absolute auditory sensitivity and (3) the ability of the auditory system to

resolve temporal patterns of sounds in the Striped Raphael catfish.

The neotropical catfish P. armatulus [55] was chosen because this

group produces two different sound types (swimbladder and

pectoral stridulatory sounds) and because it possesses accessory

hearing structures (Weberian apparatus). Groups with accessory

hearing structures that couple air-filled cavities acoustically to the

inner ear are most likely affected by temperature changes as shown

previously [13,56]. Platydoras armatulus inhabits the Amazonian

river system and is known to emit both types of sounds in distress

situations [18]. This is the first study in which the effects of

temperature on both vocalization and hearing have been

examined in the same fish species.

Results

Stridulation sounds
All P. armatulus produced sounds by moving the pectoral fins

forward (abduction, AB) and backward (adduction, AD), utilizing

either one or both fins at the same time. Fish could also move fins

without emitting sounds or lock spines in an abducted position.

Subjects usually started producing sounds with an adduction

movement because they spread their pectoral fins in an adducted

position during handling. Stridulation sounds consisted of series of

broadband pulses with main energies ranging from 0.3 to 1.3 kHz

(Fig. 1). All fish emitted stridulation sounds when hand-held (but

not all produced drumming sounds).

In AD- and AB-stridulation sounds, sound duration showed

significant differences between temperatures (AD-stridulation

sounds: Friedman-test, x2 = 14.250, df = 2, p#0.01; AB-stridula-

tion sounds: Friedman-test, x2 = 10.750, df = 2, p,0.01). In both

sound types, duration was significantly shorter at 30uC (Wilcoxon-

tests for AD: 22uC versus 30uC: Z = 2.38, p,0.02; 30uC versus

22uC repeated: Z = 2.52, p,0.02; 22uC versus 22uC repeated:

Z = 2.52, p,0.02; Wilcoxon-tests for AB-stridulation sounds: 22uC
versus 30uC repeated: Z = 22.52, p,0.02; 30uC versus 22uC
repeated: Z = 22.38, p,0.02; 22uC versus 22uC repeated:

Z = 20.42, p.0.05) (Fig. 2) (Tab. 1). No temperature-dependent

differences were found in the number of pulses in either type (AD-

stridulation sounds: Friedman-test, x2 = 2.250, df = 2, p.0.05;

AB-stridulation sounds: Friedman-test, x2 = 1.067, df = 2, p.0.05)

(Tab. 1).

The pulse period showed great variability among and within

individuals. In general, the periods were longest in the centre of

the stridulation sounds and became shorter at the beginning and at

the end of the stridulation sounds (Fig. 1, see Material and

Methods). The mean minimum pulse period ranged from 7.4–

8.8 ms in AD- and from 5.1–7.7 ms in AB-stridulation sounds

(Tab. 1). A Friedman-test (x2 = 7.40, df = 2, p,0.05) followed by a

Wilcoxon-test revealed that the minimum pulse periods in AB-

stridulation sounds were significant shorter at 30uC than at 22uC
repeated (Z = 22.521, p,0.05). The minimum pulse periods of

AD-stridulation sounds and maximum pulse periods of AD- or

AB-stridulation sounds did not change with temperature.

Sound pressure levels did not change significantly with

temperature and remained almost constant at about 137 dB rel

1 mPa ( Friedman-test, x2 = 2.250, df = 2, p.0.05) (Tab. 1).

Otherwise, the dominant frequency revealed significant differences

between 22uC and 30uC and between 22uC and 22uC repeated

(Wilcoxon-test, Z = 22.380, p#0.05). Dominant frequency dou-

bled after fish were acclimated to 30uC from 601.6 Hz to

Figure 1. Sonagram and oscillogram of stridulation sounds.
Stridulation sounds can be produced during an adduction (AD) and
abduction (AB) movement of pectoral fins. The main energies of these
broadband sound ranged from 0.3 to 1.4 kHz. Sampling rate 44.1 kHz,
filter bandwidth 320 Hz, hanning filter, overlap 30 %.
doi:10.1371/journal.pone.0026479.g001
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1271.9 Hz, but did not decrease when repeating the 22uC
measurements.

Drumming sounds
P. armatulus emitted two different types of drumming sounds:

series of short drumming sounds and single long drumming

sounds. Series of short drumming sounds were recorded in 6 out of

8 animals but not at all temperatures (22uC: N = 4; 30uC: N = 4;

22uC repeated: N = 1). Long drumming sounds, in contrast, were

recorded in every individual but again not at every temperature

(22uC: N = 5; 30uC: N = 8; 22uC: repeated N = 5). The long

drumming sounds revealed a harmonic structure with fundamen-

tal frequencies (drumming muscle contraction rate) between 100

and 150 Hz (Fig. 3).

P. armatulus produced more stridulation than drumming sounds.

Stridulation sounds were produced by each individual at both

temperatures which was not the case in drumming sounds.

Stridulation sounds and drumming sounds were often emitted

simultaneously. In general, long drumming sounds were longer

than stridulation sounds, in some cases over 300 ms. Long

drumming sound duration did not change significantly with

temperature (Tab. 2) (Kruskal-Wallis test, x2 = 1.411, df = 2,

p.0.05). Accordingly, the mean number of pulses in drumming

sounds did not change either (Kruskal-Wallis test, x2 = 3.740,

df = 2, p.0.05 ).

The fundamental frequency in drumming sounds differed

significantly between temperatures (Kruskal-Wallis test: x2 =

10.05, df = 2, p,0.01; Fig. 4). Bonferroni-corrected posthoc tests

revealed that the fundamental frequency was significantly lower at

the lower temperature (22uC versus 30uC: U-test, U = 2.0, N1 = 5,

N2 = 8, p,0.01; 30uC versus 22uC repeated: U = 2.5, N2 = 8,

N3 = 5, p#0.01; 22uC versus 22uC repeated: U-test; U = 10.5,

N1 = 5, N3 = 5, n.s.) (Tab. 2). Pulse periods in drumming sounds

differed significantly between temperatures (Kruskal-Wallis test:

x2 = 10.50, df = 2, p,0.01). Bonferroni-corrected posthoc tests

revealed that the pulse period decreased significantly when the

temperature raised from 22uC to 30uC (U-test, U = 1.0, N1 = 5,

N2 = 8, p,0.005). No differences were found between 30uC and

22uC repeated and 22uC and 22uC repeated.

Auditory abilities
Best hearing occurred at 0.5 and 1 kHz at both temperatures

(Tab. 3, Fig. 5). A two-factorial ANOVA revealed that the

auditory sensitivity differed between temperatures (F2,126 = 13.46,

p,0.001) and that there was a significant interaction between

temperature and frequency (F10,126 = 2.15, p#0.05). Thus,

changes in auditory sensitivity showed different trends at different

frequencies. The hearing sensitivity was higher at the higher

temperature and differences were more pronounced at higher

frequencies (0.5–4 kHz).

A Bonferroni Post-hoc test showed a significant difference

between the 30uC and both 22uC audiograms (22uC versus 30uC:

p#0.001; 30uC versus 22uC repeated: p#0.001; 22uC versus 22uC
repeated: p#0.001).

Waveforms and latencies in response to single clicks
AEPs of P. armatulus in response to clicks consisted of a series of

negative and positive deflections whose amplitude decreased when

lowering the SPL. AEPs started with a negative peak (Fig. 6). The

most constant peaks – N1, P1, N2 and P2 – occurred in the AEPs

in response to a single-click presentation at 22uC and 30uC.

Significant differences in latencies of peaks P1, N2 and P2 were

found between temperatures (P1: Friedman-test, x2 = 12.0, df = 2,

p,0.01; N2: Friedman-test, x2 = 13.231, df = 2, p,0.01; P2:

Friedman-test, x2 = 12.250 , df = 2, p,0.01). The delay in the

onset of P2 was significantly longer at lower temperature (Tab. 4)

(22uC and 30uC: Wilcoxon-test, N = 8, p#0.05; 30uC and 22uC
repeated: Wilcoxon-test, N = 8, p#0.05). The peak-to-peak

Figure 2. Sound duration of stridulation sounds at 22 and
306C. Mean (6S.E.) duration of AD- and AB-stridulation sounds in P.
armatulus kept at 22uC, 30uC and 22uC repeated (rep.). N = 8 fish per
temperature. Horizontal bars indicate significant differences between
temperatures (p#0.05).
doi:10.1371/journal.pone.0026479.g002

Table 1. Sound characteristics in stridulation sounds at the experimental temperatures.

Temperature 226C 306C 226C repeated

AD AB AD AB AD AB

Duration (ms) 94.8610.0 88.464.4 71.565.9 67.163.6 122.7610.8 91.068.8

Number of pulses 7.961.0 7.660.3 6.060.6 7.861.1 7.761.2 6.260.9

Minimum pulse period (ms) 7.761.3 5.860.6 7.461.2 5.160.7 8.861.3 7.760.7

Maximum pulse period (ms) 23.264.9 18.061.2 20.763.0 17.262.3 29.264.8 26.164.4

SPL (dB re 1 mPa) 136.460.7 137.961.0 136.661.1

Dominant frequency (Hz) 601.66118.9 1271.96107.5 1203.06133.1

Mean (6SE) sound duration, number of pulses, minimum and maximum pulse period, sound pressure level (SPL) and dominant frequency in AD- and AB-stridulation
sounds in P. armatulus. N = 8.
doi:10.1371/journal.pone.0026479.t001
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amplitude between the first positive peak and the second positive

peak increased with rising temperature. N1 and N2 tended to fuse

at higher temperature, whereas P1 almost disappeared (Fig. 6).

Temporal resolution measurements
Two distinct AEPs were detectable in response to double-clicks

at click periods of 5 ms down to 1.5 ms (Fig. 7). At shorter click

periods, the responses to the first and to the second click were

partly overlaid (Fig. 7). The minimum resolvable click period was

0.81 ms. Near to the hearing threshold, N1 and N2 as well as P2

and P3 tended to merge until one negative and positive peak

remained. AEP shape and latency varied within and between

individuals. No significant difference was observed in the

minimum resolvable click periods between temperatures (Fried-

man test: x2 = 3.5, df = 2, p.0.05). Mean minimum gap width

ranged from 0.81 (60.09 SE) to 1.00 ms.

Discussion

Physiological processes depend on the surrounding temperature

in ectothermic animals. This leads to the assumption that both

sound production (sound characteristics) and sound detection are

affected by the temperature in fishes. Previous studies reveal that,

in several vocalizing species, temperature change induced changes

in temporal characteristics of sounds including sound duration,

dominant/fundamental frequency, and/or sound pressure level

[28,29,30,31,32,33,57]. In addition a few studies showed that

temperature also affects hearing [13,51]. However, the present

study is the first one investigating such effects on sound

communication by studying sound characteristics and hearing

abilities in parallel in the same species.

Temperature effects on sound characteristics
In general, sound duration and fundamental or dominant

frequency increased, whereas pulse period and pulse duration

decreased with rising ambient temperature. Note, however, that

not all sound characteristics are effected by temperature changes

in species studied and that opposite trends have been observed in a

few cases.

The duration of stridulation sounds in P. armatulus was affected

significantly at elevated ambient temperature. Both AB- and AD-

stridulation sounds became significantly shorter at the higher

temperature. This is probably because pectoral muscles contract

faster, taking less time for a complete pectoral fin sweep [19].

Stridulation sounds were influenced by temperature, whereas

duration of drumming sounds did not change in the current study.

Similarly, in the searobin Prionotus carolinus, Connaughton [58]

Table 2. Sound characteristics of long drumming sounds at
the experimental temperatures.

Temperature 226C 306C 226C repeated

Duration (ms) 277.56100.7 277.2641.0 326.6665.4

Number of pulses 16.765.7 27.964.7 25.265.1

Mean pulse
period (ms)

14.460.4 10.460.8 12.860.6

Fundamental
frequency (Hz)

74.262.4 99.167.9 75.561.5

Mean (6SE) sound duration, number of pulses, pulse period and fundamental
frequency in drumming sounds in P. armatulus. N = 5 kept at 22uC and 22uC
repeated; N = 8 at 30uC.
doi:10.1371/journal.pone.0026479.t002

Figure 4. Fundamental frequency of drumming sounds at 22
and 306C. Mean (6S.E.) fundamental frequency of long drumming
sounds in catfishes kept at 22uC, 30uC and 22uC repeated; N = 5 at 22uC
and 22uC repeated; N = 8 at 30uC. Horizontal bars indicate significant
differences between temperatures (p#0.05).
doi:10.1371/journal.pone.0026479.g004

Figure 3. Sonagram and oscillogram of a long drumming
sound. The sonagram shows three harmonics with the main energy
concentrated at the first harmonic between 100 and 150 Hz
(fundamental frequency). Sampling rate 44.1 kHz, Filter bandwidth
10 Hz, hanning filter, overlap 75 %.
doi:10.1371/journal.pone.0026479.g003

Table 3. Hearing threshold values at the experimental
temperatures.

Frequency (kHz) 226C 306C 226C repeated

0.1 82.060.8 82.161.1 84.061.1

0.2 76.161.2 75.561.6 74.960.7

0.5 69.061.5 65.361.6 69.560.8

1 68.161.0 64.661.5 69.461.0

2 73.161.5 70.061.3 71.661.1

4 82.661.6 75.161.6 84.361.3

Mean (6S.E.) hearing thresholds of P. armatulus kept at 22uC, 30uC and 22uC
repeated. N = 8.
doi:10.1371/journal.pone.0026479.t003
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reported no relation between sound duration and temperature

variation.

Temperature effects on drumming sounds are a well-studied

topic in fish biology. Drumming sounds in piranhas, Serrasalmus

nattereri, in the oyster toadfish, Opsanus tau, and in the gobies

Padogobius bonelli and P. nigricans became shorter at higher

temperatures [28,29,33,57]. In contrast, drumming sound dura-

tion in the weakfish, Cynoscion regalis, and in the Lusitanian

toadfish, Halobatrachus didactylus, increased with rising ambient

temperature [30,32]. Thus, results on sound duration influenced

by temperature showed different trends. For instance Amorim [31]

reported that in H. didactylus ‘knocks became shorter and ‘grunts’

became longer at higher temperature. So far, sound characteristics

are temperature-dependent, although no conclusions could be

drawn about which factors are responsible for sound lengths either

increasing or decreasing with temperature change.

The maximum and minimum pulse periods of stridulation

sounds showed temperature-dependence to some degree. The

minimum period became shorter in AB-stridulation sounds at

higher temperature, and a significant difference was also found

between the two cold measurements, whereas in AD-stridulation

sounds no trend was detected. The shorter pulse periods at higher

temperatures most likely decreased the duration of AB-stridulation

sounds because the number of pulses was constant. The lack of

such a relationship in AD-stridulation sounds is probably because

the minimum and maximum pulse periods do not reflect the mean

pulse period of sounds completely. Dominant frequency of

stridulation sounds tended to increase with temperature. No

comparable studies have been conducted on the temperature-

effects on stridulation sound characteristics.

In drumming sounds of P. armatulus, the mean pulse period

tended to decrease with increasing temperature. The fundamental

frequency which reflects the muscle contraction rate increased

from approximately 75 Hz to 100 Hz. Drumming muscles are

fast-contracting muscles consisting of many thin myofibrils

encircled by layers of sarcotubules [27]. A temperature change

may affect the pulse pattern generator circuits and the muscle

contraction properties that change the contraction rate of the

drumming muscles. A warmer sarcoplasmic reticulum can cycle

Table 4. Latencies of single-clicks measured at the
experimental temperatures.

Peak 226C 306C 226C repeated

N1 0.9960.02 1.0460.08 1.0360.03

P1 1.4960.04 1.1660.02 1.6660.03

N2 2.0360.04 1.4060.03 2.1460.04

P2 2.8160.06 2.3860.10 2.9660.04

Mean (6S.E.) latency (ms) of negative peaks (N1, N2) and positive peaks (P1, P2)
of P. armatulus kept at 22uC, 30uC and 22uC repeated calculated as the time
period between the onset of a single click stimulus 32 dB above hearing
threshold and the peaks. N = 8, except N2 at 30uC (N = 7) and P1 at 30uC (N = 6).
doi:10.1371/journal.pone.0026479.t004

Figure 7. Temporal resolution of double-click stimuli with
variable click periods (0.3–5 ms) at 22 and 306C. AEPs of one
specimen of P. armatulus in response to a double-click stimulus 28 dB
above hearing threshold at different click periods (ms) and tempera-
tures. The arrows indicate the onset of stimuli.
doi:10.1371/journal.pone.0026479.g006

Figure 5. Auditory evoked potential audiograms at 226C and
306C. Mean hearing thresholds of P. armatulus kept at 22uC, 30uC and
22uC repeated. N = 8 per temperature.
doi:10.1371/journal.pone.0026479.g005

Figure 6. AEPs of one specimen of P. armatulus in response to a
single-click stimulus. Click stimulus was presented at 28 dB above
hearing thresholds at both temperatures. Arrows indicate the onset of
the single-click stimulus.
doi:10.1371/journal.pone.0026479.g009
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calcium more rapidly in the oyster toadfish Opsanus tau [28,32,59].

Studies on the Arno goby, Padogobius nigricans, the searobin Prionotus

carolinus and the oyster toadfish, Opsanus tau, reported a rise in

fundamental frequencies with higher temperature [29,33,58].

These studies did not investigate if, due to this outcome, pulse

periods decreased with elevated temperature. Interestingly,

Connaughton et al. [30] described shorter pulse duration but

increasing pulse periods in the weakfish at higher temperature.

Nevertheless, sound characteristics such as pulse period and

fundamental and/or dominant frequency showed an overall

strong correlation with ambient temperature.

In P. armatulus, no temperature effect was found on the sound

pressure level in stridulation sounds. Those levels ranged from

136.4 to 137.9 dB. Connaughton [58] observed that the sound

pressure level of the searobin Prionotus carolinus was not influenced

by temperature as well. In contrast, lower sound pressure levels

have been described in the piranha and the weakfish at lower

temperatures [30,57].

Temperature effects on hearing
In several ectothermic animals, temperature-dependent effects

on the auditory system have been reported. Amphibians showed

lower hearing thresholds at higher surrounding temperature

[46,47]. In insects, warming above ambient temperature increased

the characteristic hearing frequency or best frequency, the spike

rate and the sensitivity [38,40].

Higher temperatures induced a frequency-dependent change in

sensitivity in all fish species investigated so far [13,51]. Dudok van

Heel [49] was the first to describe temperature effects on the

auditory function in fishes. He trained blinded European minnows

(Phoxinus phoxinus) to react to different frequencies. At higher

temperature, the upper limit of frequency discrimination shifted

from 1200 Hz up to 1600 Hz. Subsequently, the detectable

frequency range became wider. Wysocki et al. [13] were interested

if ambient temperature influenced auditory sensitivity in a

erythermal and stenothermal catfish differently. Hearing thresh-

olds of the stenothermic tropical catfish Pimelodus pictus decreased

from 22 to 30uC [13]. Pimelodus pictus and P. armatulus showed a

similar frequency-dependent increase in sensitivity when increas-

ing the ambient temperature by 8uC (Fig. 8).

The eurythermal North American channel catfish Ictalurus

punctatus differed considerably from the stenothermal tropical

catfishes (P. pictus and P. armatulus) ([13], and current study). The

channel catfish exhibited higher changes in hearing sensitivity

when the temperature changed, especially at the highest frequency

tested. In I. punctatus, hearing sensitivity at 4 kHz increased by

23 dB when temperature was raised from 18 to 26uC. Hearing

thresholds of the tropical catfish P. pictus showed smaller

differences (maximum change: 5 dB) at a similar temperature

change of 8uC.

Several factors explain the phenomenon that hearing sensitivity

at higher frequencies is more affected by temperature changes

than at lower frequencies. Fay and Ream [50] concluded that

temperature-dependent effects on the nervous system in goldfish,

Carassius auratus, may reflect changes in the release and reuptake of

neurotransmitter at the synapses between hair cells and auditory

nerve fibres. Elevated temperature increased the cells’ spontaneous

activity, sensitivity, best frequency and responsiveness. Wysocki

et al. [13] argued that high-frequency hearing needs faster firing of

action potentials due to synchronization with the shorter sound

cycles. The refractory periods and transduction processes are

perhaps more temperature-dependent than those of longer cycles

of lower frequencies. This would be consistent with the frequency-

dependent improvement of hearing in the present study.

Latencies decreased in three out of four peaks (P1, N2 and P2)

at higher temperatures in P. armatulus. This result might be

explained by temperature dependence of spike conduction

velocity, of spike shape and perhaps of synaptic delay. Short

latencies indicate better hearing cability at higher temperature

[56]. Besides, Wysocki and Popper [60] also observed different

AEP shapes at different temperatures. At higher temperature,

peaks tended to fuse, especially the first and the second negative

peak, and AEP amplitude increased.

In the locust Locusta migratoria, higher temperatures resulted in a

better resolution of gaps [39]. No such change with temperature

was found in the current study. Wysocki and Ladich [54] reported

that the mean minimum resolvable pulse period of the Lined

Raphael catfish was 0.52 ms, measured at 25uC. The current

study found a mean value of 0.86 (60.05) ms at 32 dB above

hearing threshold at both temperatures investigated; two distinct

AEPs were clearly traceable at a click period exceeding 3.5 ms

(according to [54]). The minimum pulse periods in the stridulation

sounds (2 ms) and in the drumming sounds (6 ms) in P. armatulus as

measured in the recent study are longer than the minimum

resolvable click period. This indicates that catfishes encode the

temporal information of sounds from conspecifics, independent of

changes in ambient temperature.

Temperature and acoustic communication
Many catfish species produce sounds in various behavioural

contexts such as disturbance, agonistic behavior and male

courtship display [19,61,62]. Thus, the detection of stridulation

and drumming sounds is an important factor in catfish behavior.

In disturbance situations, catfish are likely to emit more

stridulation sounds, whereas in intraspecific contexts more

drumming sounds are produced [62]. Accordingly, stridulation

sounds may have a warning or defense intention, while drumming

sounds play an important role in intraspecific communication

[62,63].

Temperature affects sound characteristics in both stridulation

sounds (duration) and drumming sounds (pulse period, funda-

mental frequency). Both observations agree with the fact that the

muscle contraction rate increases with temperature. Higher

contraction speed of the pectoral abductor and adductor muscle

results in shorter AB- and AD-stridulation sounds. Similarly, a

higher drumming muscle contraction rate results in shorter pulse

periods and a higher fundamental frequency. Stridulation sounds

Figure 8. Comparison of the change in hearing sensitivity in
the Amazonian catfishes Pimelodus pictus (Wysocki et al., 2009)
and P. armatulus (current study). Differences are shown in both
species after acclimation for at least 3 weeks to either 22uC or 30uC.
doi:10.1371/journal.pone.0026479.g007
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tended to have higher dominant frequencies and shorter pulse

periods. Sound frequencies of both sound types shift to higher

frequencies with rising temperatures, and hearing sensitivity

increased at higher frequencies. Thus, low-frequency (0.1 and

0.2 kHz) drumming sounds and in particular high-frequency

stridulation sounds (above 500 Hz) will be better detectable at

higher temperatures. The lower hearing thresholds, together with

the faster response of the auditory system (shorter latencies of AEP

waves), leads to the assumption that changes in temporal patterns

of both types of sounds (duration, pulse periods) are detected and

that acoustic communication is facilitated at higher temperatures

in catfishes. The habitat temperature typically ranges between

23uand 30uC. Studies on vocalizing species are required to

determine whether this effect is more pronounced in eurythermic

than stenothermic fish species.

Materials and Methods

Ethics Statement
The study protocol was approved by the Austrian Federal

Ministry of Science and Research, permit number GZ 66.006/

0023-II/10b/2008.

Animals
Lined Raphael catfish [55] were kept in a community tank

(110655630 cm, 2561uC) and a total of 8 adult specimens of P.

armatulus were used in the present study. They were obtained from

a local pet supplier. Groups of four fish were introduced into two

experimental tanks (70640630 cm) which were equipped with

half flower pots and whose bottom was covered with sand. The

water was filtered by external filters and a 12:12 hour light-dark

cycle was maintained. Fish were fed with frozen chironomid larvae

and flake food five days per week. The size of fish was as follows:

total length: 126.2–142.5 mm; standard length: 108.6–121.1 mm;

body mass: 27.9–41.8 g. The sex of the fish was not determined

because this was not possible without killing the animals.

Temperature in the experimental tanks was changed using

submersible heaters by approximately one degree per day until

final temperatures of 2261uC and 3061uC, respectively, were

achieved. Fish were acclimated for at least three weeks to each

experimental temperature, first to 22uC, then to 30uC and finally

to 22uC again. Auditory measurements were conducted between

24 h and 4 weeks prior to sound recordings. Fish recovered

completely within one day.

Sound and video recordings
Sound and video recordings were conducted in a sound-proof

room in a separate recording tank (50627630 cm) either at

2261uC or at 3061uC, depending on the acclimation tempera-

ture in the experimental tank. Fish were hand-held at a distance of

5 to 10 cm from the hydrophone which was positioned in the

middle of the recording tank. In order to avoid overlap of

stridulation sounds generated simultaneously by both pectoral fins,

one fin was fixed.

Sounds and fin movements were recorded using a hydrophone

(Brüel & Kjaer 8101) connected to a power supply (Brüel & Kjaer

2804) and an amplifier (AKG B29L), and a video camera (Sony

VX1). Both acoustic and video signals were recorded simulta-

neously on a harddisk video recorder (Panasonic DMR-EX95V).

Videorecordings were necessary to determine which sounds were

produced during abduction and adduction of pectoral fins.

Sound pressure levels (RMS fast, L-weighting) were recorded

using a sound level meter (Brüel & Kjaer Mediator 2238) which

was connected to the power supply of the hydrophone. Three walls

of the recording tank were lined on the inside by acoustically

absorbent material (airfilled packing foil) and its bottom was

covered with fine sand. The recording tank supporting table was

placed on a vibration-isolating concrete plate.

Sound analysis
Sounds were analysed using Cool Edit 2000 (Syntrillium

Software Corporation, Phoenix, USA) and STx Soundtools

3.7.8. (Institute of Sound Research at the Austrian Academy of

Sciences). P. armatulus produced sounds during the adduction (AD)

and abduction (AB) of pectoral fins [18]. The following sound

characteristics were determined in stridulatory sounds: the sound

duration (ms), the number of pulses, the minimum and maximum

pulse period (ms), the dominant frequency (Hz) and the sound

pressure level (dB re 1 mPa) (Fig. 9). In each individual, five AD-

and five AB-stridulation sounds (a total of 10 sounds) were

examined. In the drumming sounds, the sound duration (ms), the

number of pulses, the mean pulse period (ms) and the fundamental

frequency (Hz) were determined. Sound pressure levels could not

be determined for AB- and AD- stridulation sounds separately

because the sound level meter does not allow SPL readings at such

short intervalls. Furthermore, SPLs could not be determined for

drumming sounds because fish produced stridulation sounds,

which were much louder, at the same time.

The pulse period was defined as time between the peak

amplitudes of two subsequent pulses within a sound. In stridulation

sounds, only sounds consisting of at least four pulses were used for

pulse period measurements. The average of the minimum and

maximum pulse periods of stridulation sounds (each N = 3) were

calculated separately for each fish instead of a total mean due to

the large variabilty in these sound characteristics. For each

individual, 60 pulse periods were measured at each temperature.

The dominant frequencies of stridulation sounds were measured

using cepstrum-smoothed power spectra (filter bandwidth 1 Hz,

50% overlap, number of coefficients 100, hamming filter),

determined from five AD- and five AB-stridulation sounds, thus

10 stridulatory sounds per fish. A sound file made up of

Figure 9. Drawings of the ventral side of the catfish and
oscillogram of an AD- and AB-stridulation sound. The upper
drawings illustrate the fin movement during production of AB- and AD-
sounds, the lower oscillogram shows temporal sound characteristics
measured. Sound duration was measured from the beginning to the
end of a sound. The pulse period was defined as the time between the
peak amplitudes of two subsequent pulses within a sound. A minimum
and a maximum pulse period are shown within a stridulatory sound.
doi:10.1371/journal.pone.0026479.g008
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stridulation sounds was created separately to determine individual-

specific dominant frequencies.

In drumming sounds, pulse periods were defined as the time

between subsequent drumming muscle contractions. Pulse periods

were analyzed in at least four drumming sounds per fish (10 pulse

periods per fish). The mean pulse period was calculated for each

fish. The fundamental frequency of drumming sounds was

determined from sound power spectra calculated from 10 sounds

per fish. Again, a sound file consisting of drumming sounds of one

specimen was created to calculate the fundamental frequency of

each individual.

Auditory sensitivity measurements
Auditory sensitivity was measured using the auditory evoked

potential (AEP) recording technique described by Kenyon et al.

[64] and modified by Wysocki and Ladich [54,65]. Test subjects

were secured in a round plastic tub (35 cm diameter, 15 cm

height, lined on the inside by acoustically absorbent material, 1 cm

layer of fine sand) filled with water and adjusted so that the nape of

the head was just above the surface of the water, and a respiration

pipette was inserted into the animal’s mouth. The water

temperature was either at 2261uC or 3061uC, depending on

the temperature in the holding tanks.

Respiration was achieved by a temperature-controlled gravity-

fed water circulation system. To immobilize animals and to reduce

the myogenic noise level, they were injected with a curariform

agent (Flaxedil; gallamine triethiodide; Sigma-Aldrich, Vienna,

Austria). The dosage required was 1.5–2.8 mg g21 and allowed the

fish to perform opercular movements during the experiment. The

plastic tub was positioned on an air table (TCM Micro-g 63–540)

which rested on a vibration-isolating concrete plate. The entire

setup was enclosed in a walk-in soundproof room which was

constructed as a Faraday cage (interior dimensions: 3.263.26
2.4 m).

The AEPs were recorded using silver wire electrodes (0.32 mm

diameter) that were pressed firmly against the skin, which was

covered by small pieces of tissue paper to keep it moist, in order to

ensure proper contact during experiments. The recording

electrode was placed in the midline of the skull over the region

of the medulla and the reference electrode cranially between the

nares. Shielded electrode leads were attached to the differential

input of an a.c. preamplifier (Grass P-55, Grass Instruments, West

Warwick, RI, USA; gain 100x, high-pass at 30 Hz, low-pass at

1 kHz). A ground electrode was placed in the water near the

subject. Both stimuli presentation and AEP-waveform recording

were accomplished using a Tucker-Davis Technologies (TDT,

Gainesville, FL, USA) modular rackmount system (TDT System 3)

controlled by a Pentium PC containing a TDT digital processing

board and running TDT BioSig RP Software.

Presentation of sound stimuli
Sound stimuli waveforms were generated using TDT SigGen

RP software and fed through a power amplifier (Alesis RA 300,

Alesis Corporation, Los Angeles, CA, USA). A dual-cone speaker

(Tannoy System 600, frequency response 50 Hz to 15 kHz6

3 dB), mounted 1 m above test subjects in the air, was used to

present the stimuli during testing. Sound stimuli consisted of tone

bursts presented at a repetition rate of 21 s21. Hearing thresholds

were determined at frequencies of 0.1, 0.2, 0.5, 1, 2 and 4 kHz,

presented in random order. Rise and fall times were one cycle at

0.1 and 0.2 kHz and two cycles at all other frequencies. All bursts

were gated using a Blackman window.

The stimuli were presented at opposite polarities (180uphase

shifted) for each test condition and the corresponding AEPs were

averaged by the BioSig RP software in order to eliminate stimulus

artefacts. The sound pressure level (SPL) of tone-burst stimuli was

reduced in 4 dB steps until the AEP waveform was no longer

apparent. The lowest SPL for which a repeatable AEP trace could

be obtained, which was determined by overlaying replicate traces,

was considered the threshold [56,66]. A hydrophone (Brüel &

Kjaer 8101, Naerum, Denmark; frequency range 1 Hz to

80 kHz62 dB, voltage sensivity – 184 dB re 1 VmPa21) was

positioned near the right side of each fish (2 cm away) to

determine absolute SPLs values underwater, close to the subjects.

Temporal resolution measurements
In order to analyze the temporal resolution ability at different

temperature, the technique described by Wysocki and Ladich [54]

was applied. Single clicks and double-clicks were generated using

TDT System II and TDT ‘SigGen’ software and fed through a

DA1 digital-analog converter, a PA4 programmable attenuator,

and a power amplifier (Denon PMA 715R) to the air speaker

(Tannoy System 600). Each type of stimulus (single click and

double-click) was presented to the animals at a repetition rate of

35 s21. Double-click stimuli were presented at 28 dB above

hearing threshold. Ten different click periods were presented,

beginning with the shortest click period. Click periods tested were

0.3, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 and 5 ms.

The amplitudes of the responses to the second click of each pair

of clicks were measured and compared to the response to a single

click following the method used in Wysocki and Ladich (2002).

The most consecutive peaks were used for analysis. The AEP

components were denominated with P for positive peaks (directed

upwards) and N for negative peaks (directed downwards) by

ascending numbers. The main peaks for analysis were N1, N2, P2

and P3. First, the hearing threshold in response to a single click

was determined, followed by a presentation of double-clicks at

28 dB above hearing threshold.

A point-to-point subtraction operation was conducted [54] to

isolate the response to the second click within a pair of clicks. The

AEP in response to a single click was substracted from the response

to a double-click. The shortest click period at which a second

response was still detectable was classified as the minimum

resolvable click period.

Latency measurements
The latency was defined as the time between the onset of the

single click stimulus and the first four constant peaks of the AEP

recorded in responses to this click stimulus. The most constant

peaks in the AEPs were N1, P1, N2 and P2 (see Fig. 2 in [54]). The

single click was presented at 28 dB above hearing threshold.

Statistical analyses
All data were tested for normal distribution using the

Kolmogorov-Smirnov-test and when data were normally distrib-

uted, parametric statistical tests were applied. Stridulation sounds

data determined at three different experimental temperatures were

compared using a non-parametric test (Friedman-test followed by

a Wilcoxon-test). A Kruskal-Wallis test was applied to calculate

differences in drumming sound characteristics because only five

individuals produced drumming sounds at all temperatures.

Audiograms obtained at the three temperatures (22uC, 30uC and

22uC repeated) were compared by a two-factorial analysis of

variance (ANOVA) using a general linear model where one factor

was temperature and the other was frequency. The temperature

factor alone should indicate overall differences in sensitivity

between temperatures and in combination with the frequency

factor if different tendencies exist at different frequencies of the
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audiograms. A Post-hoc test (Bonferroni) revealed differences

between temperatures. All statistical tests were run using SPSS

17.0. The significance level was set at p#0.05.
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