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Abstract

N-ethyl-N-nitrosourea (ENU) mutagenesis is a useful approach for genetic improvement of plants, as well as for inducing
functional mutants in animal models including mice and zebrafish. In the present study, mature sperm of grass carp
(Ctenopharyngodon idellus) were treated with a range of ENU concentrations for 45 min, and then wild-type eggs were
fertilized. The results indicated that the proportion of embryos with morphological abnormalities at segmentation stage or
dead fry at hatching stage increased with increasing ENU dose up to 10 mM. Choosing a dose that was mutagenic, but
provided adequate numbers of viable fry, an F1 population was generated from 1 mM ENU-treated sperm for screening
purposes. The ENU-treated F1 population showed large variations in growth during the first year. A few bigger mutants with
morphologically normal were generated, as compared to the controls. Analysis of DNA from 15 F1 ENU-treated individuals
for mutations in partial coding regions of igf-2a, igf-2b, mstn-1, mstn-2, fst-1and fst-2 loci revealed that most ENU-treated
point mutations were GC to AT or AT to GC substitution, which led to nonsense, nonsynonymous and synonymous
mutations. The average mutation rate at the examined loci was 0.41%. These results indicate that ENU treatment of mature
sperm can efficiently induce point mutations in grass carp, which is a potentially useful approach for genetic improvement
of these fish.
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Introduction

Genetic breeding of aquacultural fish species mainly depends on

the discovery of natural mutants with high performance, and then

improved strains can be produced through genetic selection,

hybridization or marker-assisted breeding approaches [1,2,3]. To

date, 73 improved breeds of aquacultural species have been

produced in China, among which 39 strains were created by

genetic selection, while the remainder were produced by

hybridization [4]. All of these improved breeds were developed

from existing natural mutants that carry desirable genes or traits

[5,6]. Thus, the acquisition of mutants with high performance is

key for achieving breeding goals. However, the rate of natural

spontaneous mutations in fish species is generally lower than 1026,

meaning that chemical mutagenesis is an efficient way to produce

new mutants for future genetic improvement in aquacultural

species [7].

Farmed fish are fertilized in vitro and display high reproductive

abilities, which allows for chemical mutagenesis of the sperm, egg

or embryo at various stages [7,8,9]. N-ethyl-N-nitrosourea (ENU)

is a chemical mutagen that acts as an alkylating agent, transferring

its ethyl group to nucleophilic nitrogen or oxygen sites on

deoxyribonucleotides, leading to base mismatch during DNA

replication [10,11]. ENU treatment mainly induces single-base

substitutions that resemble natural spontaneous mutations [9].

The mutation rate induced by ENU at specific loci ranges from

0.5610-3 to 3.961023 in mice and zebrafish, which is almost 10

times greater than mutation rates induced using any other means

[12,13]. In addition, mutations induced by ENU are unbiased

meaning that all genes are mutated at random [14]. Induction of

mutants using ENU has become an important method for

examining the functional genome of model organisms including

fruit flies, zebrafish, medaka, clawed frog and mice [15,16].

Furthermore, though chemical mutagenesis has been used widely

in genetic breeding of microorganisms and crops, the application

of ENU in fish breeding has been reported only rarely [17,18].

The grass carp, Ctenopharyngodon idellus, is an important

herbivorous fish species for freshwater culture, with total annual

production of 3.56 million tons in China alone [19]. The brood

fish take at least five years to attain sexual maturity, and

bodyweight usually exceeds 10 kg. Recently, Chinese investigators

had made large effort in understanding genetic variations in

natural and cultured populations using DNA markers and in

developing genomic tools to facilitate breeding [20,21,22,23,24].

To date, however, breeds of grass carp with improved character-

istics have not been produced by conventional mass selection due

to its long life cycle. In this present study, we performed in vitro

chemical mutagenesis of postmeiotic sperm, rather than in vivo

spermatogonial treatment in grass carp, as this former method is

easier in fish species with large bodyweights and it gives a high

efficiency of mutation induction. After examining embryo

development, first year growth and base changes of six growth-

related genetic loci in an F1 population, ENU mutagenesis was

shown to be efficient for inducing point mutations in the genome
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of the grass carp. In addition, large growth variations existed in the

ENU-treated F1 population, which suggests that ENU mutagen-

esis may be a useful approach for future genetic breeding

programs in grass carp.

Materials and Methods

Ethics Statement
This study was approved by the institutional review board or

ethics committee of Shanghai Ocean University (Permit Number:

2009011). All experiments were conducted following guidelines

approved by the Shanghai Ocean University Committee on the

Use and Care of Animals.

ENU working solution
All working solutions were freshly prepared following the

methods described by Jin et al. [14]. Briefly, 0.1 g of ENU (Sigma)

was dissolved in 8.5 mL of 10 mmol/L sodium acetate to give a 0.1

mol/L stock solution. Before use, the ENU stock solution was

dissolved in modified Hanks solution to give 0.5, 1, 5 and 10

mmol/L working solutions. The modified Hanks solution

contained 0.4 g KCl, 8 g NaCl 0.35 g NaHCO3, 0.09 g

NaH2PO4?7H2O, 0.1 g MgSO4?7H2O, 0.1 g MgCl2?6H2O, 0.06

g KH2PO4, 0.14 g CaCl2 and 1 g glucose in 1 L sterile deionized

water.

Experimental fish
The brood stock of grass carp was maintained at the Qingpu

fish breeding facility of the Shanghai Ocean University. Well-

developed 6-year-old broodfish were selected for use (four males

and four females; mean body weight of 12 kg). The females were

injected with 4 mg/kg luteinizing hormone-releasing hormone A2

(LHRH-A2, Ningbo Hormone Company, China), while the males

received only half this dose. The broodfish were kept in a circular

breeding pond (4 m in diameter) with flowing water stimulation.

When broodfish displayed estrus and were ready to spawn, milts

were manually stripped from males into a dry bowl and then these

were treated immediately with ENU working solutions. Mean-

while, the female fish were kept in the breeding pond during the

sperm treatment.

ENU treatment, fertilization, hatching and cultivation
Four milliliters of each ENU working solution was mixed with

1 mL grass carp milts in 15-mL screw-cap centrifuge tubes and

then incubated at room temperature for 45 min. Sperm activity

was examined every 10 min under a light microscope. After ENU

treatment, grass carp eggs were manually stripped into a dry bowl

and mixed thoroughly with unwashed ENU-treated milts using a

dry feather. Subsequently, water was added to activate the sperm

for fertilization. Fertilized eggs were placed in Petri dishes (90

mm in diameter; ca. 200 eggs per dish) at room temperature.

Water in the Petri dishes was replaced every 4 hrs with aerated

pond water until the fry had hatched. The number of abnormal

embryos at the segmentation stage and the survival rate at the

hatching stage were determined. For each concentration of ENU,

replicates were performed by fertilizing eggs from three different

females with ENU-treated milts from three different males.

Hatched fry were stocked into earth ponds and standard rearing

procedures were continued during the first growing season. At the

end of the year, fish were captured, labeled with passive

integrated transponder (PIT) tags (Hongteng Barcode Corpora-

tion, Guangzhou) and weighed. Fin samples were collected and

kept in 95% ethanol.

Determination of F1 mutation sites
Total genomic DNA was isolated from fish fin clips (0.1 to 0.2 g)

using a standard phenol-chloroform procedure detailed by

Sambrook et al. [25]. Primers were derived from the published

open reading frame sequences of igf-2a, igf-2b, mstn-1, mstn-2, fst-1

and fst-2 (Table 1), which were selected as growth-related genes

[26,27].

The PCR reactions (25 mL) contained 10 mmol/L Tris-HCl

(pH 8.4), 20 mmol/L KCl, 10 mmol/L (NH4)2SO4, 1.5 mmol/L

MgCl2, 0.1 mmol/L of each dNTP, 0.2 mmol/L of each primer,

ca. 200 ng gDNA and 2 U pfu Taq DNA polymerase (Applied

Biosystems). PCR thermal cycles comprised of one cycle of pre-

denature (94uC for 5 min), followed by 35 cycles of amplification

(94uC for 30 s, 50uC for 30 s, 72uC for 45 s), and a final extension

step (72uC for 5 min). PCR products (3 mL) were analyzed by

agarose gel electrophoresis, stained with ethidium bromide and

photographed using a Bio-Rad gel image system.

Direct sequencing of the amplified regions of the six selected

gene loci was performed in the parents, which can prevent noisy

background from single nucleotide polymorphisms. PCR was

carried out by forward primers (59- GTTGTAACCTAGCTC-

TACTA -39 for igf-2a, 59- GCGAGATGTTTCCTCCACATC -

39 for igf-2b, 59- CGGTGCGTGGTGAGGTTCATTTC -39 for

mstn-1, 59- AGGATGAGGAACAAGGTAGC -39 for mstn-2, 59-

GGCAACGATGGGATTGTTTAC -39 for fst-1 and 59- TGC-

CATCTCCGAAGGGCCACTT -39 for fst-2) and corresponding

reverse primers in Table 1. PCR products were recovered from

the gel and sequencing were performed on a 48 capillary 3730

DNA Analyzer (Applied Biosystems, Foster City, CA) using

aforementioned forward primers following the methods described

by Xu et al. [28]. To increase the probability of detecting mosaic

mutation sites in the ENU-treated F1 progeny, which interferes

with direct sequence analysis, clone sequencing of amplified

regions was chosen to detect mutations at each gene locus. PCR

products were recovered from the gel and cloned into the pMD19-

T (TaKaRa) vector using Escherichia coli DH5a cells. Eight positive

clones from each gene fragment were sequenced on a 48 capillary

3730 DNA Analyzer. Mutations were identified using software

based on Polyphred version 6.0 Beta [29], which compares each

trace to the parental reference sequence and identifies potential

Table 1. Primers used in this study and their related
amplification region in grass carp (Ctenopharyngodon idellus).

Locus Primers 59-39

Size
(bp) Exon

Coding
region (bp)

igf-2a Forward: aacaggaggtcccaagaaa 263 4 389–651

Reverse: tcacttgtggctaacgtagt

igf-2b Forward: tgtgaagtattccaaataga 214 4 393–606

Reverse: tcatttgtgggatgtgttga

mstn-1 Forward: atgcattttacgcaggtttt 396 1 1–396

Reverse: gctctgtggccatggtcatg

mstn-2 Forward: caagccatcacccatcttga 369 2 358–726

Reverse: cagtccttcctctccagatt

fst-1 Forward: aggccaagtcatgcgatgat 236 5 731–966

Reverse: cttacagttgcaagatccta

fst-2 Forward: agacgccaggtcctgtgaag 213 5 738–950

Reverse: agttgcaggagcccgagtgc

doi:10.1371/journal.pone.0026475.t001
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mutations. If a base change was seen in more than two eighths of

the clones for each gene amplicon, it was categorized as a

mutation. The following equation was used to calculate the

mutation rate at each locus:

Mutation rate %ð Þ~
Number of mutated sites

Number of fish examined|Locus size (bp) excluding primers

:

Statistical analysis
Differences between groups were analyzed using one-way

analysis of variance tests, followed by Fisher’s post hoc test or

unpaired t-tests. Significance was accepted at p,0.01.

Results

Effect of ENU treatment on embryo development of
grass carp

A range of ENU concentrations up to 10 mM was used to treat

mature sperm for 45 min. These sperm were used to fertilize wild-

type grass carp eggs, and the resulting embryos were scored for

dominant effects and viability at the hatching stage. Treatment of

mature sperm with 0.5, 1, 5, 10 mM ENU caused the formation of

16.1%, 38.7%, 66.9% and 91.3% abnormal embryos at the

segmentation stage respectively, and these proportions were

significantly (P,0.01) greater than the 2.8% seen in the control

group (Table 2). Additionally, the survival rates at the hatching

stage were 76.9%, 52.6%, 14.4% and 4.4% for the embryos

created using sperm treated with 0.5, 1, 5, 10 mM ENU

respectively, which were significantly (P,0.01) lower than the

93.4% survival seen in the control group (Table 2). Thus, the

proportion of morphologically abnormal and dead fry during

embryogenesis increased with increasing ENU concentration.

Compared to a normal embryo (Fig 1A), defects seen in

morphologically abnormal embryos included: (1) notochord

abnormalities such as a shortened spine (Figs. 1C, 1D and 1E)

or a crooked tail (Fig. 1F); (2) nervous system abnormalities such as

a small head (Figs. 1C, 1D and 1F) or the absence of a head

(Fig. 1E); (3) internal organ abnormalities such as heart

displacement (Fig. 1B) or an enlarged pericardial cavity (Fig. 1D).

Table 2. Effects of different ENU concentrations on
morphology of embryos and hatching success after treating
mature sperm of grass carp.

ENU
concentration
(mM)

Crossing
group

No. of
embryos

Abnormality rate
at segmentation
stage (%)

Survival rate
at hatching
stage (%)

0.5 R16=1 874 12.4 81.8

R26=2 653 14.6 76.2

R36=3 764 21.3 72.8

Mean 764 16.1a 76.9 a

1 R16=1 965 33.6 55.6

R26=2 654 42.3 52.4

R36=3 563 40.4 49.8

Mean 727 38.7 b 52.6 b

5 R16=1 567 60.6 19.6

R26=2 845 68.2 13.2

R36=3 265 71.9 10.4

Mean 559 66.9 c 14.4 c

10 R16=1 765 89.3 2.8

R26=2 565 88.2 9.3

R36=3 365 96.4 1.2

Mean 565 91.3 d 4.4 d

0 (control) R16=1 745 2.8 93.6

R26=2 435 3.4 92.5

R36=3 542 2.3 94.2

Mean 574 2.8 e 93.4 e

Different letters in the same column represent a significant difference between
two groups (P,0.01).
doi:10.1371/journal.pone.0026475.t002

Figure 1. Morphological defects of ENU-treated F1 embryos at
hatching stage. (A) Morphologically normal grass carp embryo. (B)
Embryo with cardiac displacement. (C) Embryo with short spine and
small head. (D) Embryo with short spine, small head, crooked tail and
enlarged pericardial cavity. (E) Embryo without head. (F) Embryo with
nervous system abnormalities, including a small head and crooked tail.
Scale bar = 600 mm.
doi:10.1371/journal.pone.0026475.g001
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Growth variation in ENU-treated F1 individuals during
the first year

As shown in Table 2, treatment of sperm with 1 mM ENU

could produce adequate numbers of viable F1 individuals, which

meanwhile displayed substantial dominant mutation effects. Thus,

an F1 population was generated for screening purposes using

sperm treated with this dose of ENU. The 1 mM ENU-treated F1

populations were derived from three pairs of parents as shown in

Table 2. The ENU-treated F1 populations and untreated controls

were reared separately in six earth ponds with the same conditions.

After eight months of rearing, fish were captured, labeled with

PIT, and then bodyweights were determined. Approximately 50%

of the 1 mM ENU-treated F1 individuals were morphologically

normal (Fig. 2A and 2B), but the others displayed various extents

of development retardation and body defects (Figs. 2C, 2D and

2E). As shown in Fig. 3A, the bodyweights of the ENU-treated F1

individuals ranged from 204.5 to 756.6 g, with a mean bodyweight

of 437.1 6276.2 g (6 one standard deviation) (Table 3). The

bodyweights of F1 control fish ranged from 504.2 to 576.4 g, with

a mean bodyweight of 548.7 642.4 g (Table 3, Fig. 3B). Although

the mean bodyweight of the ENU-treated F1 population was only

80% of the control fish, the standard deviation of bodyweight was

6.5-fold greater in the ENU-treated F1 population than in the

control population. In the ENU-treated F1 population, more than

85% (478/560) of morphologically abnormal individuals were of

lower (,600g) bodyweight, while a portion of 62% (166/484)

progenies with bodyweight bigger than 600g were morphologically

normal (Fig. 3). These morphologically normal mutants with high

growth rates in the ENU-treated F1 populations may be useful in

future breeding.

Detection of mutation sites and frequencies in the ENU-
treated F1 population

To determine the mutation sites and frequencies in the F1

population derived from the 1 mM ENU-treated sperm, genomic

DNA was isolated from 15 ENU-treated F1 fish and five control

fish, which were derived from a single pair of parents. Sequences

of six gene loci (igf-2a, igf-2b, mstn-1, mstn-2, fst-1 and fst-2) were

analyzed. As shown in Table 4, the amplified fragments (excluding

the primers) were 224 bp, 174 bp, 356 bp, 329 bp, 196 bp and 173

bp for igf-2a, igf-2b, mstn-1, mstn-2, fst-1 and fst-2 respectively.

Among the 15 ENU-treated individuals, there were 15, 10, 18, 21,

12 and 12 point mutations at these loci respectively, while the

mutation rates were 0.45%, 0.38%, 0.34%, 0.43%, 0.41% and

0.46% respectively (Table 4). No mutations were identified at

these gene loci in the F1 control individuals.

Among the nucleotide substitutions seen at the six selected gene

loci in ENU-treated F1 individuals, 52% (46/88) were GC to AT

transitions, 35% (31/88) were AT to GC transitions, 9% (8/88)

were AT to TA transversions, two was an AT to CG transversion

and one was a GC to TA transversion (data not shown). These

substitutions led to nonsynonymous changes in approximately

66% (58/88) of cases, of which approximately 64% (37/58) were

missense changes, while the remainder gave nonsense mutations.

As shown in Fig. 4, an individual with PIT 690,000,116,601,909

(see Fig. 2B) had a C to T point mutation at nucleotide 205 within

the 190 bp to 252 bp region of mstn1, which resulted in the Gln at

position 69 being substituted with a stop codon (Fig. 4A and 4B).

The individual with PIT 690,000,116,601,814 (see Fig. 2A) had an

A to G mutation at nucleotide 239, which resulted in a Gln to Arg

substitution at position 80 (Figs. 4A and 4C). Additionally, within

the coding region of 652 bp to 726 bp of mstn2 an individual with

PIT 690,020,042,302,468 (see Fig. 2E) showed a G to A mutation

at nucleotide 658, which resulted in a Val to Ile substitution at

position 220 (Fig. 5A and 5B). A further individual with PIT

690,020,042,302,463 (see Fig. 2D) showed a G to A change at

nucleotide 717, which resulted in a synonymous substitution

(Figs. 5A and 5C).

Discussion

Compared to the low natural spontaneous mutation frequency

in fish, chemical mutagenesis can be useful for increasing genetic

mutations. Highly efficient mutagens can induce profound

changes in genetic material and produce mutants with desirable

traits. Studies with ENU in the cyprinidae model species zebrafish

have obtained mutations in hundreds of genes that are required for

embryonic viability [30,31]. ENU-induced mutants for targeted

genes have also been reported for medaka [32,33]. Although ENU

mutagenesis is a potential method for genetic breeding in

commercial fish species, the successful generation of improved

Figure 2. Morphology of ENU-treated F1 fish after eight months of rearing. (A, B) Morphologically normal grass carp individuals. (C, D, E)
Grass carp individuals with various development retardation and body defects. The numbers in the photograph are the passive integrated
transponder tag codes.
doi:10.1371/journal.pone.0026475.g002
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carp strains by ENU mutagenesis combined with gynogenesis has

only been reported by Kirpichnikov [18]. Recently, Han et al. [34]

reported ENU mutagenesis studies in the gibel carp (Carassius

autatus gibeblio Bloch) by in vivo spermatogonial treatment. In this

present study, application of ENU mutagenesis in the grass carp by

treating mature spermatozoa was explored. The 1 mM ENU-

treated F1 population of the grass carp showed greater variations

in bodyweight during the first year of growth compared with the

control group. Although the mean bodyweight of the ENU-treated

F1 population decreased to 80% of the controls, the standard

deviation of bodyweight in the ENU-treated group was 6.5-fold

greater than the controls. A few morphologically normal, but

bigger individuals in theENU-mutated F1 population may provide

a useful resource for further functional gene identification studies

and genetic improving programs of grass carp.

ENU mutagen treatments can influence the fertilization abilities

of sperm [15]. By discarding embryos that displayed defects prior

to neurulation stages, it is possible to efficiently screen for later

phenotypes in patterning, organogenesis and differentiation. In the

present study, the proportion of morphologically abnormal or

dead hatching stage embryos increased with increasing dose of

ENU. ENU mutagenesis produced various dominant mutations

Figure 3. Growth distribution of ENU-treated F1 fish after eight months of rearing. (A) Distribution number of the ENU-treated F1
individuals with bodyweight from 201 to 800 g. (B) Distribution number of the F1 controls with bodyweight from 501 to 580 g. Black bar denotes
morphologically abnormal individuals. White bar denotes morphologically normal individuals.
doi:10.1371/journal.pone.0026475.g003

Table 3. Growth of ENU-treated F1 fish after eight months of rearing.

Crossing group ENU concentration (mM) No. of F1 fish Body weight range (g) Body weight (g)

R16=1 1 304 218.3–756.6 431.26270.1

0 (control) 102 511.7–576.4 555.8644.7

R26=2 1 322 212.1–744.2 452.96292.4

0 (control) 128 504.2–565.5 538.5640.3

R36=3 1 418 204.5–750.6 427.26266.1

0 (control) 189 519.3–559.8 551.8642.2

Mean 1 — — 437.16276.2 a

0 (control) — — 548.7642.4 b

Different letters in the same column represent a significant difference between two groups (P,0.01).
doi:10.1371/journal.pone.0026475.t003
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and/or synthetic lethal mutations, in which genetic material has

been modified. The dominant phenotypes caused by ENU

treatment in grass carp led to the disruption of specific embryonic

development processes, such as notochord patterning and nervous

system and internal organ development. Nevertheless, both

forward and reverse genetic screens will be required to confirm

whether the mutations are responsible for the dominant

phenotypes observed in the ENU-treated progeny [35]. Once a

Table 4. Mutation rates in partial coding regions at six selected gene loci.

Locus
Size (bp)
excluding primers Group

No. of fish
examined

No. of clones
sequenced/fish

No. of
mutated sites

Mutation
rate (%)

igf-2a 224 ENU-treated F1 15 8 15 0.45

F1 control 5 8 0 0

igf-2b 174 ENU-treated F1 15 8 10 0.38

F1 control 5 8 0 0

mstn-1 356 ENU-treated F1 15 8 18 0.34

F1 control 5 8 0 0

mstn-2 329 ENU-treated F1 15 8 21 0.43

F1 control 5 8 0 0

fst-1 196 ENU-treated F1 15 8 12 0.41

F1 control 5 8 0 0

fst-2 173 ENU-treated F1 15 8 12 0.46

F1 control 5 8 0 0

Average 242 ENU-treated F1 15 8 15 0.41

F1 control 5 8 0 0

Mutation rate (%) = Number of mutated sites/Number of fish examined6Locus size (bp) excluding primers.
doi:10.1371/journal.pone.0026475.t004

Figure 4. Mutation sites at the mstn1 locus. (A) Partial mstn1 sequence alignment of five ENU-treated F1 juvenile fish with sequences from their
parents. The numbers by the sequences correspond to the passive integrated transponder tags as shown in Figure 2. (B) Location of the MSTN1Q69stop

mutation and sequencing that revealed a C to T point mutation. (C) Location of the MSTN1Q80R mutation and sequencing that revealed an A to G
point mutation. Dam and sire denote to female and male, respectively.
doi:10.1371/journal.pone.0026475.g004
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mutation is identified, homozygous mutants with high perfor-

mance can ultimately be generated in the F3 generation [15].

In the present study, mutations were induced in vitro by ENU

treatment of postmeiotic sperm. The initial mutation, usually

occurred with an ethylation of a base on one DNA strand, leads to

mosaic offspring in the next generation that interferes with direct

sequence analysis in the F1 generation. To detect mutations in the

partial coding regions of igf-2a, igf-2b, mstn-1, mstn-2, fst-1 and fst-2,

clone sequencing of amplified regions was performed. The results

showed that these loci displayed mainly GC to AT or AT to GC

substitutions, resulting in nonsynonymous nonsense or missense

mutations (66%), as well as synonymous mutations. The induced

point mutations in the grass carp were similar to those seen in

mammalian cells [9,36], where most ENU-induced mutations are

GC to AT transitions, and to a lesser extent AT to GC transitions,

although all types of transitions and transversions have been

documented after exposure to ENU. Interestingly, neither deletions

nor translocations were identified in this present study, however

such mutations have been induced in zebrafish by postmeiotic ENU

treatment of male germ cells [35]. It is possible that multigene

deletions are induced by the protocol used in this present study, and

these may result in a higher frequency of early lethal phenotypes,

which were discarded. On the other hand, it has also been proposed

that subtle differences in mutagenesis conditions may result in

significant differences in the kinds of lesions produced [15].

Mutation rates caused by ENU range from 0.561023 to

3.961023 at specific loci when in vivo spermatogonial treatment

has been used in mice and zebrafish [12,13]. Moreover, ENU

mutagenesis in medaka after in vivo spermatogonial treatment

induces mutation rates of 161023 to 1.961023 [8,33]. Genetic and

molecular tests have shown that postmeiotic ENU treatment can

induce point mutations [37], but the range of mutations induced has

not been analyzed extensively. In this present study, the average

point mutation rate was 4.161023 at six selected gene loci in grass

carp after in vitro chemical mutagenesis of postmeiotic sperm. These

results indicate that treatment of postmeiotic gametes with ENU

induces point mutations at a higher rate than premeiotic regimens,

suggesting that postmeiotic mutagenesis protocols could be useful in

genetic screening strategies. Postmeiotic mutagenesis has been

reported to produce a 10-fold increase in the frequency of induced

mutations in specific-locus tests in zebrafish [35].

In summary, the ENU-treatment of mature sperm with different

doses can markedly generate dominant effects on embryo

development of grass carp. The ENU-treated F1 populations

demonstrated large variations in bodyweight during the first year.

Some bigger mutants with morphologically normal were produced

in the ENU-treated F1 progeny, which may be useful for genetic

breeding in future. Our further sequence data showed that the

postmeiotic ENU treatment can efficiently induce point mutations.

Most of these point mutations were GC to AT or AT to GC

substitutions that led to nonsense, nonsynonymous and synony-

mous mutations. The classical three-generation of breeding or

two-generation gynogenetic screen may be used to confirm

mutants that carry desirable genes or traits for breeding in future.
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Figure 5. Mutation sites at the mstn2 locus. (A) Partial mstn2 sequence alignment of five ENU-treated F1 juvenile fish with sequences from their
parents. The numbers by the sequences correspond to the passive integrated transponder tags as shown in Figure 2. (B) Location of the MSTN2V220I

mutation and sequencing that revealed a G to A point mutation. (C) Location of the MSTN2E239E mutation and sequencing that revealed a G to A
point mutation. Dam and sire denote to female and male, respectively.
doi:10.1371/journal.pone.0026475.g005
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