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Abstract

Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1).
Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of
obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to
cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we
show that a single administration of isopropyl dodecylfluorophosphonate (IDFP), perhaps the most potent pharmacological
inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG) and induces insulin resistance in mice. These
effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251) and in CB1
knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known
about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we
performed microarrays on hepatic RNA isolated from DMSO (control), IDFP and AM251/IDFP-treated mice. The gene for the
secreted glycoprotein lipocalin 2 (lcn2), which has been implicated in obesity and insulin resistance, was among those most
responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal
cluster analysis and AM251 pre-administration reduced (.50%) the majority (303 of 533) of the IDFP induced alterations.
Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the
acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target
genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation
and insulin resistance, at least in part through the CB1 receptor, and identify novel cannabinoid responsive genes.
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Introduction

Obesity elicits a cluster of interrelated disorders, termed the

‘‘metabolic syndrome’’, that increase the risk of cardiovascular

disease [1]. Dysregulation of the endocannabinoid (EC) system has

been linked to increased adiposity in humans by epidemiological

and genetic data [2,3,4]. Obesity and hyperglycemia are

associated with elevated plasma and tissue endocannabinoid levels

in animal models and obese patients [2,5,6,7]. In four large human

trials, 20 mg/day of the cannabinoid type 1 receptor (CB1)

antagonist rimonabant resulted in clinically significant and

prolonged reductions in body weight, waist circumference, and

components of the metabolic syndrome [8,9,10,11]. The effects of

rimonabant on plasma lipids and glycosylated hemoglobin appear

to be partly independent of weight loss [12]. Pharmacological or

genetic ablation of CB1 in diet-induced and genetic mouse models

of obesity results in a transient hypophagic response, followed by

prolonged effects on weight loss, adiposity, and normalization of

metabolic parameters [13,14,15,16,17,18]. These effects suggest

that reduced food intake does not fully explain the improvement in

adiposity-related measures with CB1 inactivation. Hepatic CB1

activation increases de novo lipogenesis through SREBP1c activa-

tion, and decreases fatty acid oxidation by inhibiting AMP kinase

[19,20]. Furthermore, hepatocyte specific deletion of CB1 or

administration of a non-brain-penetrant CB1 antagonist prevents

hepatic steatosis, hyperlipidemia, and insulin resistance on a high-

fat diet, independent of weight gain [21,22]. Similarly, ethanol-

induced hepatic steatosis is absent in hepatocyte specific CB1 2/

2 animals [20]. Together these observations raise the possibility

that aberrant EC signaling mediates development of the metabolic

syndrome, both by influencing body weight and directly regulating

metabolic processes.

While the necessity of CB1 signaling for development of obesity

and related metabolic disturbances has been demonstrated, it is

uncertain if EC elevation is sufficient to induce changes in hepatic

lipid and glucose metabolism independent of changes in food
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intake and body weight. Furthermore, the molecular pathways

underlying the powerful regulatory effects of CB1 on hepatic

metabolism remain largely unclear. In the present study, we

investigate the effects of elevated ECs on hepatic lipid content and

insulin sensitivity independent of food intake. The ECs responsible

for CB1 signaling are N-arachidonyl ethanolamine (AEA, or

anandamide) and 2-arachidonoyl glycerol (2-AG). Both are

arachidonic acid derivatives produced locally by phospholipases,

N-acyl-phosphatidylethanolamine-selective phospholipase D, and

sn-1-selective diacylglycerol lipases, respectively [23]. Anandamide

is a partial CB1 agonist with moderate affinity, and 2-AG is a

lower affinity complete CB1 agonist that is present at much higher

concentrations than AEA. Signaling is terminated by enzymatic

breakdown of AEA and 2-AG by fatty acid amide hydrolase

(FAAH) and monoacylglycerol lipase (MAGL), respectively [23].

Since exogenously administered 2-AG and AEA are rapidly

degraded [24], we have chosen to induce increases in their levels

by inhibiting the enzymes responsible for their degradation. The

organophosphorus (OP) compound isopropyl dodecylfluoropho-

sphonate (IDFP) inhibits both MAGL and FAAH and raises 2-AG

and anandamide levels in vivo [25,26]. We have previously shown

that IDFP increases circulating triglyceride (TG) concentrations in

a CB1-dependent manner through the decreased clearance of TG-

rich lipoproteins [26]. CB1 antagonists and knockout mice can be

used to assess the contribution of CB1 signaling to IDFP effects.

We describe here the CB1-dependent effects of IDFP on hepatic

lipid content and insulin sensitivity. In addition, to gain

mechanistic insight into CB1 regulation of lipid and glucose

metabolism, we assayed global hepatic gene expression by

microarray analysis of IDFP and AM251/IDFP-treated mice

(Fig. 1).

Materials and Methods

Chemicals
AM251, the 4-iodophenyl analog of rimonabant that has a 4-

chlorophenyl substituent, was obtained from Tocris Cookson Inc.

IDFP was synthesized as previously described [27].

Animals
This study was carried out in accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals

of the National Institutes of Health. The protocol was approved by

the University of California-Berkeley Animal Care and Use

Committee (Protocol R071-0310R). Injection of test compounds

was performed under isoflurane anesthesia, and all efforts were

made to minimize suffering. Swiss Webster mice were from

Harlan Laboratories. CB1 +/+ and 2/2 breeding pairs were

obtained from Andreas Zimmer and Carl Lupica [25,28]. All

experiments used Swiss Webster mice unless specifically stated

otherwise, i.e. CB1 +/+ or 2/2. All mice were 6–8 weeks of age,

male, and weighed 18–23 g. Mice were fasted for 4 h, treated i.p.

at 1 ml/g with dimethyl sulfoxide (DMSO) or test compounds

dissolved in DMSO, and sacrificed 4 h after treatment with livers

flash frozen. IDFP-treated mice in this study displayed cannabi-

noid-mediated behavioral effects similar to those previously

reported [25].

Biochemical Analyses
Flash frozen liver samples were homogenized in radioimmuno-

precipitation assay buffer and TG and cholesterol were analyzed

by enzymatic end-point measurements utilizing enzyme reagent

kits (Catalog # F6428 & T2449, Sigma). Protein concentration of

the hepatic homogenate was determined by the bicinchoninic acid

method.

Microarray Analysis
RNA was isolated from homogenized liver using the RNAeasy

kit (Qiagen) and cRNA was synthesized from isolated RNA using

the Illumina TotalPrep RNA amplification kit (Applied Biosys-

tems). cRNAs from 19 individual mice were hybridized to

mouseref-8 v2.0 beadchips and read on the iscan instrument.

Group data represent the average of 5–8 individual mice

randomized to three chips. Data were processed using BeadStudio

software 3.2 (Illumina) with quantile normalization, background

subtraction, and multiple testing correction (Benjamini and

Hochberg false discovery rate). To quantify the effects of

AM251 pre-administration relative to IDFP induced alterations

a reversal metric was calculated as follows, with DMSO fold as

1.00:

reversal~ 1�ð DMSO fold�AM251=IDFP foldð Þð

= DMSO fold�IDFP foldð ÞÞÞ|100:

For example, lipocalin 2 (lcn2) has fold changes of 1.00 (DMSO),

0.20 (IDFP), and 2.68 (AM251/IDFP), thus percent reversal =

(1–((1.00–2.68)/(1.002.20)))6100 = 310%.

The web-based data analysis tools Panther (http://www.

pantherdb.org) and FUNCASSOCIATE 2.0 ((http://llama.med.

harvard.edu/funcassociate) were used with default settings. All

microarray data is MAIME compliant and has been deposited in

the GEO database (accession # GSE22949).

PCR Confirmation
Relative quantitative PCR was performed on the ABI7900

system using SYBR green master mix in triplicate (Applied

Biosystems). All genes were normalized to an endogenous control

gene, gusb. The primers used are given in Supplemental Table S1.

Glucose Tolerance and Insulin Sensitivity
Glucose (2 g/kg) was administered i.p. 2 h following treatment

with IDFP or DMSO. Blood glucose was determined by the

Onetouch ultra monitor system (Lifescan, Inc.) 0, 15, 30, 60, 90,

120 and 180 min following glucose administration. Plasma insulin

was determined by ELISA (Millipore) 0, 10, 15, and 30 min

following glucose administration. To test insulin sensitivity, insulin

(0.5 U/kg) was administered i.p. 2 h following treatment with

IDFP or DMSO and glucose was determined as above at 0, 15, 30,

and 60 min following treatment.

Figure 1. Effects of IDFP and AM251 on gene expression and
physiological outcomes.
doi:10.1371/journal.pone.0026415.g001
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Statistical analyses
Results are presented as mean 6 standard error. One- and two-

way repeated measures analysis of variance was used to test

significance of treatment effects. Post-hoc analysis (Tukey’s)

examined significance (p,0.05) of individual treatment effects.

All analyses were performed using JMP version 7.0. Additional

statistical information is given in Supplemental Table S2.

Results

1.1 IDFP produces CB1-dependent hepatic steatosis
To test the effects of elevated ECs on hepatic lipid levels, mice

were treated with IDFP or vehicle control (DMSO). To determine

the CB1-dependence of these effects, a subset of the IDFP group

was pretreated with the CB1 antagonist, AM251. IDFP treatment

significantly increased hepatic TG levels (Fig. 2A), while AM251

pre-administration partially reversed this effect (Fig. 2A). IDFP

had no significant effect on hepatic cholesterol content (Fig. 2B).

The partially CB1-dependent increase in hepatic TG but not

cholesterol levels was confirmed in CB1 2/2 mice and wild-type

littermates treated with IDFP (Supplemental Fig. S1). These effects

of cannabinoid signaling on hepatic triglyceride levels are

consistent with previous studies showing cannabinoid agonists

increase de novo lipogenesis and lipid accumulation in the liver

[29,30].

1.2 IDFP impairs glucose tolerance by both CB1-
dependent and -independent effects

To test the effect of MAGL/FAAH inhibition on glucose

homeostasis, mice were treated with DMSO or IDFP with or

without pre-administration of AM251 and then subjected to a

glucose tolerance test. IDFP produced profound glucose intoler-

ance (Fig. 3A). As the glucometer used in these studies had a

maximum reading of 600 mg/dl, the glycemia of IDFP-treated

animals may be underestimated, although 4 h after glucose

administration the glucose levels of all animals were in the

quantifiable range (data not shown). The IDFP effect was

mitigated, but not completely reversed, by pre-administration of

AM251 (Fig. 3A). Likewise, IDFP induced severe glucose

intolerance in wild-type C57BL6 mice, but CB1 2/2 littermates

were less susceptible to IDFP induced glucose intolerance

(Supplemental Fig. S2). Unexpectedly, the CB1 2/2 mice were

more glucose intolerant than their wild-type littermates. To test if

the glucose intolerance resulted from insulin resistance or altered

insulin secretion, insulin levels were determined 10,15, and 30 min

after glucose administration in DMSO and IDFP-treated Swiss

Webster mice. IDFP-treated mice had significantly elevated levels

of insulin at all time points (10 min: 0.6860.07 vs. 1.1960.09 ng/

ml, 15 min: 0.4460.09 vs 1.2960.26 ng/ml; 30 min: 0.4260.03

vs 0.736.08 ng/ml, all p,0.05, n = 5). As the elevated insulin

levels suggest insulin resistance, an insulin tolerance test was

performed to determine the effects of IDFP on insulin resistance.

Although the effects did not reach statistical significance, IDFP

decreased, while AM251 pretreatment partially restored, the

glucose-lowering efficacy of insulin (Fig. 3B).

1.3 IDFP Alters Hepatic Gene Expression
1.3.1 Cluster Analysis. To identify the pathways activated

by IDFP administration, specifically those dependent on CB1

activation, microarray analysis was performed on hepatic mRNA

from DMSO, IDFP and AM251/IDFP-treated animals. Of the

18,097 genes present on the array, 8,857 were detected in at least

one of the groups at p,0.05. IDFP-treated animals segregated

well from DMSO treated animals in cluster analysis, while results

for the AM251/IDFP-treated animals were intermingled with

those for the DMSO treated animals (Fig. 4). After correction for

multiple testing, the expression of 533 genes was significantly

altered by IDFP administration (Supplemental Table S3). Of

these, 230 were increased by IDFP, while 303 were decreased.

These 533 genes had a skewed distribution of p-values for the

IDFP vs. AM251/IDFP comparison, making them inappropriate

for the generation of q-values and false discovery rate analysis. To

quantitate the ability of AM251 pre-administration to reverse

IDFP-induced changes in gene expression, the percent reversal of

the 533 significantly altered genes was determined (see methods

for calculations). Although there was a large range (2128 to

310%), the average percent reversal (5862%) was high, indicating

that AM251 reversed a significant portion of the IDFP effects on

gene expression. Lipocalin 2 (lcn2) had the highest percent reversal

(310%), with IDFP decreasing and AM251 pre-administration

increasing expression levels, effects confirmed by PCR (Fig. 5).

1.3.2 Identification of Functional Categories. Two

complementary approaches were used to identify functional

categories within the data set. First, the Panther classification

system was used to determine biological processes regulated within

the dataset. This analysis accounts for the fold change of every

Figure 2. CB1-dependent effects of IDFP on hepatic TG (A) and
cholesterol (B) levels. Mice were treated with DMSO or IDFP (10 mg/
kg, ip, 4 h) alone or 15 min following AM251 (10 mg/kg, ip). n = 20–21.
Groups not sharing a common superscript letter are significantly
different (p,0.05).
doi:10.1371/journal.pone.0026415.g002
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gene detected, but is limited to differential analysis of two groups

at a time. Lipid, fatty acid, and steroid metabolism was the only

category identified when IDFP was compared with both DMSO

and AM251/IDFP (Supplemental Table S4). To identify a subset

of genes with significantly altered CB1-dependent expression,

upregulated (n = 112) and downregulated (n = 168) genes with

.50% reversal and a nominal p value ,0.05 between the IDFP

and IDFP/AM251 groups were queried in Funcassociate 2.0.

Although the 50% reversal cutoff for inclusion of a gene as CB1-

dependent was arbitrary, stricter thresholds (80% cutoff) yielded

similar results in the pathway analysis. While the upregulated

genes were not significantly enriched for any gene ontology

attributes, the downregulated genes were enriched in genes with

roles in translation, cellular amino acid metabolic processes, and

the acute phase response (Supplemental Table S5). The altered

CB1-dependent genes represented within the enriched pathways

and biological processes are shown in Table 1.

1.3.3 PCR Confirmation. To confirm the effects of IDFP on

hepatic gene expression, quantitative PCR was performed on a

larger set of samples representing three independent experiments,

including the one used for the array data. The results confirmed

increased expression of several key components of the lipid and

cholesterol metabolism gene set including ldlr, insig1, pgc1b,

lpin2, and acsl1 (Fig. 6A). With the exception of lpin2, the CB1-

dependence of these effects was shown by their reversal by

AM251. Given the effects of IDFP on the SREBP2 target genes,

insig1 and ldlr, we also chose to probe the effect of IDFP on

expression of hmgcr which encodes the rate-limiting enzyme in

cholesterol biosynthesis, HMGCoA reductase, and which was not

represented on the array. IDFP increased expression of hmgcr, an

effect that was completely prevented by AM251 pre-

administration (Fig. 6A).

The PCR results confirmed CB1-dependent inhibitory effects of

IDFP on several acute phase (saa2, orm2, stat3) and amino acid

response genes (asns, aars, eef1e1, psat1, rars) (Fig. 6B,C). As stat3

is an essential transcription factor involved in the acute phase

response, we tested the effect of IDFP on the canonical stat3

downstream targets apcs and lbp [31]. IDFP decreased expression

of both apcs and lbp in a CB1-dependent manner. There was a

strong correlation between the array and PCR data for all genes

tested (r = 0.7–1.0). The effects of IDFP on expression of genes

involved in lipid metabolism and stat3 signaling were determined

in CB1 2/2 and wildtype littermates. There was a significant

genotype-treatment interaction for several of the lipid metabolism

Figure 3. IDFP causes CB1-dependent and -independent
glucose intolerance (A) and insulin resistance (B). Mice were
treated with DMSO or IDFP (10 mg/kg, i.p., 4 h) alone or 15 min
following AM251 (10 mg/kg, i.p.). Two h following DMSO or IDFP
treatment, mice were administered glucose (2 g/kg) or insulin (0.5 U/
kg) and plasma glucose was determined at the time points indicated.
n = 4–5. Results were analyzed by repeated measures analysis of
variance. The three groups responded in a significantly different fashion
to glucose (F = 34.50, p = ,0.0001), but not insulin (F = 1.96, p = .137).
doi:10.1371/journal.pone.0026415.g003

Figure 4. Hierarchical clustering of the transcriptome of
individual mice. Dendrogram representation of cluster analysis from
BeadStudio software 3.2 (Illumina).
doi:10.1371/journal.pone.0026415.g004

Figure 5. CB1-dependent effects of IDFP on hepatic expression
of lipocalin 2. RNA was isolated from the mice used for the
experiment in Fig. 2. Array n = 5–8. PCR n = 17–18. Groups within the
array and PCR assays not sharing a common superscript letter are
significantly different (p,0.05).
doi:10.1371/journal.pone.0026415.g005
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genes tested, (ldlr, insig1, pgc1b, and acsl1), confirming a CB1-

dependent effect of IDFP (Supplemental Table S6). Stat3 and its

targets, lbp and apcs, displayed the expected trend, but the results

did not reach statistical significance (Supplemental Table S6).

Discussion

The data presented here establish that IDFP induces hepatic

steatosis and insulin resistance partially through CB1 signaling.

IDFP significantly increased hepatic TG levels 4 h after treatment.

This effect was largely mediated by the CB1 receptor, as it

was mitigated by AM251 pre-administration and deficient in CB1

2/2 mice. As neither the effects of AM251 nor the genetic

absence of CB1 in the animals used in the current study are

confined to the periphery, the site of CB1 action responsible for

the observed effects cannot be addressed. However, all animals

were fasted prior to and during the experimental period

eliminating differential energy intake as a confounding variable.

Hepatic TG content reflects the balance of secretion, uptake,

synthesis, and oxidation. We have previously shown that IDFP

decreases clearance of circulating TGs with no effect on hepatic

TG secretion [26]. The IDFP-induced increase in hepatic TG

content combined with a lack of effect on TG secretion suggests

that CB1 stimulation may favor TG storage over secretion.

Correspondingly, treatment with a non-brain-penetrant CB1

antagonist has been reported to reduce hepatic steatosis and

increase secretion of TG-rich lipoproteins [22]. Since CB1

antagonists increase adipose TG lipolysis, CB1 stimulated hepatic

TG accumulation likely does not result from increased delivery of

FA from adipose tissue [16,32]. Hepatic CB1 stimulates sprebp1c

and inhibits AMP kinase making both decreased oxidation and

increased synthesis of fatty acids likely contributors to the IDFP

induced increase in hepatic TG content [20,21]. Indeed, we found

that IDFP increases expression of the lipogenic genes, fas and

srebp1c, in a CB1-dependent manner [26]. The CB1 independent

effects of IDFP on hepatic TGs may result in part from lipolytic

defects resulting from MAGL blockade [33], other monoacylgly-

cerol or N-acylethanolamine or N-acyltaurine substrates of MAGL

and FAAH [34,35], respectively, or off-target effects of IDFP [25].

Further studies with specific MAG lipase inhibitors and knockout

mice will be necessary to clarify the role of MAG lipase in the

lipolytic cascade.

We have shown that IDFP causes profound glucose intolerance.

Our results are consistent with previous reports that synthetic CB1

agonists caused glucose intolerance and insulin resistance in wild-

type but not in hepatocyte-specific CB1 knockout mice [21].

Conversely, genetic or pharmacological inactivation of CB1

prevents diet-induced alterations in glucose and insulin tolerance

[21]. In humans, D9-tetrahydrocannabinol (THC) has been shown

to cause glucose intolerance [36]. Although a CB1-dependent

effect of IDFP on glucose intolerance is indicated by our finding

that this was substantially prevented by AM251, there were also

CB1-independent effects of IDFP. Similarly, CB1 knockout mice

were less susceptible to IDFP induced glucose intolerance, but still

had a significant response.

Glucose tolerance reflects the ability of insulin to drive glucose

uptake and shut down glucose production. In the present study, the

elevated insulin levels in IDFP-treated animals following glucose

administration indicate that the glucose intolerance likely results

from severe insulin resistance. Glucose response during an insulin

tolerance test largely represents the ability of insulin to inhibit

glucose production in the liver. Our results suggest that although

some reduction of hepatic insulin sensitivity may have been induced

by IDFP, this is likely not sufficient to have produced the profound

glucose intolerance that was observed. There may also be effects of

ECs on peripheral glucose uptake. CB1 antagonist administration

increases muscle glucose uptake muscle in ob/ob mice [37]. EC

levels have also been shown to be higher in the muscle of diet-

induced obese mice [5]. Physical inactivity in IDFP-treated mice

may also contribute indirectly to reduced glucose utilization [25].

Although we did not observe changes in resting glucose levels, this

may be due to the acute nature of the IDFP treatment regimen used

in this study. Whether chronic EC elevation leads to fasting

hyperglycemia warrants further investigation.

The CB1-independent effects of IDFP on glucose tolerance are

shared by other OP compounds [38]. Instances of OP poisoning

Table 1. Altered CB1-dependent Genes Represented within
the Enriched Pathways.

Pathway

Fold Change vs.
DMSOa (1.00)

Reversal by
AM251b (%)

IDFP AM251/IDFP

Acute Phase Response

orm1 0.70 1.43 246

orm2 0.41 1.79 233

saa2 0.25 1.30 139

saa4 0.51 1.11 123

stat3 0.52 1.01 102

Amino Acid Metabolism
& Translation

Rars 0.74 1.12 147

Lars 0.63 1.11 129

Aars 0.65 1.00 100

Iars 0.65 0.97 93

Farsb 0.74 0.96 84

rars2 0.62 0.87 66

Gars 0.65 0.85 58

ncoa5 0.57 0.81 55

eef1e1 0.57 1.14 133

eif2b4 0.73 0.95 82

psat1 0.29 0.85 79

Pelo 0.64 0.91 75

Asns 0.15 0.68 62

eif2ak2 0.51 0.80 59

Lipid, Fatty Acid, and
Steroid Metabolism

sgms2 2.00 0.60 140

pgc1b 6.78 2.16 80

pla2g6 1.68 1.30 55

mtmr3 2.08 1.42 61

lpin2 3.22 1.70 69

insig1 1.90 1.08 91

chkb 1.81 1.26 67

apol9b 1.66 1.02 97

acsl1 1.79 1.05 93

ldlr 4.50 1.30 92

aAverage fold change for 5 (DMSO), 8 (IDFP), and 7 (AM251/IDFP) individual
mice.

bSee methods for calculation of reversal by Am251.
doi:10.1371/journal.pone.0026415.t001
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have been characterized by marked hyperglycemia, glycosuria,

and diabetic ketosis [39,40,41]. Acetylcholinesterase (AChE)

inhibition has been proposed to underlie OP-induced hypergly-

cemia [42]. However, since IDFP does not inhibit AChE in vivo,

IDFP, and perhaps other OPs, produce glucose intolerance via

CB1 and AChE independent pathways.

Our findings suggest that increased CB1 signaling can be

considered a cause rather than a consequence of hepatic steatosis

and insulin resistance. As only a few genes have been identified as

CB1 responsive in the liver, we aimed to identify novel CB1 targets

stimulated by endocannabinoids. Although the microarrays

detected ,9000 genes in at least one of the sample groups,

certain genes were not represented on the chip, such as hmgcr.

PCR was used to validate several of the array findings in multiple

independent experiments.

Hepatic CB1 has been shown to increase expression of the

lipogenic genes fas, acc, and srebp1c [30]. Here we identify pgc1b
as a novel downstream target of CB1. This is of particular interest

as PGC1b is a co-activator for SREBP1c and is necessary for the

development of diet-induced hyperlipidemia [43]. Likewise

expression of acsl1 was stimulated by CB1 activation. Acyl-CoA

synthetases activate fatty acids into acyl-CoAs, providing sub-

strates for downstream fatty acid metabolic processing, such as

esterification and beta-oxidation. Acsl1 is highly expressed in the

liver and hepatocyte specific loss of acsl1 has been shown to

decrease both fatty acid oxidation and incorporation into TG [44].

Acsl1 overexpression enhances incorporation of fatty acids in

diacylglycerol, but does not cause TG accumulation [45]. The

effect of raising pgc1b and acsl1 expression in the setting of CB1

signaling requires further study.

Several of the key regulators of cholesterol homeostasis were

increased by IDFP in a CB1-dependent manner. This is of

particular interest as CB1 signaling regulates plasma lipid and

lipoprotein metabolism. In clinical trials, rimonabant had greater

effects on TG and HDL cholesterol than would be expected based

on weight loss alone [12]. Hepatocyte specific CB1 2/2 mice are

immune to diet induced alterations in plasma lipoproteins and we

have previously shown that IDFP causes hypertriglyceridemia

secondary to decreased clearance of TG rich lipoproteins [21,26].

The coordinated regulation of several SREBP2 target genes by

IDFP in a CB1-dependent manner may result from direct

regulation of this pathway by the CB1 signaling cascade.

Alternatively, the IDFP induced decreased uptake of plasma

lipoproteins may transiently decrease hepatic cholesterol content,

triggering SREBP2 activity. Although we did not detect alterations

in hepatic cholesterol content, the small magnitude and transience

of changes required to stimulate SREBP2 processing may not be

detectable by the present methodology.

There is a complex relationship between CB1 signaling and

inflammation. Both activation and inhibition of CB1 have been

shown to have anti-inflammatory outcomes in different contexts

[46,47,48,49]. In our study, IDFP decreased expression of genes

encoding acute phase proteins in a CB1-dependent manner.

Interestingly, stat3 and several of its targets (apcs, lbp) were

downregulated in livers of IDFP-treated mice. In neurons CB1

activation stimulates stat3 [50]. Consistent with a reversal of this

system in the liver, rimonabant administration was shown to

potentiate stat3 activation in response to lipopolysaccharide

stimulation [46]. While our results establish that CB1 stimulation

limits hepatic inflammation at the mRNA level under basal

conditions, the role of CB1 on systemic inflammation in response

to various stimuli remains to be determined.

Inflammatory signaling pathways, including stat3, influence

metabolic regulation. STAT3 signaling mediates the hypophagic

Figure 6. CB1-dependent effects of IDFP on hepatic expression
of genes involved in lipid metabolism (A), inflammation (B),
and amino acid metabolism (C). RNA was isolated from the mice
used for the experiment in Fig. 2. n = 16–18. Groups not sharing a
common superscript letter are significantly different (p,0.05).
doi:10.1371/journal.pone.0026415.g006
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and hypoglycemic effects of leptin. Additionally, STAT3 down-

regulates srebp1c which was increased by IDFP in a CB1-

dependent manner [51,52]. Hepatocyte specific loss of stat3

produces insulin resistance and increases susceptibility to ethanol

induced hepatic steatosis, lipogenic gene expression, and hyper-

triglyceridemia [51,53]. Findings with a non-brain-penetrant CB1

antagonist suggest that diet-induced leptin resistance may result

from overactive peripheral CB1 signaling [22]. The current study

raises the possibility that CB1 mediated inhibition of hepatic

STAT3 signaling may influence leptin sensitivity.

LCN2 is an acute phase protein known to regulate energy and

glucose metabolism [54,55]. Although LCN2 is a member of the

lipocalin sub-family of secreted proteins that bind hydrophobic

molecules, its specific ligands remain largely unknown [56]. Lcn2

knockout animals are cold intolerant and more susceptible to diet-

induced increases in plasma lipids and adipose mass [55,57]. Reports

on insulin sensitivity and hepatic lipid content in lcn2 deficient mice

are discordant with one group reporting protective and another

potentiating effects [55,57]. In our study, IDFP inhibited expression

of hepatic lcn2. Interestingly, AM251 pre-administration not only

prevented the effects of IDFP, but also increased lcn2 expression

compared to controls. This suggests that tonic endogenous CB1

stimulation may limit lcn2 expression. EC binding to lipocalins has

been suggested to facilitate their release from the plasma membrane

and subsequent delivery to targets [58]. If this is the case, the robust

regulation of lcn2 by CB1 observed here may represent a feedback

cycle. Alternatively, we cannot exclude the possibility that this effect

could be independent of ECs and may reflect the inverse agonist

properties of AM251. Future studies will be necessary to clarify the

relationship between lcn2 and CB1 signaling.

Although CB1 signaling has been linked to ER stress and

mammalian target of rapamycin (mTOR) activity, the relationship

between ECs and amino acid metabolism remains unclear.

mTOR is a serine/threonine protein kinase central to regulation

of amino acid metabolism and translation. THC, in a CB1-

dependent fashion, stimulates mTOR in the hippocampus, but

inhibits mTOR by stimulating ER stress in cancer cells [59,60].

Recently, administration of a non-brain-penetrant CB1 antagonist

has been found to reverse ER stress caused by a high fat diet [22].

In our study of hepatic tissue gene expression, IDFP caused a

CB1-dependent decrease in the gene cassette involved in

translation and amino acid metabolism.

As IDFP inhibits both FAAH and MAGL, the CB1-dependent

effects cannot be specifically ascribed to increases in either AEA or

2-AG levels. Animals deficient in FAAH, with elevated AEA but

not 2-AG, have increased body weight, tissue TG content, fasting

blood glucose and insulin compared to controls when fed a high fat

diet, without differences in food intake [61]. The use of specific

chemical inhibitors or genetic manipulation of MAGL and/or

FAAH will be necessary to establish the relative contribution of

each enzyme to the effects shown here. The simultaneous

elevation of AEA and 2-AG has been shown to have synergistic

effects that are not recapitulated by raising levels of either EC

alone [34]. Moreover, synthetic CB1 agonists may bind the

receptor differently and produce differential downstream respons-

es than the ECs. Nevertheless, study of the effects of synthetic CB1

agonists on expression of the genes found here to be responsive to

IDFP, and the reversal of these effects by AM251, would be

informative.

IDFP is perhaps the most potent dual FAAH/MAGL inhibitor

reported to date and although it does not reduce AChE activity

there could be other off target effects that may potentiate the

IDFP-induced metabolic effects observed in this study [25,27]

(Supplemental Table S7). The carbamate FAAH/MAGL inhib-

itor JZL195 displays better specificity in the brain, but its

selectivity in other tissues has not yet been established [54]. It is

likely to have additional off-targets similar to those of the

structurally-related MAGL-selective inhibitor JZL184 [62]. Our

previous studies have shown that AM251 completely reverses all

cannabinoid-mediated behavioral effects observed with IDFP or

direct CB1 agonists such as WIN55212-2 [25]. We have therefore

restricted our interpretations to the IDFP-effects that are reversible

with cannabinoid receptor antagonism.

While the current study addresses the acute metabolic effects of

dual MAGL/FAAH inhibition, the chronic metabolic effects of

such inhibition requires further investigation. Genetic ablation of

FAAH promotes increases in body weight, adipose tissue amount,

plasma free fatty acids and triglyceride content in plasma, liver,

skeletal muscle, and adipose tissue [61]. On the other hand, as

MAGL deficient mice have reduced sensitivity to CB1 agonists

and attenuated diet-induced insulin resistance, chronic elevation of

2-AG may lead to functional antagonism of cannabinoid receptors

potentially negating the effects of elevations in 2-AG [33,63].

In summary, our results support a causative role of CB1

signaling in the development of hepatic steatosis and insulin

resistance. Furthermore, we have identified novel genes responsive

to IDFP in a CB1-dependent manner that may guide future

research on CB1-mediated modulation of pathways impacting

lipid and glucose metabolism.

Supporting Information

Figure S1 CB1-dependent effects of IDFP on hepatic TG
(A) and cholesterol (B) levels. Wild-type and CB1 2/2 mice

were treated with DMSO or IDFP (10 mg/kg, ip, 4 h). n = 5–6.

Significance is given as *p,0.05.

(TIFF)

Figure S2 IDFP causes CB1-dependent and-indepen-
dent glucose intolerance. Wild-type (A) and CB1 2/2 (B) mice

were treated with DMSO or IDFP (10 mg/kg, ip, 4 h). Two h following

DMSO or IDFP treatment, mice were administered glucose (2 g/kg)

and plasma glucose determined at the time points indicated. n = 5.

(TIFF)

Table S1 PCR Primers Sequence of primers used to amplify

transcripts in PCR.

(DOCX)

Table S2 Additional Statistical Detail Additional statistical

details of one- and two-way ANOVAs used to determine

significance.

(DOCX)

Table S3 Genes Significantly Altered by IDFP Genes

determined to be significantly altered by IDFP after multiple

testing correction.

(DOCX)

Table S4 Panther Biological Process Analysis Biological

processes found to be significantly altered by Panther analysis.

(DOCX)

Table S5 FuncAssociate 2.0 Analysis of Genes De-
creased by IDFP in a CB1 Dependent Manner Summary

of FuncAssocaite analysis of genes (n = 168) downregulated by

IDFP and reversed by Am251(.50%).

(DOCX)

Table S6 Expression of Genes involved in Stat3 signal-
ing and Lipid Metabolism in WT and CB1 2/2 Mice
Wild-type and CB1 2/2 mice were treated with DMSO or IDFP
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(10 mg/kg, ip, 4 h). Groups not sharing a common superscript

letter are significantly different (p,0.05). n = 5.

(DOCX)

Table S7 Known off target effects of IDFP Enzymes known

to be altered by IDFP.

(DOCX)
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