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Abstract

Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation
with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells
were exposed to cyclic uniaxial stretch. Human airway smooth muscle cells, cultured on type I collagen-coated elastic
silicone membranes, were stretched uniaxially (20% in strain, 30 cycles/min) for 2 h. The population of airway smooth
muscle cells which were originally oriented randomly aligned near perpendicular to the stretch axis in a time-dependent
manner. However, when the cells treated with microtubule disruptors, nocodazole and colchicine, were subjected to the
same cyclic uniaxial stretch, the cells failed to align. Lack of alignment was also observed for airway smooth muscle cells
treated with a microtubule stabilizer, paclitaxel. To understand the intracellular mechanisms involved, we developed a
computational model in which microtubule polymerization and attachment to focal adhesions were regulated by the
preexisting tensile stress, pre-stress, on actin stress fibers. We demonstrate that microtubules play a central role in cell re-
orientation when cells experience cyclic uniaxial stretching. Our findings further suggest that cell alignment and cytoskeletal
reorganization in response to cyclic stretch results from the ability of the microtubule-stress fiber assembly to maintain a
homeostatic strain on the stress fiber at focal adhesions. The mechanism of stretch-induced alignment we uncovered is
likely involved in various airway functions as well as in the pathophysiology of airway remodeling in asthma.
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Introduction

Mechanical stretch has been found to affect a variety of cellular

properties such as cell shape, motility, stiffness, contraction,

orientation and cell alignment [1,2,3,4,5,6,7]. Airway smooth

muscle (ASM) cells within airway walls are continuously exposed

to anisotropic, cyclically varying mechanical forces through tidal

stretching of the underlying extracellular matrix (ECM). In vivo,

ASM cells wrap airways in helical fashion at an angle of about 75u
with respect to the long axis of the airway [8,9]. Because of this

unique helical arrangement, the angle of orientation is a major

factor that determines the extent to which airways constrict in

response to ASM activation [10]. Therefore, the intracellular

mechanisms by which cyclic stretch affects cell orientation

and alignment are important in the normal functioning of

the respiratory system as well as the pathogenesis of airway

remodeling and hyper-responsiveness in asthma [11,12].

When a population of randomly oriented cells is exposed to

cyclic uniaxial stretch, the cells respond by aligning with their long

axis in the direction of minimum strain [13,14,15]. Previous

studies have attributed this phenomenon to the activation of Rho

pathway which induces cytoskeletal remodeling specifically the

formation of actin stress fibers in the direction of minimum strain

and the turnover of focal adhesions [7,14]. In an unstretched cell,

the forces at a focal adhesion are borne not only by the actin stress

fibers but also the microtubules – stiff, hollow, tubular structures

that can rapidly polymerize and depolymerize at their free ends

[16,17,18,19,20]. It was shown that disruption of microtubule

polymerization blocks cell orientation induced by fluid shear stress

in bovine aortic endothelial cells [21]. Nevertheless, the role of

microtubules in determining the cell reorientation in response to

cyclic stretch is not well understood. Since the alignment pro-

cess involves changes in force balance and remodeling of focal

adhesions [6], we hypothesized that microtubules contribute to the

intracellular processes that drive stretch-induced orientation in

ASM cells.

To test this hypothesis, we determined the alignment response

together with the intracellular cytoskeletal structure induced by
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uniaxial stretch of human ASM (HASM) cells in culture before

and after disruption or stabilization of microtubules. Additionally,

to better understand the intracellular dynamics of individual cells

that lead to cell alignment, we developed a computational model

in which microtubule polymerization and attachment to focal

adhesions is regulated by the preexisting tensile stress, pre-stress,

on actin stress fibers. We demonstrate that microtubules

contribute to the alignment of HASM cells subjected to cyclic

uniaxial stretch. Our findings suggest that microtubules and stress

fibers act in tandem to dynamically balance the applied stretch

pattern by trying to reestablish a stable mechanical equilibrium.

Materials and Methods

Cell Culture
Primary cultures of normal human bronchial smooth muscle

cells from multiple donors were obtained from Cambrex Co.

(Walkersville, MD, USA). The cells were maintained in culture

medium containing 5% fetal bovine serum (FBS), human

recombinant epidermal growth factor (1 ng/ml), insulin (10 mg/

ml), human recombinant fibroblast growth factor (2 ng/ml),

gentamycin (50 mg/ml) and amphotericin B (0.05 mg/ml)

(SmGM-2 BulletKit; Cambrex Co.) in an atmosphere of 5%

CO2 and 95% air at 37uC. The cells retain expression of smooth

muscle marker proteins such as a-smooth muscle actin, smooth

muscle myosin heavy chain, and calponin [22].

Application of Uniaxial Cyclic Stretch
The cells at the 4–7th passage were removed from the dish with

0.01% EDTA-0.02% trypsin and transferred to a 4 cm2 silicone

chamber (2 cm long, 2 cm wide, and 1 cm deep) (STB-CH-04;

Strex, Osaka, Japan) coated with type I collagen (Nitta-gelatin,

Osaka, Japan) at a density of 2.06104 cells/cm2. A uniaxial

sinusoidal stretch of 20% in strain at 30 cycle/min was applied

using stretching apparatus driven by a computer-controlled

stepping motor (ST-140; Strex) in an atmosphere of 5% CO2

and 95% air at 37uC as described previously [23,24,25]. Briefly,

one end of the chamber was attached to a fixed frame, while the

other end was attached to a movable frame. Other two sides were

free to move. The movable frame was connected to a motor driven

shaft whose amplitude and frequency of stretch was controlled by

a programmable microcomputer. Twelve hours prior to stretch-

ing, cells were brought to a quiescent state by incubation in

Dulbecco’s modified Eagle’s medium (DMEM)/F-12 culture

medium (Invitrogen, Carlsbad, CA, USA) with 0.03% FBS. The

silicon chamber had a 200-mM thick transparent bottom and the

side walls were 4 mm thick to reduce compression of the chamber

perpendicular to the direction of the stretch. The relative

elongation of the silicone membrane was uniform across the

whole membrane area, and lateral contraction did not exceed 3%

at 20% stretch. The cells incubated under a static condition on the

silicone chamber were used as a time-matched control. To

determine whether microtubules play a role in the cyclic stretch-

induced cell reorientation, effects of inhibitors of microtubule

polymerization, nocodazole (Calbiochem, La Jolla, CA, USA) and

colchicine (Calbiochem), or a microtubule stabilizer paclitaxel

(Calbiochem) were examined. Either drug was applied to the cell

culture medium 30-min prior to the application of cyclic stretch.

Measurement of Cell Orientation
Phase-contrast images of the cells were photographed using a

620 objective (PM20; Olympus, Tokyo, Japan) with at least three

arbitrarily selected visual fields of the microscope as described

previously [24,25]. The pictures were digitized and analyzed by an

image-analysis software (Adobe Photoshop CS3Extended; Adobe,

San Jose, CA, USA) to evaluate the cell morphology. As shown in

Figure 1, the orientation of each cell was measured as an angle (h)

of the long axis between 0 and 90u with respect to the stretch axis

[24,25]. To estimate the degree of orienting response of the cells,

we constructed histograms from more than 100 cell angles where

frequency was plotted against orientation.

Measurement of Cell Area
We measured cell area in order to quantify cell spreading

[20,26,27,28]. To calculate the cell area, the cell morphology

obtained by phase contrast images was manually outlined. The cell

area was displayed in pixel squared. For the evaluation of the cell

area, a mean value of the 5 data set was calculated.

Immunofluorescent Staining
The cells subjected to cyclic stretch or static condition on the

silicone chamber were fixed with 4% formaldehyde in phosphate-

buffered saline for 1 h at room temperature, and permeabilized

with 0.25% Triton X-100 containing 0.5% bovine serum albumin

for 1 h [23,29]. For the detection of microtubules, cells were

incubated with a mouse monoclonal anti-a-tubulin antibody

(T5168; Sigma, St. Louis, MO, USA) for 8 h and then with an

FITC-conjugated anti-mouse secondary antibody (Molecular

Probes, Eugene, OR, USA) for 1 h at room temperature for

immunodetection. F-actin was stained with rhodamine-phalloidin

(Molecular Probes) for 1 h at room temperature. Nuclei were

stained with the DNA binding dye, 4,6-diamino-2-phenylindole

(DAPI) (Dojin, Kumamoto, Japan). The immunofluorescently

stained cells were then visualized by fluorescence microscopy with

an imaging-system (BX51 and DP70; Olympus).

Model Development
Previous studies have established that when ASM cells are

subjected to cyclic uniaxial stretching, the actin stress fibers in the

direction of stretch dissemble and reassemble in a new direction

which is almost perpendicular to the direction of stretching [5,7].

To understand how the dynamics of microtubules fit into this

picture, we developed a model where microtubules and actin stress

fibers work in tandem to maintain a homeostatic strain on the

actin stress fibers. This hypothesis was based on the following

experimental observations. Kaverina et al. [30] found that

microtubules actively target and bind to focal adhesions. When

a local tensile strain was applied to a focal adhesion, microtubules

polymerized in the direction of stretched focal adhesions [31,32].

Further, local application of actin-myosin contractile inhibitors

Figure 1. Schematic of how the angle of orientation (h) of the
long axis was measured. The angle is always between 0u and 90u
with respect to the stretch axis (arrows).
doi:10.1371/journal.pone.0026384.g001
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causes rapid and local depolymerization of microtubules towards

the cell center [32]. These results coupled with the observation

that cells plated on a 2D substrate maintain a homeostatic strain

on the actin stress fibers [33,34] led us to formulate the notion that

microtubule dynamics are linked to the strain on the actin stress

fibers. Specifically, under conditions of cyclic stretch, microtubules

polymerize and depolymerize in an attempt to maintain a constant

homeostatic level of strain across the stress fibers.

Cell shape and orientation. We modeled the cell as an

ellipse with focal adhesions distributed across its periphery. The

orientation of the cell was dependent on the angular density of

focal adhesions. Initially, the angular distribution of focal

adhesions P(a) for a cell oriented at an angle h with respect to

the direction of stretch was a Gaussian with mean h and variance

of 5u. When the cell was subjected to cyclic stretch, and focal

adhesions dissociate and reform in response to stretch, the

orientation of the cell was tracked by using the mode (most

probable value) of the angular density function. Similarly, the

circularity of the cell was tracked using the circular variance (cv)

which is defined as

Circular Variance, cv~

1{
1

NFA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNFA

1

sin 2að Þ
 !2

z
XNFA

1

cos 2að Þ
 !2

vuut ð1Þ

where NFA is the total number of focal adhesions. The cv can take

values between 0 and 1 with 1 indicating a circular shape and

values closer to 0 indicating a more elliptical shape.

Substrate strain. When the cell is subjected to cyclic

uniaxial stretch, the strain e on the substrate in a direction

which makes an angle a with respect to the stretch direction varies

according to the equation [35,36]:

e(a, d(t), n)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z2j a, d(t), nð Þ

p
{1 where

j a, d (t), nð Þ~d (t) 1znð Þzd(t)

2
(1{n2)

� �
cos2(a){nj{

jnð Þ2

2

ð2Þ

Here d(t) is the cyclically varying uniaxial strain and n = 0.15 is

the Poisson’s ratio of the substrate material. It should be noted that

for n = 0.15, the absolute value of e is minimum at an angle of 70u
which corresponds to the peak of the cell orientation distribution

after 2 h of stretch, suggesting that the cells are aligning in the

direction of minimum substrate strain. The value of n was

experimentally measured. In our case, the silicone membrane was

attached to the sides of the chamber which were much more rigid

than the membrane. For a 20% uniaxial strain, the lateral

compression was found to be ,3% and hence the effective value of

n was 0.15.

Cytoskeletal mechanics. The focal adhesion complex that

is connected to the substrate on one end and the cytoskeleton on

the other is modeled as a linear elastic spring (KFA). Attached to

the cytoskeletal end of the focal adhesion complex are two parallel

springs KSF and KMT representing the actin stress fibers and

the microtubules, respectively. Both actin stress fibers and micro-

tubules are able to support compression and tension and we assign

linear elastic properties to KSF and KMT. The stiffness of KSF and

KMT vary with cyclic stretch as new stress fibers and microtubules

attach to and detach from the focal adhesion. The attachment

probability of stress fibers was constant independent of strain.

However, the attachment probability for microtubules at an angle

a is a linear function of the strain on the actin stress fibers at angle

a. As the strain on the KSF increases, more microtubules attach to

the focal adhesion increasing the stiffness of KMT effectively

reducing the strain on the stress fibers. When a microtubule or

stress fiber attaches, its initial length is set to 1+e(a,d(t),n), so that

the individual fibers that make up KSF and KMT experience

different strains at a given time. The detachment probability

(Pd) for individual fibers that make up KSF and KMT

is a function of the strain they carry and is given by

Pd = (12exp(2x2/0.2)), where x is the absolute strain on the

individual fiber. The above expression approximately corresponds

to a breaking threshold which is normally distributed with zero

mean and a variance of 10%. It should be noted that the

individual fibers that make up KMT and KSF do not break all at

once as the initial length of each individual fiber depends on the

time the fiber became attached. The stiffness of individual actin

microfilaments and microtubules were set based on measured

values of 2.6 GPa and 1.7 GPa, respectively [37]. KFA was

assumed to be much stiffer than KSF or KMT. Also, we assume that

the stiffness of the focal adhesions do not change with stretch. The

role of KFA is simply to transfer substrate stretch to the cytoskeletal

elements. A similar assumption about focal adhesion stiffness was

made in a previous study which examined cell reorientation [38].

Although there are experimental data to show that microtubule

polymerization is up-regulated when actin stress fibers are

strained, the exact functional form is not known. We assumed

that the probability of attachment of microtubules increases as a

linear function of the strain on the actin stress fibers. Under these

assumptions, the only two free parameters that were left to be

adjusted to obtain the fit shown in Figure 2B were the mean and

variance of the strain threshold at which the microtubules and

stress fibers rupture. The values that best fit the data (as shown in

Figure 2B) were 0 for the mean and 10% for the variance.

Statistical Analysis
All data are expressed as means 6 standard deviation (SD).

Analysis of variance (ANOVA) followed by the Bonferroni test for

post hoc analysis or paired t-test was used to evaluate the statistical

significance (SigmaPlot11.2; Systat Software Inc., San Jose, CA,

USA). P,0.05 was considered statistically significant.

Results

Cyclic Uniaxial Stretch Induces Cell Reorientation and
Alignment of HASM Cells

We first examined the effect of cyclic uniaxial stretch (0,2 h) on

the orientation of HASM cells. As shown in Figure 1, the

orientation of each cell was measured as the angle (h) of its long

axis with respect to the stretch axis [24,25]. Thus, the angle h
varies between 0 and 90u. In the present study, we report the

standard deviation (SD) values to assess the heterogeneity of cell

direction. As shown in Figure 3A and 3C, the orientation of

unstretched cells was distributed randomly with a mean angle of

43u and SD of 24u. After 2 h of stretch, the cells showed significant

reorientation away from the direction of stretch (Figure 3B). As the

histogram of cell orientations (Figure 3D) shows, most cells were

aligned at an angle close to 70u and the population of cells below

40u was significantly reduced. The mean and SD values of 2 h-

stretched cells shown in Figure 3D were 69u and 11u, respectively.

The variation in mean and SD of cell orientation from 5

independent histograms is shown in Figure 3E and 3F. The SD

bars in Figure 3E reflect variation in the average angle across five

independent experiments. Figure 3F reflects the variation in angles

within experiments (heterogeneity), averaged over five experi-

ments. The average angles significantly increased in a time-

Microtubule Dynamics in Cell Alignment
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dependent manner (P,0.001, n = 5) (Figure 3E). In contrast, the

SD of angles significantly decreased at 1 h (P = 0.005, n = 5) and

2 h (P,0.001, n = 5) (Figure 3F), demonstrating the alignment of

ASM cells toward a direction perpendicular to the stretch.

Stretch Induces F-actin and Microtubule Alignment
Cyclic stretch induced F-actin stress fiber formation along the

axis of cell elongation compared with the unstretched cells

(Figure 4). Cyclic stretch also aligned polymerized tubulin along

the axis of cell elongation (Figure 4). Polymerized tubulin was

accompanied by stress fiber formation both in stretched and

unstretched cells.

Stretch Induced Spreading of Cells
Cell spreading was quantified by measuring the area of cells (At)

from images of cells fixed at time t = 0, 0.5 h, 1 h, and 2 h after

the start of stretch (Figure 5). At 0.5 h, A0.5 increased to 1.8 times

its value at time 0, A0 (P,0.001). At 1 h, A1 decreased to 1.43A0

(P,0.05) and at 2 h, there was no statistical difference between A2

and A0 (Figure 5). This indicates that the period before cell

alignment is marked by a significant increase in cell spreading.

Dynamics of Microtubules Are Essential for Stretch-
induced Cell Reorientation

Effects of inhibitors of microtubule polymerization, nocoda-

zole and colchicine, or a microtubule stabilizer paclitaxel were

examined. Representative phase-contrast images show that the

microtubule-related agents, nocodazole (1 mM) and paclitaxel

(1 mM), affected the changes in distribution of cell reorienta-

tion induced by 2 h cyclic stretch (Figure 6A) compared with

the untreated control cells (Figure 6A and 6B). The mean cell

orientation in response to 2 h cyclic stretch was significantly lower

in the cells treated with nocodazole, colchicine, or paclitaxel than

in the stretched cells without inhibitors (P,0.01, n = 4) (Figure 6B).

Figure 2. Modeling the Role of Microtubules in Cell Reorientation. (A) Model prediction of changes in shape and orientation of cells due to
cyclic uniaxial stretching. A cell which was initially oriented parallel with the direction of stretch, first becomes circular before realigning in the
direction of minimum strain. The extent to which the cell changes its shape is a function of its initial orientation; with cells that were initially aligned
orthogonal to the direction of stretch experiencing very little shape changes due to stretch. (B) Histogram of a population of cells with the same
initial orientation as the experiment at time t = 0, realigning in response to stretch. It can be seen that the first cells to realign are those that are
oriented parallel to the direction of stretch. The inset shows the experimental observed histogram of cell orientations at time t = 2 h with results from
the model overlaid on top.
doi:10.1371/journal.pone.0026384.g002
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The baseline cell orientation without stretching was not affected by

2 h treatment with any of the drugs (Figure 6B). The SD of angles

in response to 2 h cyclic stretch was significantly higher in the cells

treated with nocodazole, colchicine, or paclitaxel than in the

stretched cells without inhibitors (P,0.01, n = 4) (Figure 6C).

Next, effects of nocodazole (1 mM) or paclitaxel (1 mM) on

organization of F-actin and microtubules in response to 2 h cyclic

stretch were investigated. Compared with the control cells shown

in Figure 4, formation of tubulin polymerization was blocked by

nocodazole treatment both in the unstretched and stretched cells

(Figure 7A). In contrast, F-actin formation was not affected by

nocodazole in the unstretched cells. When the cells treated with

nocodazole were stretched for 2 h, F-actin formation was still

observed but did not align (Figure 7A). Formation of tubulin

polymerization was preserved by paclitaxel treatment both in the

unstretched and stretched cells (Figure 7B). Polymerized tubulin

was observed along with F-actin fiber formation both in the

unstretched and stretched cells pretreated with paclitaxel

(Figure 7B).

Modeling the Role of Microtubules in Cell Reorientation
To better understand the intracellular dynamics that lead to the

reorientation of HASM cells, we developed a model in which

microtubules polymerize and reinforce focal adhesions in response

to an increase in strain on stress fibers. The simulations suggest

that when HASM cells experience cyclic uniaxial stretch, the cells

first become circular then elongated in the direction of minimum

strain (Figure 2A). The equilibrium angle that the orientation of

Figure 3. Effects of cyclic stretch on cell reorientation. Phase-contrast images of the cells in the static condition (A) or in response to cyclic
stretch (20% in strain, 30 cycle/min) (B). An arrow indicates stretch direction. Histograms of the orientation response of the cells in the static condition
(C) or to 2 h uniaxial cyclic stretch (D). Images of the unstretched and stretched cells were obtained at 0.5 h, 1 h, and 2 h after the onset of cell
stretching. After the cell angles were measured, the angles were binned into 19 groups for every 5u: 0u, 1–5u, 6–10u, …, 81–85u, and 86–90u (C and D).
Total cell number (frequency) was set as 100% and the frequency in each group was expressed relative to the total cell number. (E and F) The mean
and standard deviation (SD) of the cell orientation at each time point. The decreasing SD of angles indicates that the cells were aligning in a direction
which was almost perpendicular to the direction of applied stretch. Bar graph represents means 6 SD (across 5 different trials). Data were analyzed
with one-way repeated-measure ANOVA followed by the Bonferroni test. *: Significantly different (P,0.05) from the unstretched control (time 0)
value (n = 5).
doi:10.1371/journal.pone.0026384.g003
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cells approaches corresponds to the direction of minimum strain

which depends on the Poisson’s ratio of the underlying substrate

(Eq. 2). Further, in a population of randomly oriented cells, the

cells that were initially oriented parallel to the strain become more

circular than cells which had an initial orientation closer to the

direction of equilibrium angle (Figure 2B). The time for an

individual cell to reorient also depends on its initial orientation.

Cells which were initially parallel to the stretch direction are the

first to reorient whereas cells aligned closer to the equilibrium

orientation take longer time to reorient (Figure 2B). As the stretch

proceeds, the randomly oriented cells tend to align with the degree

of alignment increasing with the duration of stretch. After 2 h of

stretch, the model is able to match the experimentally observed

distribution of cell orientations. However, the model also predicts

that stretching cells for longer periods would lead to a more tightly

aligned population of cells.

Discussion

In this study we found that microtubules play a major role in the

alignment of HASM cells subjected to cyclic uniaxial stretch. A

population of randomly oriented HASM cells showed statistically

significant alignment by 1 h but this was preceded by significant

cell spreading at 0.5 h. Since it has been established that cell

spreading involves microtubules [20,26,27,28], the above finding

indicates that microtubule dynamics should contribute to the

Figure 4. Fluorescent images of organization of F-actin and
microtubules in the static or stretched cells. Cells were in the
static condition (upper panels) or subjected to 2 h uniaxial cyclic stretch
(lower panels). F-actin was visualized with rhodamine-phalloidin (red).
Microtubules were visualized with FITC conjugated secondary antibody
following immunostaining with anti-a-tubulin antibody (green). Cell
nuclei were stained with DAPI (cyan).
doi:10.1371/journal.pone.0026384.g004

Figure 5. Stretch-induced spreading of cells. Cell spreading was
quantified by measuring the area of cells from phase contrast images of
cells at time 0, 0.5 h, 1 h, and 2 h after the start of stretch. Bar graphs
represent means 6 SD (n = 4). *: Significantly different (P,0.05) from
the value with unstretched controls (time 0).
doi:10.1371/journal.pone.0026384.g005

Figure 6. Roles of microtubules in stretch-induced cell
reorientation. Cyclic stretch (20%, 2 h) was applied to the cells after
pretreatment with either 1 mM nocodazole (NDZ), 10 mM colchicine
(COL), or 1 mM paclitaxel (PTX). (A) Representative phase-contrast
images of the static (left panels) and stretched (right panels) cells
pretreated with either 1 mM nocodazole (NDZ) (upper panels) or 1 mM
paclitaxel (PTX) (lower panels). Average (B) and SDs (C) of angles of the
cell orientation. Bar graphs represent means 6 SD (n = 4). *: Significantly
different (P,0.05) from the value with cyclic stretch. #: Significantly
different (P,0.05) from the value with unstretched control.
doi:10.1371/journal.pone.0026384.g006
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stretch-induced cell reorientation in HASM cells. Furthermore,

when the microtubule assembly was inhibited by colchicine or

nocodazole treatment, and also when microtubules were stabilized

by paclitaxel treatment, the HASM cells showed no tendency to

align since cell orientation remained uniform after 2 h of stretch.

To quantitatively understand individual cell dynamics that lead to

these experimental observations, we developed a model in which

microtubule polymerization and attachment were regulated

by mechanical stretch. Together with our experimental findings,

these results demonstrate, for the first time, that microtubules

play a significant role in the cyclic stretch-induced cytoskeletal

remodeling and subsequent cell reorientation in HASM cells.

Contradictory results have recently been reported in NIH3T3

fibroblasts by Goldyn et al [39]. They observed that NIH3T3 cells

can align in response to stretch even after knocking out

microtubules. Similarly, Hayakawa et al. reported that the cyclic

stretch-induced cell alignment was not affected by pharmacolog-

ical disruption of microtubule polymerization in A10 smooth

muscle cell line [40]. These findings suggest that there may be cell

type specific differences in the way cells remodel their cytoskele-

ton in response to cyclic uniaxial stretching. Even though the

conclusions by Goldyn et al. [39,41] indicate that cell re-

orientation is purely a consequence of actin remodeling, they

report several observations which are similar to ours. In their

study, upon stretching non-treated, unstretched cells, both

microtubules and F-actin re-align significantly. Further, when

treated with cytochalasin D, microtubules no longer align with

stretch like they do in untreated cells. More importantly, they

found that microtubules can modulate the kinetics of the stretch-

induced alignment of NIH3T3 fibroblasts [41]. These observa-

tions support our hypothesis that the remodeling of actin in

response to stretch is coupled to that of the microtubules.

In this study, we used nocodazole and colchicine to disrupt

microtubules. Both drugs are also known to cause an increase in

myosin phosphorylation, which may lead to the contractility of

actin stress fibers [42,43,44]. However, treatment of cells with

nocodazole did not induce apparent F-actin formation in HASM

cells (Figure 7). Further, we have demonstrated that upon

inhibiting microtubule dynamics by treatment with paclitaxel

HASM cells fail to align (Figure 6). This implies that it is not just

the presence or absence of microtubules, but the dynamic nature

of the polymerization process of microtubules, in response to

stretch that is critical for the cell to be able to adapt to cyclically

varying uniaxial stretch. Further evidence for the involvement of

microtubule dynamics may be found in our measurements of

projected cell area which is an indicator of how well cells spread

[26,27,28,45]. Our results indicate a highly significant increase in

cell spreading after 0.5 h of stretch (Figure 5). Spreading

progressively decreased until 2 h at which point the projected

areas were statistically the same as those of unstretched cells

(Figure 5). These results suggest that the reorientation process is

preceded by a period of increased microtubule polymerization-

depolymerization turnover and cell spreading.

It is known that microtubules can bear compressional stress in

cells [42,46]. On the extracellular side, the focal adhesions bind to

extracellular matrix proteins through integrins and on the

cytoplasmic side they link to actin stress fibers through various

adaptor proteins. It has been shown that microtubules actively

target and bind to focal adhesions [30]. Moreover, microtubules

and stress fibers are linked by structural and biochemical processes

[19]. When a local tensile strain was applied to a focal adhesion,

microtubules polymerized toward the focal adhesion that was

strained [31,32]. Putnam et al. [47,48] demonstrated that 10%

static stretch of rat aortic smooth muscle cells significantly

increased tubulin polymerization. Nevertheless, the relationship

between the dynamics of microtubule polymerization and cyclic

stretch has not been fully explained. It has been reported that the

speed of tubulin polymerization within a cell is below 10 mm/min

[49]. In contrast, the speed of tubulin rapid de-polymerization,

called a catastrophe, is much faster than polymerization speed

[50]. In the present study, 20% cyclic stretch was applied to the

ASM cells at 30 cycle/min. Thus, it is likely that the stretching/

unloading speed was sufficiently fast so that polymerization/

de-polymerization of tubulin could not complete within one

stretching-unloading cycle. Instead, cell shape slowly changed

towards cell alignment due to cytoskeletal reorganization and focal

adhesion remodeling during repeated cyclic stretching [13,14,39].

As shown in Figure 4, cyclic stretch induced microtubule

reorientation which was accompanied by actin stress fiber

formation. Similar observations of stretch-induced microtubule

reorientation have been reported previously in various cell types

[39,40,51,52]. Oakley and Brunette [53] demonstrated that

microtubules are the first to align prior to cell alignment in

cultured fibroblasts. These findings also indicate an important role

of microtubule dynamics in regulation of cyclic stretch-induced

cell alignment in HASM cells. Furthermore, there is a link

between dynamics of microtubules and the fluctuations in

mechanical forces on the stress fiber/focal adhesion assembly

due to applied cyclic stretch.

Figure 7. Effects of nocodazole and paclitaxel on the organi-
zation of F-actin and microtubules. Fluorescent images of the
organization of F-actin stained with rhodamine-phalloidin (red) and
microtubules immunostained with anti-a-tubulin antibody (green) in
the static or stretched cells. Cell nuclei were stained with DAPI (cyan).
The cells were pretreated with either 1 mM nocodazole (NDZ; A) or
1 mM paclitaxel (PTX; B). Arrows indicate stretch direction.
doi:10.1371/journal.pone.0026384.g007
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Previous studies have demonstrated an important role of

experimental conditions, specifically strain, frequency, duration,

and cell types, in the cell reorientation induced by cyclic stretch

[13,14,23,39,40,41,54]. We previously reported that cyclic stretch-

ing primary cultured human pulmonary microvascular endothelial

cells (20%, 12 h) induced cell alignment perpendicular to stretch

axis [23]. In the present study, we used relatively shorter stretch

duration (within 2 h) in order to minimize genomic effects such as

protein synthesis. In our preliminary results, stretch-induced

alignment behavior of HASM cells was not different between

2 h and 3 h stretch, indicating that 2 h stretch was long enough

for primary HASM cells to align. We also found that HASM cells

still aligned when the cells were cyclically stretched at a lower

(10%) strain for 2 h. Kaunas et al. [14] examined the strain-

dependency of stress fiber alignment induced by cyclic stretch

(10%, 60 cycles/min, 6 h) in bovine aortic endothelial cells. They

found that the stress fiber aligned at 3% strain but not at 1%

strain. They developed a model which was capable of describing

stress fiber reorganization in response to diverse temporal and

spatial patterns of cyclic stretch in bovine aortic endothelial cells

[55]. However, the threshold of strain levels which induces cell

alignment remains unclear in HASM cells and examining the

threshold stain is beyond of the focus of the present study.

Mathematical models have often been employed to help

elucidate the mechanism of cell alignment in response to cyclic

stretch [34,55,56]. Hsu et al. [55] developed a dynamic stochastic

model of frequency-dependent stress fiber alignment induced by

cyclic stretch in endothelial cells. They concluded that when the

rate of stretch is faster than the rate of stress fiber self-adjustment,

the stress fibers gradually accumulate and align in a direction that

require the smallest deviation form equilibrium. This is the reason

why the cell aligns perpendicular to the stretch axis in response to

uniaxial stretch at relatively high rate (.0.1 Hz). Thus, if the rate

of stretch is faster than the rate of tubulin self-adjustment as well as

stress fiber adjustment, cells align perpendicular to the stretch axis

in HASM cells.

In constructing the model, we used the experimental observa-

tion that microtubules polymerize in response to stretch and

depolymerize when tension on actin/myosin is inhibited to form a

hypothesis that microtubule dynamics are regulated by the strain

on the stress fibers. An alternative hypothesis, based on the above

experimental evidence, is that they are responding to stress/strain

on focal adhesions. However, we choose the former interpretation

as this would imply that the cell is attempting to reestablish the

homeostatic pre-stress levels that existed before stretch. This is

more likely as the pre-stress in the cell is an important regulator of

a variety of cellular functions [57]. The model based on this

assumption was able to reproduce the observed dynamics of

reorientation (Figure 2). Specifically, our model predicts that

HASM cells parallel to the direction of stretch are the first to align,

with cells closer to the equilibrium angle taking more time to re-

align (Figure 2A). Further, we show that the process of alignment is

accompanied by shape changes in the cell. The extent of this shape

change also depends on the initial orientation of the cell with cells

parallel to the direction of stretch becoming almost circular and

then re-elongating in a new equilibrium direction of stretch

[13,58].

Apart from their traditional role in an unstretched cell as

compression bearing elements, in our model, microtubules under

conditions of cyclic stretch are capable of bearing both

compression and tension. This is a plausible assumption as

microtubules are polymers that can buckle [59,60]. Further, live

imaging of cyclically stretched cells shows that microtubules

straighten out under application of tensile stretch [60]. However,

even the simpler Poisson statistics used here are able to reproduce

the statistics of cell alignment well.

In summary, our experiments and modeling results demonstrate

that microtubules play a major regulatory role in the way HASM

cells respond to uniaxial, cyclically varying stretch patterns.

Specifically, we find that cell alignment results from the interplay

of microtubules and actin stress fibers acting in tandem to

maintain a homeostatic pre-strain in the cytoskeleton. These

results can help better understand how ASM cells respond to

pathological alterations in the mechanical properties of the

underlying extracellular matrix induced by the onset of diseases

such as asthma.
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