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Abstract

Dynamic contrast enhanced (DCE-) MRI is commonly applied for the monitoring of antiangiogenic therapy in oncology.
Established pharmacokinetic (PK) analysis methods of DCE-MRI data do not sufficiently reflect the complex anatomical and
physiological constituents of the analyzed tissue. Hence, accepted endpoints such as Ktrans reflect an unknown multitude
of local and global physiological effects often rendering an understanding of specific local drug effects impossible. In this
work a novel multi-compartment PK model is presented, which for the first time allows the separation of local and systemic
physiological effects. DCE-MRI data sets from multiple, simultaneously acquired tissues, i.e. spinal muscle, liver and tumor
tissue, of hepatocellular carcinoma (HCC) bearing rats were applied for model development. The full Markov chain Monte
Carlo (MCMC) Bayesian analysis method was applied for model parameter estimation and model selection was based on
histological and anatomical considerations and numerical criteria. A population PK model (MTL3 model) consisting of 3
measured and 6 latent (unobserved) compartments was selected based on Bayesian chain plots, conditional weighted
residuals, objective function values, standard errors of model parameters and the deviance information criterion. Covariate
model building, which was based on the histology of tumor tissue, demonstrated that the MTL3 model was able to identify
and separate tumor specific, i.e. local, and systemic, i.e. global, effects in the DCE-MRI data. The findings confirm the
feasibility to develop physiology driven multi-compartment PK models from DCE-MRI data. The presented MTL3 model
allowed the separation of a local, tumor specific therapy effect and thus has the potential for identification and specification
of effectors of vascular and tissue physiology in antiangiogenic therapy monitoring.
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Introduction

Pharmacokinetic (PK) analysis of dynamic contrast enhanced

(DCE-) MRI data is widely applied in oncology for the measurement

of vascular and tissue physiology. Extracted parameters are used for

the characterization and classification of disease processes and for the

monitoring of treatment effects. Established PK models are limited to

one or two compartments models, considering only the tumor and

local plasma compartment [1,2], and rely on the knowledge of the

contrast agent (CA) concentration time curve in the plasma, i.e. the

arterial input function (AIF), to reliably compute the tumor tissue

specific model parameters such as the plasma-tissue transfer constants

K trans and kep and relative plasma fp (Vplasma/Vtotal) and interstitial fi
(Vinterstitial/Vtotal) distribution volumes. An alternative approach using

a CA concentration time curve from a simultaneously acquired

reference tissue, such as muscle, circumvents the requirement for an

AIF [3]. Although this approach has been demonstrated to account

for possible changes in cardiovascular physiology it still requires prior

knowledge of fi in the reference tissue [4].

In pharmacokinetics, any effective space or physiological

mechanism, e.g. vascular resistance, which has a distinct effect on

CA distribution, should be included as a compartment in the

structural model. It is therefore well known that the above described

compartment models do not sufficiently reflect the complex

anatomical and physiological constituents of the analyzed tissue

and that extracted model parameters are biased by a multitude of

unknown physiological effects. Despite these limitations and the lack

of unified acquisition and analysis methods, the computed model

parameters commonly serve as biomarkers for go and no-go

decisions in pharmacology and clinical case management.

The danger of model overestimation, strong parameter correla-

tions, sensitivity to the choice of initial values and numerical

instability has prevented the development of more complex multi-

compartment models. However, many of these obstacles in model

development can be overcome by the employment of rich data sets

in combination with population PK analysis. Population PK

analysis involves the stochastic evaluation of model parameters

including their inter-individual, inter-occasional and random

variability, thus assuring robust model development.

In this work a novel multi-compartment population PK model is

presented, which for the first time allows the separation of local

and global physiological effects. This is demonstrated by the
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improved model quality after the application of covariables defined

by the study protocol that reflect either local tissue specific changes

in physiology, i.e. different degrees of tumor necrosis, or global

systemic changes in cardiovascular physiology, i.e. differences in

anesthesia protocol. Model development and evaluation was based

on DCE-MRI data consisting of simultaneously acquired, densely

sampled gadopentetate dimeglumine (Gd-DTPA) concentration

time curves from muscle, liver and tumor tissue of hepatocellular

carcinoma (HCC) bearing rats. Population nonlinear mixed effects

modeling was performed using the NONMEMH 7.1 program

(ICON, Dublin, Ireland) and model selection was based on

physiological and histological considerations and standard numer-

ical criteria.

Materials and Methods

All data were obtained from animal experiments approved by

the local ethics committee, Tierschutzkommission der Regierung

von Oberbayern (approval ID: 10-06). DCE-MRI data sets with

an i.v. bolus injection of Gd-DTPA (0.2 mmol Gd/kg, Magne-

vistH, Bayer Schering, Germany, Berlin) were acquired in 20 male

buffalo rats with implanted unifocal HCC. Animals were

measured before and 3 days after transarterial embolization.

Before treatment, all animals were anesthetized by injection

anesthesia using a mixture of midazolam, medetomidine and

fentanyl. After treatment, a subgroup of animals was anesthetized

by gaseous infusion of isoflurane. Finally, animals were sacrificed

for tumor histology [4]. A total of 33 DCE-MRI data sets were

included for model building and selection. Each data set consisted

of Gd-DTPA concentration curves derived from defined regions of

interest (ROI) in spinal muscle, tumor and liver tissue. Spinal

muscle data was chosen as a reference tissue [3], which is always

present in abdominal MRI images and was considered unaffected

by the applied (tumor specific) treatment, however, influenced by

the systemic changes induced by the anesthesia. Gd-DTPA

concentration curves consisted of 150 data points with 6 s and

24 s temporal resolutions until 3 min and 15 min, respectively.

The defined tumor ROIs covered the central part of the tumors

regardless of present necrosis. The acquired Gd-DTPA concen-

tration time curves are shown in Figure 1. Based on the

histological analysis, treated tumors were classified into three

groups with different percentage of residual vital tissue (vti) in

tumor, i.e. 93–100% (n = 5), 50–93% (n = 6) and below 50%

(n = 5). Tumors before treatment were included as a fourth group

without histological data (n = 17).

Structural model selection and evaluation
All population PK analyses were performed by means of the full

Markov-Chain Monte-Carlo (MCMC) Bayesian analysis method

using NONMEMH 7.1. A random lag term was computed for each

record to compensate for variations in the injection time point and

treated as a nuisance parameter uncorrelated to the PK model

parameters. A mixed proportional and additive error model was

used. Prior to the Bayesian analysis, initial parameter estimates were

obtained from 120 iterations of the stochastic approximation

expectation maximization (SAEM) method. After a burn-in phase of

3000 samples in the Bayesian analysis, another 3000 samples were

used for parameter estimation. Model building and selection was

based on histological (tumor necrosis) and anatomical (i.e. tumor

location within the liver) considerations and on numerical criteria,

i.e. stability of resulting Bayesian chain plots (CPS), conditional

weighted residuals (CWRES), objective function value (OFV),

standard error (SE) and 95% confidence interval (95%-CI) of model

parameters in that order as listed. In case of comparable numerical

model quality, the deviance information criterion (DIC) was

computed to allow for Bayesian model comparison [5]. DIC was

calculated as 2:OFV{
P33

i~0

OFVi where the OFVi are the per-

dataset OFV values from NONMEM’s phi-file.

The 4-compartment minimal model consisted of the three

measured tissue compartments branching off the unobserved (latent)

central compartment. The latent central compartment is required in

the model as the dose compartment (Gd-DTPA injection) and as the

mathematical and physiological interacting compartment mediating

the interaction between the measured tissue compartments. As

displayed in Figure 2 (left), it exhibited unsteady CPS and

systematic trends in CWRES indicating the need for additional latent

compartments. This model instability was invariable even after

applying up to 10000 samples for the Bayesian model estimation.

Extending this minimal model by adding serial latent compartments

to spinal muscle, tumor and liver, a numerically stable model with

minimal systematic trend in CPS and CWRES was developed and is

shown in Figure 2 (right). This selected final structural model, now

called MTL3 model, consisted of 3 measured and 6 latent

(unobserved) compartments. The definition of the inter-compart-

Figure 1. Measured Gd-DTPA concentration data. The measured Gd-DTPA concentration time curves in mM over seconds for the 33 DCE-MRI
data sets for spinal muscle tissue (left), tumor tissue (middle) and liver tissue (right). One curve represents the concentration data over time detected
for one tissue ROI (muscle, tumor or liver) of one animal at one measurement day. The data show high inter-individual and high inter-occasional
variation.
doi:10.1371/journal.pone.0026366.g001

Population PK Model for Gd-DTPA
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mental transfer constants in the MTL3 model is provided in Table 1
and the NONMEM code of the MTL3 model is provided in Text
S1 in the supplements. For all models, the clearance was fixed to

Cl = 0.04 ml?s21 based on reported rat clearance values [6].

Covariate model building
Anesthesia protocol and percentage of residual vital tissue in

tumor were included as binary (anest) and ordered categorical with

4 levels (vti) covariables, respectively, into the MTL3 model.

Covariate model building was based on physiological observations

and histological considerations supported by the generalized

additive model (GAM) procedure [7]. Covariable anest was applied

to spinal muscle or liver transfer constants and vti was only applied

to the tumor transfer constants, i.e. kT2T3 or kT3T2. The MTL3

model was nested within all covariate models and the OFVs were

compared using the DIC criterion.

Model diagnostics and statistics
All diagnostic plots for model building and evaluation were

created using the R software package [8] and the xpose4 library [9].

The THETAs, ETAs and the respective standard errors SEs [%]

were computed by NONMEMH 7.1 [10]. The 95%-CI was

computed by the R package coda (http://CRAN.R-project.org/

package=coda) [11].

Results

Structural model selection and evaluation
The population estimates of the transfer constants with their

respective 95%-CI as well as the SEs of the model parameters in the

MTL3 model are listed in Table 2. The resulting individual

concentration curves of spinal muscle, tumor and liver tissue are

presented in Figure S1, S2 and S3, respectively, in the supplements.

The computed correlation matrix is displayed in Figure S4.

The physiologically meaningful or numerically comparable and

thus competing reduced models that were used for the structural

model evaluation are outlined in Figure 3. An overview of these

models including the CPS and CWRES is provided in Figure S5 in

the supplements. The deltas in the objective function value (DOFV)

of the reduced models relative to the full MTL3 model are

summarized in the bar graph in Figure 4a. The CPS and CWRES

of the reduced models b, c and e show unsteady behavior and

systematic deviations and therefore highlight the need for the

presence of three spinal muscle compartments in the MTL3

model. The reduced models d and f exhibited the closest

numerical outcome compared to the MTL3 model by having

similar CPS and CWRES. For those the deviance information

criterion (DIC) value was computed to allow a Bayesian model

comparison. The resulting DIC values of 1130 and 81 supported

the superior quality of the MTL3 model.

Figure 2. Comparison between the minimal model and the developed MTL3 model. On the left, the schematic of the 4-compartement
minimal model including the transfer constants is presented in the top panel consisting of the measured spinal muscle (M2), tumor (T2) and liver (L2)
tissue and the latent (not measured) central compartment (C). In the middle and bottom panel, respective CPS and CWRES of this model are
displayed. On the right, the schematic of the 9-compartment MTL3 model including the transfer constants is presented in the top panel consisting of
the 3 measured compartments (M2, T2, L2) pointed out by the thick border and the 6 latent (unobserved) compartments (C, M1,M3, T3, L1, L3). In the
middle and bottom panel, respective CPS and CWRES of this model are displayed. All CPS plots display the 3000 samples used for Bayesian parameter
estimation. The extracted population estimates and 95% confidence intervals for the MTL3 model are provided in Table 1.
doi:10.1371/journal.pone.0026366.g002

Population PK Model for Gd-DTPA
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Covariate model building
Including the covariables anest and vti significantly improved the

fit quality of the MTL3 model in terms of OFV and did not alter

the SE or 95%-CI and numerical stability. The maximum drop in

the OFV value was DOFV = 285 and achieved by applying both

covariables vti and anest to the tumor transfer constant kT3T2 and

spinal muscle transfer constant kM1C, respectively. The THETAs of

the transfer constants with their respective 95%-CI as well as the

SEs of the model parameters of this best covariate model are listed

in the Table S1 in the supplements. Model parameter values were

comparable to those computed with the MTL3 model without

covariable. Covariate models that exhibited SEs around or below

50% for the included covariates were considered valid. The

DOFVs of those covariate models are summarized in the bar graph

in Figure 4b and an overview of the CPS and CWRES is provided

in Figure S6 in the supplements. The SE of the covariate for vti

was always#30% and for anest#55%. Applying the covariables to

more than two transfer constants simultaneously resulted in model

over-parameterization and numerical instabilities. All reliable

covariate models indicated an impact of anest and vti on the

observed Gd-DTPA concentration data.

Discussion

In this work a multi-compartment PK model is developed

allowing a more detailed description of Gd-DTPA kinetics. The

model requires no use of an arterial input function or fixed tissue

parameters. This was achieved by population PK modeling of

DCE-MRI data from multiple tissues, i.e. spinal muscle, tumor

and liver. Model building and selection were driven by anatomical

and histological knowledge and numerical methods commonly

applied in pharmacometrics.

Table 1. Definition of transfer constants in the MTL3 model.

Transfer constant Definition

Muscle transfer constant Central to peripheral

kCM1 C (central) R M1 (1st muscle)

kM1M2 M1 (1st muscle) R M2 (2nd muscle)

kM2M3 M2 (2nd muscle) R M3 (3rd muscle)

Peripheral to central

kM3M2 M2 (2nd muscle) r M3 (3rd muscle)

kM2M1 M1 (1st muscle) r M2 (2nd muscle)

kM1C C (central) r M1 (1st muscle)

Tumor transfer constant Central to peripheral

kL1T2 L1 (1st liver) R T2 (1st tumor)

kT2T3 T2 (1st tumor) R T3 (2nd tumor)

Peripheral to central

kT3T2 T2 (1st tumor) r T3 (2nd tumor)

kT2L1 L1 (1st liver) r T2 (1st tumor)

Liver transfer constant Central to peripheral

kCL1 C (central) R L1 (1st liver)

kL1L2 L1 (1st liver) R L2 (2nd liver)

kL2L3 L2 (2nd liver) R L3 (3rd liver)

Peripheral to central

kL3L2 L2 (2nd liver) r L3 (3rd liver)

kL2L1 L1 (1st liver) r L2 (2nd liver)

kL1C C (central) r L1 (1st liver)

doi:10.1371/journal.pone.0026366.t001

Table 2. THETAs of model transfer constants in the MTL3 model with respective 95%-CI and SE of all model parameters.

Transfer constant
Population estimate
THETA [s21]

Lower Bound
[s21]

Upper Bound
[s21] SE [%] of THETA SE [%] of ETA

SE [%] of
ERR(1) ERR(2)

kC0 = Cl/Vc 0.013 0.011 0.016 9 29 4 4.3

kCM1 0.3 0.25 0.38 8 29 4 4.3

kM1C 0.012 0.0094 0.015 2 27 4 4.3

kM1M2 3.6 2.7 5.1 13 28 4 4.3

kM2M1 300 250 370 1 31 4 4.3

kM2M3 0.24 0.18 0.3 9 34 4 4.3

kM3M2 0.0024 0.0018 0.0034 2 32 4 4.3

kCL1 2.9 2.1 3.7 13 30 4 4.3

kL1C 0.59 0.44 0.8 29 27 4 4.3

kL1T2 0.03 0.024 0.038 3 29 4 4.3

kT2L1 0.38 0.27 0.52 17 29 4 4.3

kT2T3 3.7 2.1 6.1 20 28 4 4.3

kT3T2 0.33 0.21 0.52 21 28 4 4.3

kL1L2 0.0045 0.0037 0.0056 2 29 4 4.3

kL2L1 0.021 0.015 0.031 5 32 4 4.3

kL2L3 0.027 0.018 0.037 5 35 4 4.3

kL3L2 2.3e205 5.2e206 7.4e205 6 34 4 4.3

THETA – population estimate of transfer constant.
ETA – interindividual variability of transfer constant.
ERR – additive (1) and proportional (2) residual random error of the MTL3 model.
doi:10.1371/journal.pone.0026366.t002

Population PK Model for Gd-DTPA
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The here presented methodological approach for the develop-

ment, and validation of a multi-compartment PK model for Gd-

DTPA underlines the credibility of the here proposed MTL3

model. In fact, the proposed approach is not limited to the three

selected tissue ROIs, but can be further extended by observations

from additional ROIs or clusters within ROIs. Model develop-

ment was performed using NONMEMH 7.1, a well recognized

and widely applied nonlinear mixed effects modeling tool used for

population PK/PD analyses [10]. Population modeling is

commonly applied in medical statistics to improve the precision

of subject specific treatment effects taking into account inter-

individual and inter-occasional variability. The MCMC Bayesian

analysis method presents an efficient estimation approach for high

dimensional PK problems with rich and correlated data [12]. It

has previously been used to develop a Bayesian hierarchical model

for MR contrast agent kinetics based on DCE-MRI data [13,14].

This model proposed by Schmid et al. was based on the simple

standard 1-compartment model [2] and required the knowledge

and input of an AIF. Their approach has been successfully applied

in a phase II oncology study using data-driven parametric AIFs to

assess treatment effects [15]. Bayesian methods use prior

information, but for the proposed MTL3 model uninformative

priors were sufficient to establish convergence (see Text S1). The

numerical criteria for model selection applied in this work, i.e. the

stability of Bayesian chain plots (CPS), conditional weighted

residuals (CWRES), objective function value (OFV) and standard

error (SE) of model parameters are well accepted plots and

measures for basic internal model evaluation [16]. With a total

time of 14 hours for a single run without covariables on an Intel

Core i7-980X, the MTL3 model allows parameter estimation

within an acceptable time range for research applications.

For structural model selection, CPS and CWRES were the primary

selection criteria as these allow a fast visual inspection of quality of fit.

From the drift in the CPS and the systematic offsets in the CWRES, it

was obvious that three compartments are required to describe the

spinal muscle tissue. The necessity for additional peripheral latent

compartments for tumor (T3) and liver (L3) was not as apparent from

the residual plots alone. However, the statistical comparison using the

deviance information criterion (DIC) supported the inclusion of the

additional latent compartments. The DIC is a widely applied measure

for Bayesian model comparison also used in quantitative DCE-MRI

[17] and presents a Bayesian analogue of the Akaike information

criterion (AIC) [5]. These results confirm the feasibility to develop

multi-compartment population PK models based on simultaneously

acquired DCE-MRI data from multiple tissues.

For covariate model selection, OFV and SE of model parameters

were the primary selection criteria as no differences were detectable

by visual inspection of CPS and CWRES. The selected covariables vti,

reflecting local tumor necrosis quantified by tumor histological

analysis and anest, reflecting an induced systemic change in

cardiovascular physiology, i.e. 30% change in heart rate detected

by ECG recordings represent a local and a systemic factor influencing

Gd-DTPA kinetics [4]. Based on these observations and the GAM

procedure, the covariable vti was only applied to transfer constants of

tumor tissue. Most of the tested covariate models exhibited a SE for

the included covariable much larger than 50% and thus were

considered unreliable, leaving only one anest covariate model (kM1C)

and the two vti covariate models. When combining the two best

covariate models (vti kT3T2 and anest kM1C) the fit quality further

improved without compromising the SE of model parameters. These

results confirm an impact of anest and vti on the measured Gd-DTPA

concentration data which is in accordance with previous findings [4].

Furthermore, the successful combined application of both vti and anest

highlight the capability of the MTL3 model to separate local and

systemic effects present in Gd-DTPA concentration data.

For all tested models, the clearance was fixed to Cl = 0.04 ml s21.

The clearance is a mandatory parameter in pharmacokinetic

modeling describing the washout of the injected substance from the

body. Often in PK modeling, when clearance is not directly

Figure 3. List of model schematics used for the structural
model evaluation. Measured compartments are pointed out by the
thick border. Models b–f represent the tested reduced models. Model
schematic a and g represent the minimal and MTL3 model, respectively.
doi:10.1371/journal.pone.0026366.g003

Population PK Model for Gd-DTPA
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measured from blood or urine samples, this parameter is a priori

unidentifiable and therefore taken from literature and fixed during

model development [18]. We have tested the use of a prior on

clearance resulting in longer computation with no improvement in

model quality. This indicates that clearance was an ill-defined

(unidentifiable) parameter which may rather be determined by

direct measurements of Gd-DTPA blood half-lives.

Computed population estimates of model parameters and their

respective 95%-CI showed no difference between the MTL3 and

the best covariate model. In both models, there was a large range

of values for the computed model transfer constants ranging from

3.5?1025 s21 to 3.2?102 s21. Using the fixed clearance value of

Cl = kC0?Vc = 0.04 ml?s21, the MTL3 model’s inter-compartmen-

tal distributions (Q) and the apparent volumes of distribution (V)

can be calculated from the estimated transfer constants using the

relationship k = Q/V. The inter-compartmental distribution can be

conceptually viewed as a pharmacokinetic expression of the

transport occurring between tissues and organs via blood vessels

and/or membranes and was assumed to follow first-order kinetics

[19]. The apparent volume of distribution relates the total amount

of Gd-DTPA in the body (A) to the site of measurement, i.e. spinal

muscle, liver or tumor. It can be viewed simply as a proportionality

factor between the total amount of Gd-DTPA present in the entire

body and the Gd-DTPA concentration CGd in the tissue of

interest, i.e. V = A/CGd [20].

A schematic of the MTL3 model illustrating the magnitudes of

the inter-compartmental distributions and showing the normalized

apparent distribution volumes is presented in Figure 5. Very

large inter-compartmental transport was determined between M1

and M2, whereas very small inter-compartmental transport was

determined between L1 and L2 as well as L2 and L3. High CGd

values were detected for M2 and T2, whereas low and very low

CGd values were detected for M3, M1 and L3.

At this stage, the MTL3 model must be viewed as a

phenomenological population PK model for the in vivo Gd-

DTPA distribution kinetics in rats. Based on the results from the

covariate model building, the latent tumor compartment T3 may

be interpreted as interstitial tissue space, since this is most strongly

affected by cellular destruction which is represented by vti.

Similarly, the latent compartment M1 may be considered a

compartment related to either blood vessel space or blood vessel

function, e.g. blood flow resistance or blood pressure which is

known to be affected by anest. The exceptional structural and

functional organization of the liver also seems to be reflected in the

MTL3 model. The exceptionally large VL3 resulting in essentially

no transport back to compartment L2 (kL3L2 = 2.3 1025) may

reflect the special drainage system via the central hepatic veins.

DCE-MRI data of higher spatial resolution and SNR allowing for

cluster and pixel based analyses as well as the inclusion of further

and/or other reference tissues such as kidney or spleen will extend

the model to capture tissue heterogeneity and validate the

physiological interpretation of the model.

The MTL3 model does not depend on the knowledge of an

arterial input function to calculate the transfer constants for spinal

muscle, tumor or liver tissue. Rather, the MTL3 model computes

based on the concentration data measured in these peripheral

tissues, the Gd-DTPA concentration curve in the central

compartment. This may resemble an arterial input function

detected in a central vessel like the aorta. Figure 6 displays the

computed Gd-DTPA concentration time curve for the central

compartment of the MTL3 model for the analyzed rat population.

It is compared to the previously reported rat population AIF [4]

Figure 4. Bar graphs showing the deltas in the OFV (DOFV) relative to the MTL3 model (OFV = 0). a. DOFVs for the 4-compartment minimal
model and competing reduced models b–f. Based on the deviance information criterion (DIC), the MTL3 model exhibited the best fit quality
compared to all reduced models. b. DOFV for the covariate models with SEs around or below 50% for the included covariates. Based on the deviance
information criterion (DIC), the covariate models exhibited an improved fit quality compared to the MTL3 model.
doi:10.1371/journal.pone.0026366.g004

Figure 5. Model schematic of the MTL3 model. The model schematic illustrating the magnitudes of the inter-compartmental distribution
(double-headed arrows) between and the normalized apparent distribution volumes (numbers in bold) of the individual compartments (circles) of
the MTL3 model. The size of the arrows indicate magnitude of the respective inter-compartmental distribution. Measured compartments are pointed
out by the thick border.
doi:10.1371/journal.pone.0026366.g005

Population PK Model for Gd-DTPA
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measured in the abdominal aorta of genetically similar rats. Visual

inspection indicated a close match at peak concentration values,

however a slower decrease for the central concentration curve of

the MTL3 model.

In conclusion, our multi-compartment MTL3 population PK

model demonstrates that tumor compartment covariates can be

used as predictors of tumor tissue physiology and that no

knowledge of the arterial input function or tissue specific

characteristics is required. The presented population PK modeling

approach allows a more in-depth analysis of MRI contrast agent

distribution kinetics and thus has the potential for enhanced

identification and specification of effectors of vascular and tissue

physiology. This will be of particular interest in the evaluation of

antiangiogenic therapy response in oncology.

Supporting Information

Text S1 The NONMEM 7.1 code of the MTL3 model.
(DOC)

Table S1 THETAs of the model transfer constants in the
covariate model. The THETAs of the model transfer constants

in the covariate model applying vti to kT3T2 and anest to kM1C with

respective 95%-CI and SE of all model parameters.

(DOC)

Figure S1 Individual measured and fitted Gd-DTPA
concentration data for spinal muscle tissue. The measured

(dots), the individual fitted (black line) and the population fitted

(grey line) concentration data of each animal before and after

treatment are displayed over the entire imaging period of 15.

(TIFF)

Figure S2 Individual measured and fitted Gd-DTPA
concentration data for tumor tissue. The measured (dots),

the individual fitted (black line) and the population fitted (grey line)

concentration data of each animal before and after treatment are

displayed over the entire imaging period of 15 minutes.

(TIFF)

Figure S3 Individual measured and fitted Gd-DTPA
concentration data for liver tissue. The measured (dots), the

individual fitted (black line) and the population fitted (grey line)

concentration data of each animal before and after treatment are

displayed over the entire imaging period of 15 minutes.

(TIFF)

Figure S4 The correlation matrix for the MTL3 model.
The correlation matrix for the MTL3 model parameters as

computed by the NONMEM 7.1 program [10]. The correlation

coefficient r was converted into a flattening factor f = 12r which

was interpreted as the ratio of the minor to the major axis of an

ellipse. The resulting ellipses are displayed and color coded with

regard to the value of f, i.e. dark blue circle for f = 1 and dark red

line for f = 0.

(TIFF)

Figure S5 Detailed overview of the tested structural
models. (a) The minimal model, (b–f) the reduced models and

(g) the MTL3 model are listed with the respective model schematic

(left), CPS (middle) and CWRES (right). In addition, the computed

DOFVs are shown as number with grey bar (bottom right).

Measured compartments are pointed out by the thick border. All

CPS plots display the 3000 samples used for Bayesian parameter

estimation.

(TIFF)

Figure S6 Detailed overview of the MTL3 model and all
valid covariate models. The CPS (left), CWRES (right) and

DOFVs (bottom right) of the MTL3 (top), the best covariate model

applying vti to kT3T2 and anest to kM1C (bottom) and the other

covariate models that exhibited SEs around or below 50% for the

included covariates are presented. All CPS plots display the 3000

samples used for Bayesian parameter estimation.

(TIF)
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