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Abstract

During the last few years, DNA and RNA sequencing have started to play an increasingly important role in biological and
medical applications, especially due to the greater amount of sequencing data yielded from the new sequencing machines
and the enormous decrease in sequencing costs. Particularly, Illumina/Solexa sequencing has had an increasing impact on
gathering data from model and non-model organisms. However, accurate and easy to use tools for quality filtering have not
yet been established. We present CONDETRI, a method for content dependent read trimming for next generation sequencing
data using quality scores of each individual base. The main focus of the method is to remove sequencing errors from reads
so that sequencing reads can be standardized. Another aspect of the method is to incorporate read trimming in next-
generation sequencing data processing and analysis pipelines. It can process single-end and paired-end sequence data of
arbitrary length and it is independent from sequencing coverage and user interaction. CONDETRI is able to trim and remove
reads with low quality scores to save computational time and memory usage during de novo assemblies. Low coverage or
large genome sequencing projects will especially gain from trimming reads. The method can easily be incorporated into
preprocessing and analysis pipelines for Illumina data.

Availability and implementation: Freely available on the web at http://code.google.com/p/condetri.
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Introduction

Sequencing technologies evolve rapidly. Since Sanger sequenc-

ing [1] was introduced, many genomes have been sequenced,

including large eukaryotic genomes such as human, mouse and

chicken. Recently, several next generation sequencing (NGS)

methods have been released and established in biological and

medical sciences (see e.g. [2,3]). However, NGS techniques differ

from traditional Sanger sequencing among others with respect to

the error probabilities of each read. For Illumina sequencing, the

probability of sequencing errors increases exponentially from the

59 to the 39 end of a sequencing read [4]. Read accuracy is crucial

to consider when using NGS data because it not only affects the

assembly and mapping process, but also downstream applications

like single nucleotide polymorphism (SNP) discovery and copy

number variation (CNV) identification.

Programs that perform de novo assemblies of NGS data generally

exploit either an overlapping-consensus approach (see for example

[5]) or implement a de Bruijn graph [6]. Popular short read de novo

assemblers like VELVET [7] or SOAPDENOVO [8] use the latter

approach whereas genome assemblers developed for Sanger or

454 data like CABOG [9] or NEWBLER [10] use the overlapping-

consensus technique. Regardless of the technique used for the

assembly, all assembly programs take as input sequenced reads

and perform an assembly without a reference genome. Generally,

base quality is not used in the contig building of the assembly

process. However, programs should use base quality information

to correct or to remove erroneous bases from the assembly process

in order to reduce the search space. This is especially important for

programs based on the de Bruijn graph because it will allow them

to save computational resources, thereby reduce assembly time

and enabling a more correct assembly.

Correcting for sequencing errors can be done in two different

ways. Either bases or reads with low quality are removed completely

[11] or erroneous bases are corrected without removing them

[12,13,14,15,16]. The latter approach assumes very high coverage

per sequenced base in order to identify erroneous bases, whereas the

first approach can be applied to high and low coverage sequence

data. Generally, to remove bases (trimming), the quality value for

each base is evaluated and bases are removed if they do not exceed a

certain quality threshold. This can be done from either end of the

read, or along the whole read.

Here, we present our content depend trimming (CONDETRI,

available at http://code.google.com/p/condetri) program de-

signed for read trimming of Illumina data. The program removes

potential sequencing errors starting from the 39 read end and also

removes reads containing too many low quality bases.

Results and Discussion

Test environment
To test the performance of CONDETRI, we used two different

Drosophila melanogaster data sets obtained by whole genome paired-

end sequencing (NCBI SRA:SRR063698 and NCBI SRA:
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SRR063699) and two different insert sizes (,170 bp and

,280 bp) from a Gallus gallus resequencing project [17] (NCBI

SRA:SRX043655 and NCBI SRA:SRX043656). We used SOLEX-

AQA [11] to investigate the quality of the data. Data coming from

D. melanogaster showed two distinct quality patterns. Generally, data

set SRR063698 showed much better and higher Illumina quality

scores than the data coming from SRR063699 which makes the

two data sets especially useful to test the influence of trimming on

‘good’ and ‘bad’ sequencing data. For both sets we also prepared a

reduced version, where we selected 25% of the paired-end reads

randomly (below referred to as the reduced data or reduced set).

Overall, the G. gallus data showed high Illumina quality scores. We

did not create a reduced set from this data. Additionally, we used

data from the collared flycatcher (Ficedula albicollis) genome-

sequencing project to test the performance of CONDETRI on a

non-model species where no genome sequence is available.

Sequencing reads can be duplicated due to biased PCR

replication, sequencing artifacts, and genomic DNA shearing at

the same location in different DNA-molecules [18,19,20,21].

Therefore, we scanned each data set for duplicated paired-end

reads using the first 50 nucleotides in each read and kept only one

unique read-pair. Additional read-pairs were removed. We

removed around 3% of all read-pairs in the SRR063698 data.

Less than 1% of all read-pairs were removed in the SRR063699,

SRX043655, and SRX043656 data. Raw data and filtered data

are summarized in Table 1.

We tested CONDETRI against untrimmed data, and against three

recently published methods, SOLEXAQA version 1.7 [11], the BWA

quality trimming algorithm [22] as implemented in SolexaQA

version 1.7 and QUAKE version 0.2 [13] using the D. melanogaster and

G. gallus data. SOLEXAQA and BWA quality trimming use a quality

based read trimming approach whereas QUAKE performs quality

detection and correction of potential sequencing errors. For the

three trimming programs we used same parameters for quality

cutoff and minimum read length to be able to make a fair

comparison between the programs. Quality cutoff was set to 25 and

minimum read length to 50. The values were chosen after

inspecting several data sets (see Method section). SOLEXAQA and

BWA have no other relevant parameters that can be adjusted to

improve filtering quality. For each data set, the optimal k parameter

according to the genome size was calculated to be able to run

COUNT-QMERS from QUAKE. QUAKE could not be run without user

interaction because the data does not provide enough sequencing

depth to estimate the coverage cutoff parameter. Therefore, we

investigated the coverage histograms for each data set manually and

chose the best cutoff value according to the QUAKE online manual.

Data that was trimmed based on quality and untrimmed was de

novo assembled using SOAPDENOVO version 1.04 [8] with k-mer

sizes ranging from 19 to 31. For each method and data set, the best

assembly was chosen according to the N50 size of the assembly

and then aligned to the D. melanogaster reference genome (Release

5) or G. gallus reference genome (Release WUGSC 2.1/galGal3)

using NUCMER version 3.07 (64-bit compiled version) from the

MUMMER package [23]. To infer the alignment quality, we used

SHOW-TILING from the MUMMER package with a minimum

percent identity of 95% to construct a tiling path out of the query

scaffolds as mapped to the reference sequences (recall rate) and we

estimated the proportion of the assembly that could be aligned

onto the reference genome (accuracy rate). Single nucleotide

polymorphism (SNP) frequency per base was estimated as follows.

First, reads were mapped onto the G. gallus reference genome using

BWA version 0.5.9 [24]. Second, SNP calling was done applying

the PILEUP command as implemented in SAMTOOLS version 0.1.16

[25]. The coverage cutoff was set to 60 after inspecting the

coverage across the genome to avoid false positive SNP calls due to

unresolved repeats. Note, for estimating SNP frequencies we took

only the covered genome into account and disregarded the

proportion that was not covered by reads.

Trimming effect
Theoretically, trimming should reduce the problem complexity

of de novo assemblies since it shrinks the size of the de Bruijn graph.

This should lead to more accurate de novo assemblies. Still, there

are no measures available to quantify the quality of a de novo

assembly. Therefore, we estimated the proportion of the assembly

that could be mapped to the reference genome (accuracy) and the

proportion of the genome that was covered with the assembly

(recall). We think that accuracy is more important than recall

because it is gives the amount of the assembly that is correctly

assembled.

For the ‘higher quality’ D. melanogaster data set (NCBI

SRA:SRR063698) the assembly using no trimming yielded the

best accuracy (88%) and the best recall (63%, 106.0 MB of the

genome covered). CONDETRI gave quite similar results, with an

accuracy of 86% and recall of 61% (102.8 MB of the genome

covered). Data filtered using BWA, SOLEXAQA or QUAKE gave

slightly less accurate assemblies (83%, 81% and 71%) and also

smaller proportions of the genome assembled (recall 59%, 56%

and 48%, respectively). Interestingly, the assembly with the longest

N50 sizes (QUAKE) gave the smallest genome assembly. Potentially,

mis-assemblies are more common in assemblies with longer N50

sizes. Small assembly mistakes tend to produce continuous

sequences from contigs that are not actually located close to each

other and can thereby greatly reduce the ability of programs to

create longer scaffolds. Using the reduced data showed even more

pronounced results in favor of the untrimmed assembly (see Fig. 1

and Table 2).

The data from the ‘lower quality’ D. melanogaster sample (NCBI

SRA:SRR063699) gave slightly different results. As the overall

quality of the sample was not very good, a smaller proportion of

the genome could be assembled. The proportion of the assembly

that could accurately mapped onto the reference genome

(accuracy) varies between 76% using CONDETRI for trimming

and 6% using QUAKE. Accuracy for the untrimmed data was 72%,

66% for SOLEXAQA, and 63% for BWA trimmed data, respectively.

Recall was highest in the untrimmed data (45%), followed by

CONDETRI (35%), Bwa (34%) and SOLEXAQA (24%). QUAKE had

the lowest recall (,1%). Interestingly, using only 25% of the data

gave a slightly larger proportion of the assembly that was accurate

for CONDETRI (77%), BWA (70%) and SOLEXAQA (70%) but the

overall assembled size of the genome drops down. Untrimmed

data gave an accuracy of 65%. Recall was highest using the

Table 1. Data.

Data Reads

unfiltered filtered

SRR063698 55,932,362 54,256,212

SRR063698 reduced 13,983,090 13,705,644

SRR063699 27,021,832 26,788,696

SRR063699 reduced 6,755,458 6,721,328

SRX043655 224,522,574 223,836,804

SRX043656 250,789,142 248,749,514

Amount of raw reads (unfiltered) and reads after filtering for PCR duplicates.
doi:10.1371/journal.pone.0026314.t001
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Figure 1. Recall and accuracy for different data sets. The proportion of the genome covered (recall) and the proportion of the assembly
mapped onto the genome (accuracy) for untrimmed reads (squares), CONDETRI (circles), BWA (triangle point down), SOLEXAQA (triangle point up) and
QUAKE (diamonds). Open symbols denote the full data set, and crossed symbols reduced data. The upper panel shows results for SRR0063698, the
lower panel for SRR0063699.
doi:10.1371/journal.pone.0026314.g001

Table 2. Comparison of different filtering strategies for D. melanogaster.

Method Data
Assembly
size (Mb)

Assembled
genome (Mb) Accuracy Recall N50 Reads (million)

Untrimmed SRR063698 full 120.5 106.0 0.88 0.63 6,939 54.3

reduced 113.4 84.4 0.74 0.50 1,717 13.7

SRR063699 full 108.1 77.4 0.72 0.45 1,278 26.8

reduced 63.6 41.2 0.65 0.24 411 6.7

CONDETRI SRR063698 full 118.9 102,8 0.86 0.61 8,222 43.4

reduced 103.6 65.9 0.64 0.39 1,007 11.0

SRR063699 full 77.5 59.0 0.76 0.35 508 10.0

reduced 23.4 18.0 0.77 0.11 234 2.5

SOLEXAQA SRR063698 full 115.7 93.7 0.81 0.56 5,691 37.8

reduced 93.4 51.5 0.55 0.31 677 9.6

SRR063699 full 60.5 40.2 0.66 0.24 408 8.7

reduced 16.7 11.6 0.70 0.07 203 2.2

QUAKE SRR063698 full 114.3 81.6 0.71 0.48 21,615 49.6

reduced 70.6 16.5 0.23 0.10 683 10.4

SRR063699 full 1.9 0.1 0.06 0.00 6,678 5.9

reduced 1.4 0.1 0.04 0.00 3,808 1.3

BWA SRR063698 full 119.4 99.1 0.83 0.59 13,953 46.2

reduced 107.0 70.1 0.66 0.42 1,264 11.7

SRR063699 full 92.2 58.1 0.63 0.34 732 17.4

reduced 47.5 33.0 0.70 0.20 294 4.4

Assembly size, size of assembled D. melanogaster reference genome, recall, accuracy, N50 size and number of reads using the different data sets.
doi:10.1371/journal.pone.0026314.t002
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untrimmed data (24%) reflecting that this data set contains most of

the data. BWA, CONDETRI and SOLEXAQA have a recall of 20%,

11% and 7% respectively. Again, the assembled data from QUAKE

covered less than 1% of the reference genome. QUAKE was

outperformed using the ‘lower quality’ sample by the read

trimming method because the coverage in this sample is not high

enough to perform a read correction. According to the authors,

coverage should be at least 156[13]. All results are summarized in

Figure 1 and Table 2.

Assembly results for the G. gallus data were quite similar between

the different trimming methods and the untrimmed data.

Accuracy for the read trimming methods ranged from 78% using

BWA to 82% using CONDETRI whereas the untrimmed data gave

the most accurate result with 85%. Recall was highest for

untrimmed data (82%), followed by CONDETRI (78%), SOLEXAQA

(77%) and BWA (75%). Interestingly, CONDETRI was the method

that removes the largest amount of reads but it gives the best result

among the trimming methods. We think untrimmed data gave the

best result in this comparison because the assembly has the lowest

N50, which potentially reduces the probability of wrongly

assembled regions. Additionally, untrimmed data needed more

time and memory for the assembly. Especially the latter point can

be crucial for sequencing projects. We were not able to retrieve

results using QUAKE on this data set, as it was not able to correct

the data from SRX043656. We managed to correct data from

SRX043655 but after read correction less than 5% of the original

reads were included in the corrected FASTQ files. Results for the G.

gallus data are summarized in Table 3.

We also applied a SNP calling method on the G. gallus data set

to be able to compare the performance of read trimming versus

untrimmed reads. As the individual used for sequencing and re-

sequencing the G. gallus genome is highly inbred [17,26] we expect

a much lower heterozygosity rate than in natural populations and

that the per base SNP frequency is lower for trimmed data than for

untrimmed data because the untrimmed data contains more

sequencing errors. We found one SNP every 1,299 bp in the

untrimmed data and one every ,1,450 in the trimmed data sets,

regardless which trimming method was applied, which was

consistent with our predictions. Note that the SNP frequency

per base is much lower than the estimated frequency of one SNP

in 374 bp [26] in G. gallus. We think that the difference between

trimmed and untrimmed data is mainly based on sequencing

errors. Per base coverage in the data ranged from 39.56 in the

untrimmed data to 33.26 in the data using SOLEXAQA for

trimming. Data trimmed using BWA had almost the same coverage

per base as the untrimmed data (37.36) whereas CONDETRI data

has coverage of 35.96. The differences in per base coverage

between the different trimmed and the untrimmed data corre-

sponds 94%, 91% and 84% for BWA, CONDETRI and SOLEXAQA,

respectively. As shown before, SNP frequency was almost identical

in the trimmed data sets. We conclude that coverage has not a

strong impact on SNP calling in our data. Furthermore, we think

the difference in SNP frequency between trimmed and untrimmed

data, is mainly due to the presence of more sequencing errors in

the untrimmed data but more sophisticated tests are needed to

verify this findings, which is outside the scope of this study.

To test the effect of filtering on a non-model organism where

no reference genome is available, we made use of data from an

attempt towards genome sequencing in the collared flycatcher (H.

Ellegren et al. unpublished), a small songbird. Although the

genome size of this species has not been determined, there is a

high degree of genome size conservation among birds with most

song birds having an estimated haploid DNA content of 1.1–

1.3 Gb [27]. We cannot calculate recall and accuracy for this

data set because there is no reference genome available for the

collared flycatcher. Therefore, we concentrated on assembly time

and memory usage because this should be related to the

complexity of the de Bruijn graph. We selected 4 lanes of

Illumina Genome Analyzer II data (insert size ,200 bp), which

gave a total of 19.9 Gb of untrimmed sequence data. After

trimming using CONDETRI, 15.6 Gb sequence data remained for

the assembly. We tested only untrimmed data and CONDETRI on

this data, as they were the best performers on the D. melanogaster

and G. gallus data. Assembly size and N50 size was quite similar

between trimmed and untrimmed data (not shown) but running

time for the trimmed data set was 152 minutes with a peak

memory usage of 39 GB whereas the untrimmed finished within

388 min and a peak memory usage of 76 GB of RAM showing

the big impact of sequencing errors on memory usage and

running time. Given that the untrimmed data contains around

one third more data, the running time is more than twice as long

and the memory usage almost doubles in comparison to the

trimmed data.

Trimming may not have a big impact on de novo assemblies for

smaller genomes, because there is a sufficient amount of per base

coverage. Also, the de Bruijn graph is still quite small for genomes

about the size of the D. melanogaster data sets that we used so that

there is little benefit of trimming reads on the assembly. However,

we have shown that trimming has an effect on the assembly

process of larger genomes with a more complex genome structure

(higher repeat content, and higher proportion of non-coding

sequences). Using untrimmed data for the assembly of e.g.

mammalian or avian genomes, where genomes sizes exceed

1 Gb, complicates the de Bruijn graph. Sequencing errors

introduce k-mers in the graph that do not occur frequently, which

increases the number of nodes and edges and can make the graph

unwieldy even for powerful computers. One approach to avoid

this is to correct for erroneous k-mers, as programs like QUAKE

does. However, this is only possible if a sufficient base coverage is

reached to be able to correct for sequencing errors. We have

shown that the data we have used does not provide enough

coverage to be able to correct sequencing errors using a k-mer

Table 3. Comparison of different filtering strategies for G. gallus.

Method Assembly size (Mb) Assembled genome (Mb) Accuracy Recall N50 Reads (million)

Untrimmed 995.2 844.70 0.85 0.82 12,773 472.6

CONDETRI 990.4 808.10 0.82 0.78 26,964 410.9

SOLEXAQA 988.9 791.40 0.80 0.77 28,907 418.1

BWA 997.2 778.78 0.78 0.75 32,973 449.6

Assembly size, size of assembled G. gallus reference genome, recall, accuracy, N50 size and number of reads using the different data sets.
doi:10.1371/journal.pone.0026314.t003
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based approach. Instead it is better to remove bases or reads that

do not fulfill a certain quality criteria.

Methods

Implementation
CONDETRI is implemented in Perl (required version 5.8.9 or

above), is platform independent, has no additional hardware or

library requirements, and is distributed under Artistic License/

GPL. It is designed to run single-threaded on desktop computers

or on cluster machines. In default mode, it can be run by giving

only one FASTQ file for single-end sequencing or two FASTQ files for

paired-end sequencing. More advanced options allow the user to

control such things as the quality values used for trimming,

trimming size, the fraction of a read containing high quality bases,

and the quality format used (either Illumina/Solexa FASTQ format

or Sanger FASTQ format is chosen by different offset scores).

Our trimming approach does not correct the actual quality

scores called by the Illumina pipeline. Instead, it removes bases

with quality values lower than a threshold from the 39-end of a

read and checks the remaining read for internal low quality bases.

CONDETRI applies two filtering steps on each read. First, each

read is trimmed, one base at the time, in an iterative process.

Starting from the 39-end of the read, bases are removed if the

corresponding quality score is lower than a threshold QH. When

reaching a base with a quality score higher than QH, the base is

kept temporarily while following bases are evaluated. After parsing

a certain number of consecutive high quality bases, nH, the

trimming is terminated. However, even bases with low quality

scores below QH, recorded before nH is reached, are saved

temporarily. Up to nL consecutive low quality bases are accepted

when they are surrounded by high quality bases. If nL is overrun,

all temporarily saved bases are removed, and the process starts

over again. The trimming continues until either nH consecutive

high quality bases are found, or the read is trimmed down to

length L.

For a trimmed read to be approved, it must contain more than a

certain fraction f of bases with a quality score higher than QH, and

no bases with a quality score less than a lower bound threshold QL.

If a base has a quality score lower than QL the read is removed.

When all reads have been trimmed, each read or each read pair is

examined. If a single read passes the quality check, it is stored in a

new FASTQ file. For paired end reads, pairs where both the reads

fulfill the quality demands are saved in new paired FASTQ files. If a

pair contains only one read passing the quality requirements, the

high quality read is saved in an extra FASTQ. These reads can be

used as single end reads. Besides FASTQ files, CONDETRI reports

the number of scanned and removed reads and the number of

reads that are present as paired-end and as single-end reads.

Figure S1 summarizes the algorithm in a flowchart and Figure S2

gives two examples.

Per default, the high quality score (QH) is set to 25, which is

similar to a sequencing error probability of 0.0032. This value was

chosen after inspecting quality score distributions from several

data sets with different insert sizes from the collared flycatcher

genome-sequencing project, as a level where the number of bases

kept are of highest possible quality without having a considerable

loss of reads. For the sets inspected, changing the quality threshold

to 30 resulted in a loss of the majority of reads during filtering. On

the other hand, lowering it to 20 did not increase the number of

reads kept significantly, but the per base error probability of those

reads will be up to three times higher (,0.01). However, the

default value is by no means universal, and the threshold should be

set according to the data. The low quality score (QL) is set to 10,

which equals a probability of a sequencing error of 0.0909, the

fraction f of bases with a quality score higher than QH is set to 80%

and L, the minimum number of bases after trimming, is set to 50,

to prevent saving reads that are too short for de novo assembly. The

parameters nH and nL are set to 5 and 1, respectively. This means

that for each low quality-base there must be at least five high

quality bases, which is more than the QH value of 80%. The

connection between these numbers must be considered when

tweaking the parameters – keeping nH and nL as 5 and 1 but

increasing the QH to 95% results in removing a large proportion of

reads in the second step. However, all these settings can be

changed as desired. Quality score distribution along reads and

read length distribution after trimming for the libraries used for

choosing the default values are shown in Figures S3, S4, S5, S6,

S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17 and Table S1.

CONDETRI can read all three different FASTQ quality score

standards: Illumina and Solexa (early Illumina) quality scores with

an offset of 64 and Sanger standard with an offset of 33.

Conclusion
The main focus of our quality filtering approach was to provide

an accurate, standardized and easy to use method for trimming

Illumina sequencing data. In comparison to other programs, data

filtered with CONDETRI gave better results with respect to the size

of the assembled data and also the accuracy of the de novo assembly.

In comparison to untrimmed data, less memory and time is

needed for de novo assemblies. This is crucial for larger eukaryotic

genomes, because affordable computational resources are still a

limiting factor in performing assemblies of larger genomes using

several insert sizes for paired-end sequencing. Using quality-

filtered data reduces the de Bruijn graph in the assembly process

and should improve downstream analyses of NGS data (e.g. SNP

calling).

Supporting Information

Figure S1 Flowchart CONDETRI. Flowchart for the CONDE-

TRI algorithm for read trimming.

(PDF)

Figure S2 Examples of read trimming. Two examples of

read trimming using CONDETRI.

(PDF)

Figure S3 Figures S3, S4, S5, S6, S7, S8, S9 – Quality
plots for forward reads. Examples of quality plots for the

forward read in paired-end Illumina sequencing from the collared

flycatcher genome-sequencing project. Four libraries of different

insert sizes were run in several lanes each, distributed over five

flowcells (flowcell 1–3 was run on a GAII, flowcell 4–5 on a

HiSeq2000), only a subset of the plots is shown here. The solid red

line in bold shows quality score 25, the default settings for QH. The

thinner solid line shows the default minimum quality QL = 10, and

the blue vertical dashed line shows the default minimum allowed

read length 50 bp. The two dashed red lines shows quality scores

30 and 20 respectively. The corresponding backward reads are

shown in Figure S10, S11, S12, S13, S14, S15, S16.

(PNG)

Figure S4

(PNG)

Figure S5

(PNG)

Figure S6

(PNG)
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Figure S7

(PNG)

Figure S8

(PNG)

Figure S9

(PNG)

Figure S10 Figures S10, S11, S12, S13, S14, S15, S16–
Quality plots for backward reads. The backward reads

corresponding to Figure S3, S4, S5, S6, S7, S8, S9. For the first

flow cell, only 65 bp were sequenced for the backward reads due

to technical problems.

(PNG)

Figure S11

(PNG)

Figure S12

(PNG)

Figure S13

(PNG)

Figure S14

(PNG)

Figure S15

(PNG)

Figure S16

(PNG)

Figure S17 Example length distribution after trimming.
Example of read length distribution for the filtered data set

corresponding to Figure S3. A majority of the reads are kept at full

length. The wave-like pattern in cycles of 5 bp comes from that nH

is set to 5.

(PNG)

Table S1 Data before and after filtering. The number of

reads before and after filtering for the data used for estimating

CONDETRI default parameters.

(PDF)
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