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Abstract

The regulation of gene transcription is fundamental to the existence of complex multicellular organisms such as humans.
Although it is widely recognized that much of gene regulation is controlled by gene-specific protein-DNA interactions, there
presently exists little in the way of tools to identify proteins that interact with the genome at locations of interest. We have
developed a novel strategy to address this problem, which we refer to as GENECAPP, for Global ExoNuclease-based
Enrichment of Chromatin-Associated Proteins for Proteomics. In this approach, formaldehyde cross-linking is employed to
covalently link DNA to its associated proteins; subsequent fragmentation of the DNA, followed by exonuclease digestion,
produces a single-stranded region of the DNA that enables sequence-specific hybridization capture of the protein-DNA
complex on a solid support. Mass spectrometric (MS) analysis of the captured proteins is then used for their identification
and/or quantification. We show here the development and optimization of GENECAPP for an in vitro model system,
comprised of the murine insulin-like growth factor-binding protein 1 (IGFBP1) promoter region and FoxO1, a member of the
forkhead rhabdomyosarcoma (FoxO) subfamily of transcription factors, which binds specifically to the IGFBP1 promoter. This
novel strategy provides a powerful tool for studies of protein-DNA and protein-protein interactions.
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Introduction

Proteins interact with DNA throughout the genome to control

gene transcription on multiple levels (e.g. chromatin accessibility

and recruitment of transcription machinery) [1]. Cis regulatory

elements, that modulate the transcription of nearby genes,

comprise only a fraction of the known regulatory sites controlled

by transcription factors. Transcription of many genes is controlled

by binding of proteins at distant sites, and a wide variety of

protein-protein interactions within the chromatin provides addi-

tional levels of control by activating, enhancing or repressing

transcription. Histone proteins can control chromatin accessibility

and modulate secondary protein binding to DNA through various

post-translational modifications. In spite of the critical importance

of these protein-DNA interactions, at present few tools exist to

identify and characterize the known and unknown proteins that

interact with chromatin across the genome.

The most powerful technologies currently available employ

chromatin immunoprecipitation, with subsequent analysis on

DNA arrays (ChIP-Chip) [2,3,4,5,6,7] or by DNA sequencing

(ChIP-Seq) [8,9,10] to identify DNA sequences that are directly or

indirectly bound to proteins of interest throughout the genome.

Although very effective and extremely useful, the greatest

limitation of these strategies is their requirement for a specific

antibody directed against the protein of interest. This limits the

approach to characterizing the genome-binding behavior of

already known proteins, and thus does not help to identify new,

previously unknown proteins, nor does it help to reveal the

identities of additional interacting proteins that are associated with

particular genomic regions of interest.

New methods for mass-spectrometric identification of proteins

binding to specific genomic loci are also beginning to emerge

[11,12,13,14,15,16,17]. Early attempts at accomplishing this

involved exposure of synthetic dsDNA as bait to trap specific

DNA-binding proteins from nuclear extract [13,14,16,17]. The

technique of SILAC (Stable Isotope Labeling by Amino acids in

Cell culture) has been used to improve the confidence of such

methods [15]. These ex vivo approaches have an advantage in that

large amounts of DNA and extract can be used to isolate sufficient

material for MS identification. In contrast, in vivo approaches are

considerably more challenging because the DNA sequence of

interest may be present at a level of as few as one copy per cell.

Butala et al [11] were able to achieve successful identification of

proteins from protein-DNA complexes formed in vivo in bacteria

by increasing the abundance of the DNA through clever use of a

low copy number plasmid containing the sequence of interest and

LacI to facilitate extraction. Déjardin and Kingston [12] used

locked nucleic acid (LNA) probes to isolate genomic DNA with its
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associated proteins. There, they captured telomeric sequences,

which are highly repetitive regions at the end of chromosomes, to

obtain sufficient material for protein identification. It remains to

be seen if any of these methods can be multiplexed for parallel

analysis of multiple gene sequences. Furthermore, none have yet

demonstrated sensitivity for identification of in vivo bound DNA-

binding proteins when the sequence of interest is present at only a

single copy per cell.

We have developed a novel strategy to attack this problem, a

strategy that is amenable to multiplexing and may offer single-

copy sensitivity. We refer to it as GENECAPP, for Global

ExoNuclease-based Enrichment of Chromatin-Associated Pro-

teins for Proteomics. In this approach, formaldehyde cross-linking

is employed to covalently link DNA to its associated proteins;

subsequent fragmentation of the DNA, followed by exonuclease

digestion, produces a single-stranded region of the DNA that

enables sequence-specific hybridization capture of the protein-

DNA complex on a solid support. Mass spectrometric (MS)

analysis of the captured proteins is then used for their

identification and/or quantification.

We describe here the development and optimization of this

multi-step process for an in vitro model system, comprised of the

murine insulin-like growth factor-binding protein 1 (IGFBP1)

promoter region and FoxO1, a member of the forkhead

rhabdomyosarcoma (FoxO) subfamily of transcription factors which

binds specifically to IGFBP1. We prepared a 180 bp DNA PCR

amplicon containing mouse IGFBP1 promoter sequence and

formed a complex with recombinant FoxO1 protein prior to

covalent cross-linking. This simulates the fragment that will be

produced with fragmentation of native chromatin. Partial

digestion of the FoxO1-IGFBP1 complex with exonuclease

enables sequence-specific capture of the complex on a solid

support grafted with complementary oligonucleotides. FoxO1

protein was subjected to protease digestion directly on the support,

followed by MS analysis. This novel strategy provides a powerful

tool for in vitro studies of DNA-protein and protein-protein

interactions, and lays the foundation for further extensions of the

approach for the comprehensive identification and quantitative

analysis of proteins interacting with DNA in vivo.

Results

Global ExoNuclease-based Enrichment of Chromatin-
Associated Proteins for Proteomics (GENECAPP)

The GENECAPP strategy employs sequence-specific hybrid-

ization capture of a specific DNA fragment to allow the isolation

and subsequent characterization of all proteins bound to that

region (Figure 1, reproduced by permission from The Royal

Society of Chemistry from Lloyd M. Smith, Michael R. Shortreed

and Michael Olivier, Analyst, 2011, 136, 3060–3065, DOI:

10.1039/C1AN15037E) [18]. The first step in the process is the

treatment of cells or tissue with formaldehyde to cross-link proteins

to DNA, as is routinely done in ChIP-Chip/Seq assays. The

chromatin is then fragmented, by either a physical means such as

sonication, or an enzymatic means such as restriction enzyme

digestion. Exonuclease digestion of one of the two strands of the

duplexes protruding from the complex produces a free single-

stranded region suitable for DNA hybridization. Incubation of this

material with a solid support modified with complementary single-

stranded DNA capture probes results in specific binding of the

chromatin fragments of interest along with associated proteins.

Subsequent characterization of these bound proteins by standard

proteomic mass spectrometry techniques permits identification

and/or quantification of proteins that are bound to the targeted

DNA region, and potentially the characterization of posttransla-

tional protein modifications. The approach is amenable to

parallelization by using the multiplex capabilities of either array-

based or bead-based platforms with multiple capture oligonucle-

otide probes that are complementary to targeted DNA regions of

interest. Key steps in this process (cross-linking, exonuclease

digestion, sequence-specific capture and MS protein identification)

were developed and optimized using an in vitro model system

(Figure 2) as described below.

FoxO1-IGFBP1 model system
FoxO1 protein binds to cognate sites within the insulin-like

growth factor-binding protein 1 promoter [19,20]. The sequence

of the 180 bp PCR amplicon containing mouse IGFBP1 promoter

sequences (2204 to 225) is shown in Figure 3A. This region of the

IGFPB1 promoter contains an insulin response element (IRE),

which has two FoxO1 cognate binding sites, and a third FoxO1

‘‘new’’ binding site (FNBS) [20]. Specific binding of recombinant

FoxO1 protein to the PCR amplicon was confirmed by

electrophoretic mobility shift assay (EMSA) (Figure 3B). Two

bands appear in the EMSA when FoxO1 protein is mixed with the

IGFBP1 DNA at a molar ratio of 1.5:1.0 (Figure 3B), correspond-

ing to a 1:1 FoxO1-DNA complex (lower band), and to a 2:1

complex (upper band) [20]. Residual free DNA remains, consistent

with the presence of multiple FoxO1 binding sites in the amplicon.

Increasing the molar ratio of FoxO1 protein to IGFBP1 DNA to

3:1 results in a nearly complete depletion of free DNA and an

increase in the intensity of the band assigned to the 2:1 complex.

There is also increased intensity in the region of the gel above the

second band suggesting that some of the DNA molecules have

three or more proteins associated with them, although no distinct

bands corresponding to such higher binding stoichiometries are

observed. In control experiments using PCR amplicons lacking the

FoxO1 cognate binding sites, no gel shift is observed (data not

shown).

Cross-linking proteins to DNA
Formaldehyde is widely used in ChIP, ChIP-Chip, and ChIP-

Seq experiments to covalently cross-link protein-DNA, protein-

protein and protein-RNA complexes and thereby maintain their

integrity during processing [2,3,4,5,6,7,8,9,10,21,22,23,24,25,

26,27,28,29,30,31]. In order for it to have similar utility in

GENECAPP, it is necessary that it not inhibit subsequent steps in

the process, such as the exonuclease digestion of the DNA. To

evaluate this we first determined the optimal concentration for

formaldehyde cross-linking in the FoxO1-IGFBP1 model system.

The FoxO1-IGFBP1 protein-DNA complex was prepared as

described above and cross-linked for 10 min using various

concentrations of formaldehyde (0.0–1.0% v/v), followed by

quenching of the reaction with Tris (tris(hydroxymethyl)amino-

methane) base (data not shown). The choice of Tris for quenching

[32], as opposed to the more commonly used glycine

[27,28,29,30,31], is discussed below. SDS (sodium dodecyl sulfate),

an anionic surfactant, was added to a final concentration of 2.5%

w/v followed by analysis on a tris-borate-EDTA (TBE) polyacryl-

amide gel. SDS is employed in order to denature any protein

complexes that are not covalently linked by the formaldehyde

treatment. At formaldehyde concentrations up to 0.625%, free

dsDNA is present, whereas at concentrations of 0.75% or higher,

no free DNA was observed, indicating complete cross-linking of

the FoxO1-IGFBP1 complex. Accordingly, a concentration of

0.75% formaldehyde was employed for all subsequent cross-

linking experiments.

Sequence-Specific Capture of Protein-DNA Complexes
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Quenching residual formaldehyde
Glycine is commonly used to quench formaldehyde cross-linking

reactions in chromatin immunoprecipitation (ChIP) studies

[27,28,29,30,31]. We found that DNA exposed to formaldehyde

and then quenched with an equimolar amount of glycine, as is

commonly done, becomes non-digestible by E. coli exonuclease III,

which is a critical step in creating the single-stranded regions of

DNA necessary for sequence-specific capture of the protein-DNA

complex. 6-carboxyfluorescein (FAM)-labeled IGFBP1 dsDNA was

treated with 0.75% formaldehyde at room temperature for 10 min.

The solution was divided into three aliquots, one of which was kept

as a non-quenched control, one was Tris-quenched, and the third

was glycine-quenched. The buffer in all samples was exchanged for

exonuclease III reaction buffer followed by exonuclease digestion.

The digestion reaction was stopped after 0, 5 and 15 min by

addition of EDTA, and the reaction products were both fragment

length-analyzed (Figure 4, and Figures S1, S2, S3, S4) and

characterized with respect to their hybridization to DNA tiling

arrays (see below and Figures S5, S6, S7, S8). Exonuclease digestion

of untreated DNA, formaldehyde treated DNA and formaldehyde-

treated/Tris-quenched DNA produced very similar digestion

product profiles on the gene sequencer. In contrast, the digestion

product profile of the formaldehyde-treated and glycine-quenched

DNA indicated a nearly complete absence of digestion.

Exonuclease digestion of DNA and protein-DNA
complexes

E. coli exonuclease III is a 39 to 59 exonuclease specific for

double-stranded DNA [33,34]. It is possible to obtain fine control

over the digestion rate by controlling the enzyme dose, reaction

time and temperature. We developed a DNA tiling array-based

strategy (Figure 5) to characterize the products of the exonuclease

digestion reaction. This allowed us to optimize the generation of

single-stranded DNA for sequence-specific capture on the array.

We fabricated an oligonucleotide tiling array containing all

possible 19 mer complements, thereby spanning the entire

180 bp long IGFBP1 DNA in 162 single-base increments. The

fluorescence signal that is observed necessarily arises from a partial

duplex because the 59-terminal FAM tag utilized for fluorescence

detection is not on the DNA strand that directly hybridizes to the

surface-bound capture probe. Fluorescence signal from each array

element provides a measurement of the amount of digested duplex

capturable by specific complementary oligonucleotides and was

expected to vary with the degree of digestion. The integrated

fluorescence signal summed from all features on the array provides

a measure of the total amounts of capturable duplex allowing

comparison between various treatment conditions. The digestion

products were also analyzed by DNA fragment length analysis on

a DNA sequencer (see Methods section), which provided

quantitative information on the product length profile.

We profiled the digestion of two different IGFBP1 targets (pure

IGFBP1 DNA and IGFBP1 DNA covalently cross-linked to

FoxO1 protein with formaldehyde and quenched with Tris).

Exonuclease III digestion of 100 ng pure IGFBP1 DNA by either

2 units of exonuclease III at room temperature for 1 min

(Figure 6A) or by 0.2 units of exonuclease III at room temperature

for 15 min (Figure S9) produced similarly large amounts of

capturable duplex and relatively even digestion profiles (Figures 6,

S1 and S9). Digestion of formaldehyde cross-linked and Tris-

Figure 1. Schematic diagram of GENECAPP, for Global ExoNuclease-based Enrichment of Chromatin-Associated Proteins for
Proteomics. In this illustration of the process, formaldehyde cross-linked chromatin is fragmented (e.g. sonication or restriction endonuclease) into
small, nucleosome-length pieces. Fragments are treated with exonuclease to produce single-stranded regions, which are used for sequence-specific
capture on a complementary DNA oligonucleotide array. Protease digestion of the captured complexes yields sample for MS analysis; enabling
identification of the proteins and subsequent association of those proteins with genomic loci. Reproduced by permission from The Royal Society of
Chemistry from Lloyd M. Smith, Michael R. Shortreed and Michael Olivier, Analyst, 2011, 136, 3060–3065, DOI: 10.1039/C1AN15037E.
doi:10.1371/journal.pone.0026217.g001

Sequence-Specific Capture of Protein-DNA Complexes
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quenched FoxO1-IGFBP1 complex necessitated an increase in

digestion time to between 15 and 45 minutes and an increase in

reaction temperature to 37uC (Figure 6B). Higher or lower doses

of exonuclease III generated lower amounts of capturable duplex

presumably because of over- or under-digestion respectively.

Similarly, longer reaction times resulted in over-digestion of both

the pure duplex DNA (Figure S9) and the protein-DNA complex

(Figure S10). The fragment length analysis data supported

conclusions drawn from the tiling array analysis (Figures S11,

S12, S13, S14, S15)

Sequence-specific capture of FoxO1-IGFBP1 complex
The sequence-specific capture of exonuclease digested FoxO1-

IGFBP1 complex was demonstrated on the DNA tiling arrays

(Figure 6). Several non-complementary probe oligonucleotides

were included on each array to monitor non-specific binding,

which was found to be negligible. A major advantage of the tiling

array is that the hybridization efficiency of many different capture

probe sequences can be compared directly with one another,

allowing identification of the best probe sequence for capture of

the complex.

The digested FoxO1-IGFBP1 complex bound most strongly to

the end (first) oligonucleotide complement in the tiling array

(Figure 6B). Further testing of the capture on array substrates

covered entirely with a uniform layer of that complementary

capture probe permitted a determination of the capacity of the

surface to bind the protein-DNA complex (Figure 7). The

oligonucleotide-modified substrate was treated sequentially with

increasing concentrations of the FAM-labeled FoxO1-IGFBP1

complex. The surface was then rinsed briefly to remove any of the

complexes that had not hybridized to the surface. An 8 M urea

solution was used to denature the hybridization between the

Figure 2. A model system for GENECAPP. FoxO1-IGFBP1 protein-DNA complex is formed in solution and cross-linked with formaldehyde prior to
buffer exchange and exonuclease III digestion. The digestion produces 59 single-stranded DNA overhangs for capture by hybridization on an in situ
synthesized oligonucleotide array. The captured protein-DNA complexes are denatured using urea, protease digested either directly on the substrate
or in solution, and then analyzed by MS. Initial experiments comparing on-chip versus in-solution digestion yielded little or no MS signal for the latter
case; thus, we employed only on-chip digestion in all work reported herein.
doi:10.1371/journal.pone.0026217.g002

Sequence-Specific Capture of Protein-DNA Complexes
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captured complex and the surface. This solution was collected and

the amount of fluorescence was compared to fluorescence

measured on a series of standard solutions prepared by mixing

known amounts of the fluorescent complex with 8 M urea. The

amount of complex captured compared with the amount applied is

plotted in Figure 7. The amount of material captured levels off at

about 0.33 pmol/cm2, and application of more than 1.5 pmol/

cm2 yields no further increase in the amount captured. The

capture efficiency can be calculated from the data in Figure 7 by

dividing the amount of complex captured on the surface by the

amount of complex that was applied. The maximum capture

efficiency was slightly greater than 25% for the case where

1.5 pmol of complex was applied to the surface. The absolute

amount of material captured was slightly larger when more

complex was applied, but with a lower relative efficiency.

Mass spectrometric protein identification and
quantification

Captured FoxO1-IGFBP1 complex was digested with trypsin

and analyzed by mass spectrometry. For discovery-based analysis

(i.e. identification of unknown proteins), digests were analyzed on a

linear ion trap/Orbitrap tandem mass-spectrometer operating in

data-dependent acquisition (DDA) mode. For targeted, quantita-

tive analysis, samples were analyzed on a triple-quadrupole/linear

Figure 3. IGFBP1 promoter sequence and FoxO1 binding assay. (A) The 180 bp mouse IGFBP1 promoter sequence (2204 to 225) contains
three FoxO1 binding sites, two within the IRE (insulin response element) and one new binding site designated FNBS. This promoter fragment also
contains a binding site for the transcription factor HNF-1 (hepatocyte nuclear factor 1) and two binding sites for GR (glucocorticoid receptor). (B)
Electrophoretic mobility shift assay (EMSA) confirms specific binding of recombinant FoxO1 protein to the PCR amplicon. The band in lane one
corresponds to free IGFBP1 DNA. Two new bands, indicated by the arrows, appear in lane two when FoxO1 protein is mixed with the IGFBP1 DNA at a
molar ratio of 1.5:1.0 corresponding to the formation of the 1:1 and 2:1 FoxO1-IGFBP1 protein-DNA complex. Increasing the molar ratio of FoxO1
protein to IGFBP1 DNA to 3.0:1.0 results in a nearly complete depletion of free DNA and an increase in the intensity of the band assigned to the 2:1
complex.
doi:10.1371/journal.pone.0026217.g003

Figure 4. Fragment length analysis of exonuclease-digested DNA. The effect of cross-linking and quencher type was evaluated by profiling
the exonuclease digestion products of FAM-labeled 180 bp IGFBP1 DNA: (A) untreated DNA control; (B) DNA cross-linked with 0.75% (v/v)
formaldehyde; (C) DNA cross-linked with 0.75% (v/v) formaldehyde, followed by quenching with 250 mM Tris; and, (D) DNA cross-linked with 0.75%
(v/v) formaldehyde, followed by quenching with 250 mM glycine.
doi:10.1371/journal.pone.0026217.g004

Sequence-Specific Capture of Protein-DNA Complexes
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ion trap mass-spectrometer operating in SRM mode and using

isotopically heavy labeled FoxO1 peptides spiked into samples to

serve as internal standards. The signal from the respective heavy

and light FoxO1 peptide SRM transitions were used to calculate

the amount of protein in each sample. Both types of analysis

yielded positive results, providing both robust identification (via

decoy/target database searching with SEQUEST algorithm and

filtration to a 1% false discovery rate) and quantification (see

below) of FoxO1 protein.

The effect of formaldehyde cross-linking and its reversal upon

mass spectrometric identification or quantification of the FoxO1

protein was evaluated. A 3:1 mixture of FoxO1 and IGFBP1

DNA was prepared and split into parts for three treatments: (1)

untreated, (2) formaldehyde cross-linked, and (3) formaldehyde

cross-linked followed by cross-linking reversal. The reverse cross-

linking step was performed by heating at 99uC for 25 minutes in

a reverse cross-link buffer [12] containing 250 mM Tris, pH 8.8,

0.5 M b-mercaptoethanol, and 1% RapiGest, an MS-compatible

detergent substituting for SDS. The efficacy of these cross-linking

reversal conditions was confirmed by DNA mobility analysis on a

polyacrylamide gel (data not shown). Both SRM and DDA

analysis showed little difference in the amount of FoxO1 protein

detected between non-cross-linked and cross-linked samples

(SRM data shown in Figure 8 and Tables S1, S2 and S3). This

indicates that cross-linking has little or no adverse effect on the

ability to quantify FoxO1 in the FoxO1-IGFBP1 complex.

However, after the cross-linking reversal step, detected FoxO1

amounts were significantly reduced, suggesting that the condi-

tions employed compromise protein detection, perhaps due to

some combination of protein degradation, chemical modification,

or precipitation (Figure 8). In view of these results, we decided to

eliminate the cross-linking reversal step from the process, as it

unnecessarily decreased protein signal, and provided no apparent

benefit.

MS analysis of FoxO1-IGFBP1 complex captured on a
solid support

We demonstrated the identification and quantification of

FoxO1 protein from samples treated using the optimized

GENECAPP process. FoxO1-DNA complexes were formed in

solution, cross-linked with formaldehyde, quenched with Tris

base, digested with exonuclease III and captured on a solid

support grafted with complementary oligonucleotides. The

surface-captured FoxO1-IGFBP1 complexes were digested on

the solid support using an on-chip tryptic digestion procedure,

which included incubation in concentrated urea to release the

FoxO1-IGFBP1 complex from the surface and simultaneously

denature FoxO1. Each sample was spiked with heavy labeled

FoxO1 peptide standard and assayed by SRM, enabling accurate

quantification of the amount of FoxO1 captured on the non-

Figure 5. Schematic of tiling array design. An oligonucleotide tiling array containing all possible 19 mer complements, spanning the entire
180 bp long IGFBP1 DNA in 1 base steps, was fabricated using a maskless array synthesizer. The array was designed so that three quality control (non-
complementary) sequences were placed directly in the center of the array. Probe one, which is complementary to the first 19 nt of the IGFBP1 DNA,
was also located in the center of the array. The second probe, complementary to nucleotides 2–20, was placed directly to the right of probe one.
Placement of additional probes proceeded in a clockwise spiral as shown by the red arrow. A second series of quality control and probe sequences
were placed on the array beginning immediately after the first series was completed continuing in the clockwise spiral. FAM labeled protein-DNA
complexes were pre-formed and partially digested by exonuclease III before being applied onto the tiling array for hybridization.
doi:10.1371/journal.pone.0026217.g005

Sequence-Specific Capture of Protein-DNA Complexes
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complementary versus complementary DNA-modified solid

supports. As for the reverse-cross-linking experiments, each of

these samples were also run on a linear ion trap/Orbitrap

tandem mass-spectrometer in DDA mode and discovery results

correlated well with SRM findings (data not shown). Substrates

grafted with the complementary DNA probe oligonucleotide

yielded approximately three-fold as much FoxO1 protein

(94 fmol) as substrates with a non-complementary probe

(32 fmol) (Figure 9). The FoxO1 levels in the FoxO1-IGFBP1

solution applied to each solid support were also determined and

used to calculate capture recoveries of 16% and 5.4%,

respectively.

Figure 6. Tiling array profiles of exonuclease digested DNA. (A) The digestion profile of control FAM-labeled IGFBP1 DNA treated for 0, 1, 2, 5
and 15 min with exonuclease III at room temperature (25uC) is visualized by application of the product solution onto DNA tiling arrays and imaging
the chip on a fluorescence scanner. The line profile directly below the tiling array images contains average intensities for the first 90 of 162 unique
array features. Fluorescence signal from the remaining features was at background levels. (B) The digestion profile of the cross-linked and Tris-
quenched FoxO1-FAM-labeled IGFBP1 DNA treated for 0, 15, 45 and 120 min with exonuclease III (37uC). Contrary to the digestion on free DNA, there
is wide time window to digest cross-linked protein-DNA complex.
doi:10.1371/journal.pone.0026217.g006

Sequence-Specific Capture of Protein-DNA Complexes
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Discussion

We have developed and optimized a multistep process,

GENECAPP, for the DNA sequence-based hybridization capture

and mass spectrometric analysis of cross-linked protein-DNA

complexes. Details of the process, as applied to an in vitro model

protein-DNA complex, are discussed below.

Cross-linking FoxO1 Protein to IGFBP1 DNA
A covalent bond between protein and DNA can preserve the

specific binding relationship between the two molecules through-

out several processing steps. For example, proteins are cross-linked

to DNA in ChIP-Chip/Seq experiments prior to fragmentation of

the chromatin. It is then possible to extract the relevant DNA

fragments by immunoprecipitation of the target protein. Here,

sequence-specific capture of the DNA is used to extract the desired

complexes from solution, and cross-linking enables the associated

proteins to remain attached to the DNA during the extraction and

subsequent processing steps.

Formaldehyde offers several unique advantages as a cross-linker

[21,22,28]. It rapidly permeates cell walls and membranes,

covalently connects nucleophiles, weak and strong, which are

ubiquitous in biological systems, and the cross-linking can be

reversed if desired [21]. Formaldehyde is a reasonably specific

cross-linking agent, in spite of its ability to form connections

between essentially any nucleophile-containing molecules. This

specificity arises from its very small size (,2 Å), as only molecules

that come into very close contact (e.g. specific protein-protein and

protein-DNA complexes) can be cross-linked.

The general mechanism of formaldehyde cross-linking is shown

in Figure 10. The first step is the reaction between formaldehyde

and a relatively strong nucleophile, usually a primary amine,

followed by dehydration of the methylol intermediate to yield an

active Schiff-base. The second step of cross-linking is the reaction

between this Schiff-base and another nucleophile, which can be a

relatively weak one such as the amino group of a nucleic acid base.

Through this two-step mechanism, formaldehyde is able to couple

adjacent nucleophiles such as those found in the binding region of

a protein-DNA complex.

FoxO1-IGFBP1 protein-DNA complexes were treated with

increasing concentrations of formaldehyde during optimization of

the cross-linking reaction and analyzed by polyacrylamide gel

electrophoresis (data not shown). Low concentrations (below

0.375%) of formaldehyde were insufficient to covalently link all of

the DNA duplexes in solution to protein molecules. At 0.375%

formaldehyde the free DNA begins to disappear. We chose

0.75% formaldehyde as the optimum concentration, because it

was the lowest concentration necessary for complete absence of

free DNA. It is likely that the concentration of formaldehyde

necessary for cross-linking in vivo will differ from the amount used

here.

Figure 7. Capture of cross-linked FoxO1-IGFBP1 protein-DNA
complex on a photolithographically-fabricated DNA array. Error
bars correspond to the standard deviation of two replicate experiments.
doi:10.1371/journal.pone.0026217.g007

Figure 8. Normalized amount of FoxO1 protein detected by MS following cross-linking and cross-linking reversal. FoxO1-IGFBP1
protein-DNA complexes were prepared in solution at a 3:1 molar ratio. One sample of the complex was cross-linked with formaldehyde. An aliquot of
this sample was subsequently treated to reverse the cross-links (see Methods section). The MS signal obtained by SRM analysis of an untreated
control sample was nearly equivalent to the MS signal from the cross-linked sample indicating that the cross-linking had only a limited effect.
However, the MS signal obtained by SRM analysis of the cross-link reversed sample was considerably lower than either, indicating a loss of signal
resulting from the cross-linking reversal procedure. Each sample was prepared in duplicate and then analyzed three separate times (technical
replicates). Error bars in the graph represent one standard deviation calculated from those six results.
doi:10.1371/journal.pone.0026217.g008
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Quenching residual formaldehyde
Glycine is commonly used to quench formaldehyde reactions in

ChIP-Chip/Seq studies [7,10]. It is thought that glycine stops

cross-linking by reacting both with formaldehyde and with any

active Schiff-base moieties (i.e. both Steps 1 and 2 in Figure 10). In

the first case, glycine plus formaldehyde would form a Schiff-base,

which then could react with another glycine. In the second case,

Schiff-bases already formed on protein molecules could react with

glycine, thereby preventing a cross-link between that protein and

other protein or DNA molecules.

We found that DNA treated with formaldehyde and quenched

with glycine was not digestible with exonuclease III (Figure 4 and

Figures S1, S2, S3, S4, S5, S6, S7, S8). We speculate that glycine

reacts with formaldehyde to form active Schiff-bases, which then

react with the weak nucleophiles found on the DNA bases. This

sequence of reactions decorates the DNA with glycine molecules

and renders it unsuitable as a substrate for exonuclease III.

Fortunately, an alternative reagent is Tris base [32], which

quenches formaldehyde cross-linking while retaining the digest-

ibility of the DNA. Glycine and Tris both contain a primary amine

to react with formaldehyde, but Tris also has additional

nucleophiles (hydroxyl groups) to react with the Schiff-bases

(Figure 11). This highly favorable intramolecular reaction causes

Schiff-bases formed from Tris to be consumed internally and thus

not react to produce any modifications of DNA molecules. This

hypothesis is consistent with our results showing that Tris

quenching of formaldehyde cross-linking has a negligible effect

on exonuclease III activity (Figure 4).

Exonuclease digestion of dsDNA
Commercially available exonucleases, which could potentially

be employed to generate single-stranded DNA for capture by

hybridization, include lambda exonuclease, T7 exonuclease and E.

coli exonuclease III. Lambda exonuclease, a highly processive 59

exonuclease [35,36], proved to be inconsistent and inefficient in

our preliminary experiments (data not shown). T7 exonuclease has

the ability to remove 59 mononucleotides from duplex DNA,

which would have removed the fluorescent tag from our model

DNA and thus prevented us from visualizing it. Therefore, it was

not used in these studies. E. coli exonuclease III is a 39 to 59

exonuclease specific for double-stranded DNA [33,34]. It has been

shown to have relatively low processivity and a uniform digestion

rate [36,37]. By controlling the enzyme dose, reaction time and

temperature, we were able to obtain a high degree of control over

the exonuclease III digestion rate (Figure 6), and thus it was

selected for use.

The use of DNA tiling arrays provided an excellent means to

profile the products of the exonuclease digestion (Figure 5). We

profiled the digestion of two different IGFBP1 targets (pure

IGFBP1 DNA and IGFBP1 DNA covalently cross-linked to

FoxO1 protein with formaldehyde and quenched with Tris). We

tested several different reaction temperatures, reaction times and

enzyme dosages for the three different targets. Data for all tested

conditions is included in the supporting information and two

illustrative data sets are shown in Figure 6. Exonuclease III

rapidly digests the pure IGFBP1 DNA at room temperature

(Figure 6A). However, the cross-linked and Tris-quenched

FoxO1-IGFBP1 complex is much more resistant to digestion.

Increased digestion temperatures and times are required to

produce the single-stranded DNA necessary for sequence-specific

capture (Figure 6B). It is also notable that digestion ceased at

approximately position 40 in the sequence (nucleotides 40–58),

which is adjacent to one of the FoxO1 binding sites. This is

consistent with blocking of the enzyme digestion by the bound

protein, as is commonly observed in DNase footprinting studies

[19,20].

Sequence-specific capture of protein-DNA complexes
Sequence-specific hybridization capture is a critical component

of this work. There are many types of solid supports and

oligonucleotide immobilization chemistries that can be employed

for hybridization capture. In the present work, we employed DNA

microarrays fabricated on glass using a maskless array synthesizer

(MAS) [38]. A major advantage of the MAS is that it permits

synthesis of as many as 786,432 different oligonucleotides on a

161.4 cm chip, providing a high degree of versatility and control.

Figure 10. The general mechanism of formaldehyde cross-linking.
doi:10.1371/journal.pone.0026217.g010

Figure 9. FoxO1 recovered from surfaces with complementary
and non-complementary capture sequences.
doi:10.1371/journal.pone.0026217.g009
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We used the MAS technology to synthesize both the tiling arrays

used for analysis of exonuclease digestion and much simpler

surfaces consisting of a single capture probe (or control probe) to

maximize capture capacity.

The tiling array proved useful for identifying which of the many

different 19 mer complementary oligonucleotides yielded the

highest amount of binding to the partially single-stranded

protein-DNA complex. There is an advantage to directly testing

hybridization behavior in this manner because some of the

behavior is not readily predictable. For example, the plots of

fluorescence intensity from captured fluorescent complex clearly

show some structure (Figure 6). There is a high intensity peak for

DNA hybridization of the exonuclease-digested IGFBP1 DNA to

the 26th complementary probe (Figure 6A). We expected initially

that the relative intensity of the hybridization signals to different

surface-bound complements would correlate with the free energy

of the duplex formed between the complement on the surface and

the digested DNA. However, we found little correspondence

between the two, indicating that other factors (as yet unidentified)

play an important role in the binding process, and underscoring

the need for empirical determinations to identify optimal

sequences for hybridization capture.

On-chip protease digestion and mass spectrometry
analysis

As described in the Results section above, we found that the

FoxO1-IGFBP complexes captured by sequence-specific hybrid-

ization on MAS chips could be digested by trypsin directly on the

substrate surface, eliminating the need for removing the sample

from the solid-support prior to protease digestion. Both identifi-

cation and quantification of captured protein were demonstrated.

Conclusion
We have described here a novel strategy for the Global

ExoNuclease-based Enrichment of Chromatin-Associated Pro-

teins for Proteomics, or GENECAPP. GENECAPP is a multi-step

process for the mass spectrometric identification and quantifica-

tion of DNA-associated proteins. In this proof-of-principle study

we utilized the binding between FoxO1 and the IGFBP1 promoter

region as a model system for technology development. The

FoxO1-IGFBP1 complexes were formed in vitro, and cross-linked

with formaldehyde. Tris was added to quench excess formalde-

hyde and active Schiff base intermediates. Exonuclease III was

used to create single-stranded overhangs for capture by

hybridization on a photolithographically-fabricated DNA array,

followed by on-chip tryptic digestion. The tryptic peptides were

analyzed by LC-MS/MS on both a linear ion trap/Orbitrap

mass-spectrometer (for protein identification) and a triple

quadrupole/linear ion trap mass spectrometer (for quantitative

SRM analysis). Reaction conditions for each step were optimized,

including preparation of the protein-DNA complex, formalde-

hyde cross-linking, quenching, exonuclease digestion, surface

capture, protease digestion, and mass spectrometry analysis. The

specific hybridization capture of FoxO1 protein was demonstrat-

ed and mass spectrometric protein identification and quantifica-

tion were successfully performed.

Materials and Methods

FoxO1 protein and IGFBP1 promoter region complex
preparation

FoxO1 protein was purified as a His10-tagged recombinant

protein from E. coli as described previously [20]. The DNA

fragment corresponding to positions 2205 to 225 of the mouse

IGFBP1 promoter was amplified by PCR from NIH 3T3 (mouse

embryonic fibroblast cell line) genomic DNA (purchased from

New England Biolabs, MA, USA; we used no cell lines in this

work) using the primers (59–TTA GCT CCT GTC CCA GTC

CAT-39 and 59–TAT GAA GGG CTG GCT GTG C–39). A 6-

carboxyfluorescein (FAM) tagged oligonucleotide (59–FAM-TTA

GCT CCT GTC CCA GTC CAT-39) was used to produce a

180 bp fluorescently tagged IGFBP1 promoter DNA amplicon

(Text S1). All primers were custom synthesized by IDT (Integrated

DNA Technologies, IA, USA). The amplicon was gel purified

using the Promega Wizard SV Gel and PCR Clean-up System

(Promega, WI, USA) prior to protein-DNA complex formation.

Binding reactions of FoxO1 protein to IGFBP1 promoter DNA

were performed in final buffer conditions of 10 mM Tris-HCl,

pH 7.5, 1 mM MgCl2, 5 mM DTT, 40 mM KCl, 0.5% glycerol,

1 mg/mL BSA, and 1% Ficoll at room temperature for 1 h. A

typical binding reaction was performed with 10 pmol DNA

(,1200 ng) and 30 pmol FoxO1 protein in 100 mL binding buffer.

Formation of the complexes was verified by electrophoretic

mobility shift assay (EMSA). SYBR Gold nucleic acid gel stain

(Invitrogen, OR, USA) was used to stain DNA in Tris-borate

EDTA polyacrylamide gels.

Formaldehyde cross-linking and quenching
Freshly prepared FoxO1-IGFBP1 complex was cross-linked by

formaldehyde (Pierce, IL, USA) for 10 min at 25uC. A 0.75% (v/

v) final concentration of formaldehyde was used in all cross-linking

reactions unless otherwise stated. Excess formaldehyde and active

Schiff-base intermediates were quenched by addition of Tris,

pH 8.0 to a final concentration of 250 mM followed by incubation

at room temperature for 10 min. Glycine was tested as a quencher

in a similar fashion.

Formaldehyde cross-linking reversal
Formaldehyde cross-links were reversed by incubation at 99uC

for 25 min in 250 mM Tris, pH 8.8, 0.5 M b-mercaptoethanol,

Figure 11. Quenching of formaldehyde cross-linking by Tris. The Schiff-base intermediate, formed from Tris’s primary amine and
formaldehyde, is attacked by the neighboring hydroxyl group to form a highly favored 5-membered ring. This sequence of reactions is repeated to
form a second ring and produce the stable end product, 1-aza-3,7-dioxabicyclo[3.3.0]octane-5-methanol.
doi:10.1371/journal.pone.0026217.g011
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and 1% RapiGestTM SF Surfactant (Waters, MA, USA). These

cross-linking reversal conditions were adapted from a previous

report [12,21]. We used 1% RapiGestTM SF surfactant as a

replacement for 2% sodium dodecyl sulfate so that the solution

would be compatible with mass spectrometry.

Buffer exchange and exonuclease digestion
The cross-linked and quenched solution of FoxO1-IGFBP1

complex was desalted three times using a cellulose-based 10,000

molecular weight cut-off Amicon Ultra-0.5 mL centrifugal filter

(Millipore, MA, USA) prior to exonuclease III digestion.

Recovery efficiencies were typically higher than 95% (data not

shown). Note: the glycine-quenched protein-DNA complex was

not compatible with purification using the Amicon Ultra-0.5 mL

filter due to a large loss of sample in the filter (data not shown).

The desalted DNA or protein-DNA complex was volume

adjusted to ,12 ng/mL in a final buffer of 10 mM Bis-Tris-

propane-HCl, pH 7.0, 10 mM MgCl2 and 1 mM DTT. Two

units of E. coli exonuclease III (NEB, MA, USA) were used to

digest 100 ng IGFBP1 promoter DNA (180 bp) for 1 min at

25uC or FoxO1-IGFBP1 promoter protein-DNA complex for

45 min at 37uC unless otherwise stated. Exonuclease III

digestions were stopped by addition of EDTA to a final

concentration of 25 mM. Lambda exonuclease (NEB, MA,

USA) and T7 exonuclease (T7 Gene 6 Exonuclease, Affymetrix,

CA, USA) were used in DNA digestion comparison experiments.

The extent of digestion was monitored on DNA tiling arrays or

by fragment length analysis on a 3730xl DNA analyzer (Applied

Biosystems, CA, USA).

In situ photolithographic oligonucleotide array design
and synthesis

Glass microscope slides (Plain Micro Slides, VWR, PA, USA)

were cleaned with 1 M sodium hydroxide prior to silanization.

The slides were then silanized for 4 h in 2% (v/v) N-(2-

triethoxysilylpropyl)-4-hydroxy-butyramide (Gelest, Inc., Morris-

ville, PA, USA) in stock solution (0.1% acetic acid in 95%

ethanol). After being rinsed by stirring in fresh stock solution for

15 min, the slides were transferred to a pre-heated (120uC) oven

for 2 h, and cured under vacuum overnight. Light-directed

photolithographic synthesis was performed on the silanized glass

slides with a digital micromirror-based Maskless Array Synthesis

(MAS) system connected to a ABI ExpediteTM 8909 Nucleic Acid

Synthesis System (Applied Biosystems, CA, USA) as described

previously [38,39,40]. Table S4 contains the probe sequences

synthesized on the surface. All the oligonucleotides were

synthesized in situ in the 39R59 direction on the silanized glass.

A 15-thymidine spacer, which has been shown to increase

hybridization efficiency [41,42], was included at the 39 end of

every oligonucleotide. Each of the tiling arrays was composed of

334 features, sized 130 mm6130 mm, and separated by 50 mm.

The size of the capture and negative control arrays was

1.4 mm61.0 mm.

Capture and detection on oligonucleotide arrays
Exonuclease III digested FAM-tagged IGFBP1 promoter DNA

and FoxO1-IGFBP1 complexes were supplemented with 106
SSPE buffer to give a final 16 SSPE concentration (10 mM

NaH2PO4, 150 mM NaCl, 1 mM EDTA, pH 7.4) before

application to the oligonucleotide arrays. The hybridization

reaction was performed in a humid chamber at room temperature

for 3 h. The surfaces were then rinsed and incubated in 16SSPE

buffer at 37uC for 15 min to remove nonspecifically bound DNA

and protein-DNA complexes. Images of fluorescence were

obtained using a GeneTac UC 464 microarray scanner (Genomic

Solutions, MI, USA).

Determination of surface binding capacity
A ten-fold molar excess of FoxO1 protein was added to FAM-

tagged IGFBP1 promoter DNA to ensure the complete absence of

free DNA. The complexes were formaldehyde cross-linked, Tris

quenched and buffer exchanged with exonuclease III working

buffer before digestion. The complexes were then exonuclease III

digested based on a ratio of 2 units of exonuclease III for 100 ng

FAM-tagged 180 bp IGFBP1 promoter DNA. Various amounts of

the complexes were applied to the IGFBP1 capture tiling array for

hybridization capture. Nonspecifically-bound complexes were

removed by incubating the surface in 16SSPE buffer at 37uC for

15 min. The captured complexes were then eluted by incubating

the surface in 8 M urea at room temperature for 30 min. The

capture capacity of the array was determined using a previously

published wash-off method [43]. The fluorescence intensities of the

solutions containing fluorescent complexes that were eluted from

the surface with urea were compared to calibration solutions

containing known amounts of the fluorescent complex (10211 to

1028 M) to determine the number of moles of complex recovered

from the surface. The amount recovered from the surface divided

by the surface area was reported as the binding capacity.

On-chip protease digestion and analysis by mass
spectrometry

On-chip protease digestion of captured FoxO1 protein was

performed after thoroughly rinsing the array surfaces to remove any

non-specifically bound complex. A 20 mL aliquot of 8 M urea in

50 mM ammonium bicarbonate buffer at pH 8.0 was applied to the

array. The sample was incubated for 30 min at room temperature to

elute the DNA from the surface and to denature the FoxO1 protein.

The solution on the surface was then diluted ten-fold with 50 mM

ammonium bicarbonate buffer to lower the urea concentration to

,1 M. Sequence grade modified trypsin (Promega, WI, USA) was

added at a final protease:protein ratio of 1:20 (w/w) based on the

original FoxO1 input. The on-chip tryptic digestion was carried out

in a humid chamber at 37uC overnight. For SRM analysis, two C-

terminal heavy labeled FoxO1 proteotypic peptides, which were pre-

selected (Table S1) and synthesized (Ulm, ThermoFisher Scientific,

Germany), were spiked directly into the mixture on-chip in known

amounts. Each sample was then purified using OMIX C18 pipette

tips (Varian, CA, USA) before analysis by mass spectrometry. SRM

samples were separated on a nanocapillary column using a

nanoACQUITY UPLC system (Waters, MA, USA). All columns

were prepared in-house and packed with MAGIC C18AQ

stationary phase (Michrom Bioresources, CA, USA). The sample

was nanosprayed into an AB SCIEX QTRAP 5500 triple

quadrupole mass spectrometer (AB SCIEX, CA, USA), which

monitored multiple heavy and light transitions per peptide pair for

quantification. Samples were also analyzed on an LTQ Oribitrap

Velos mass spectrometer (Thermo Scientific, FL, USA) in discovery

mode and peptides were identified with Proteome Discoverer

software. False discovery rate determinations were performed using

the Proteome Discoverer software Decoy Database Search.

Supporting Information

Figure S1 Fragment length profile from digestion of
dsDNA with exonuclease III as a function of time. Two

units of exonuclease III were used to digest 100 ng of FAM-labeled

IGFBP1 DNA for 0, 5 and 15 min at room temperature.
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Exonuclease III digestions were stopped by addition of EDTA to a

final concentration of 25 mM. The samples were subjected to

fragment analysis using an ABI 3130xl Genetic Analyzer (Applied

Biosystems, CA, USA).

(TIF)

Figure S2 Fragment length profile from digestion of
formaldehyde-treated dsDNA with exonuclease III as a
function of time. FAM-labeled 180 bp IGFBP1 DNA was

pretreated with 0.75% (v/v) formaldehyde for 10 min. The excess

formaldehyde was diluted and buffer exchanged before exonucle-

ase III digestion. Two units of exonuclease III were used to digest

the DNA for 0, 5 and 15 min at room temperature. After

digestion, the samples were subjected to fragment analysis using an

ABI 3130xl Genetic Analyzer (Applied Biosystems, CA, USA).

(TIF)

Figure S3 Fragment length profile from digestion of
formaldehyde-treated and Tris-quenched dsDNA with
exonuclease III as a function of time. The effect of cross-

linking reagent (formaldehyde) and Tris quencher was evaluated

by profiling the exonuclease digestion products. FAM-labeled

180 bp IGFBP1 DNA was pretreated with 0.75% (v/v) formal-

dehyde for 10 min, followed by quenching with 250 mM Tris.

The formaldehyde and Tris were diluted and buffer exchanged.

Two units of exonuclease III were used to digest the DNA for 0, 5

and 15 min at room temperature. After digestion, the samples

were subjected to fragment analysis using an ABI 3130xl Genetic

Analyzer (Applied Biosystems, CA, USA).

(TIF)

Figure S4 Fragment length profile from digestion of
formaldehyde-treated and glycine-quenched dsDNA
with exonuclease III as a function of time. The effect of

cross-linking reagent (formaldehyde) and glycine quencher was

evaluated by profiling the exonuclease digestion products. FAM-

labeled 180 bp IGFBP1 DNA was pretreated with 0.75% (v/v)

formaldehyde for 10 min, followed by quenching with 250 mM

glycine. The formaldehyde and glycine were diluted and buffer

exchanged. 2 units of exonuclease III were used to digest the DNA

for 0, 5, and 15 min at room temperature. After digestion, the

samples were subjected to fragment analysis using an ABI 3130xl

Genetic Analyzer (Applied Biosystems, CA, USA).

(TIF)

Figure S5 Fragment length profile from digestion of
dsDNA with exonuclease III as a function of time. Two

units of exonuclease III were used to digest FAM-labeled IGFBP1

DNA for 0, 5 and 15 min at room temperature. The digestion

profile was visualized by application of the product solution onto

DNA tiling arrays and imaging the substrate on a fluorescence

scanner. The line profile directly below the tiling array images

contains average intensities for the first 90 of 162 unique array

features. Fluorescence signal from the remaining features was at

background levels.

(TIF)

Figure S6 Fragment length profile from digestion of
formaldehyde-treated dsDNA with exonuclease III as a
function of time. FAM-labeled 180 bp IGFBP1 DNA was

pretreated with 0.75% (v/v) formaldehyde for 10 min. The excess

formaldehyde was diluted and buffer exchanged before exonucle-

ase III digestion. Two units of exonuclease III were used to digest

the DNA for 0, 5 and 15 min at room temperature. The digestion

profile was visualized by application of the product solution onto

DNA tiling arrays and imaging the substrate on a fluorescence

scanner. The line profile directly below the tiling array images

contains average intensities for the first 90 of 162 unique array

features. Fluorescence signal from the remaining features was at

background levels.

(TIF)

Figure S7 Fragment length profile from digestion of
formaldehyde-treated and Tris-quenched dsDNA with
exonuclease III as a function of time. FAM-labeled 180 bp

IGFBP1 DNA was pretreated with 0.75% (v/v) formaldehyde for

10 min and quenched with 250 mM Tris. The formaldehyde and

Tris were diluted and buffer exchanged before exonuclease III

digestion. Two units of exonuclease III were used to digest the

DNA for 0, 5 and 15 min at room temperature. The digestion

profile was visualized by application of the product solution onto

DNA tiling arrays and imaging the substrate on a fluorescence

scanner. The line profile directly below the tiling array images

contains average intensities for the first 90 of 162 unique array

features. Fluorescence signal from the remaining features was at

background levels.

(TIF)

Figure S8 Fragment length profile from digestion of
formaldehyde-treated and glycine-quenched dsDNA
with exonuclease III as a function of time. FAM-labeled

180 bp IGFBP1 DNA was pretreated with 0.75% (v/v) formal-

dehyde for 10 min and quenched with 250 mM glycine. The

formaldehyde and glycine were diluted and buffer exchanged

before exonuclease III digestion. Two units of exonuclease III

were used to digest the DNA for 0, 5 and 15 min at room

temperature. The digestion profile was visualized by application of

the product solution onto DNA tiling arrays and imaging the

substrate on a fluorescence scanner. The line profile directly below

the tiling array images contains average intensities for the first 90

of 162 unique array features. Fluorescence signal from the

remaining features was at background levels.

(TIF)

Figure S9 Fragment length profile from digestion of
dsDNA with exonuclease III as a function of time and
enzyme dosage. The digestion profile was visualized by

application of the product solution onto DNA tiling arrays and

imaging the chip on a fluorescence scanner. (A) FAM-labeled

IGFBP1 DNA treated for 0, 1, 2, 5 and 15 min with 0.2 units of

exonuclease III at room temperature. (B) FAM-labeled IGFBP1

DNA treated for 0, 1, 2, 5 and 15 min with 2 units of exonuclease

III at room temperature. (C) FAM-labeled IGFBP1 DNA treated

for 0, 1, 2, 5 and 15 min with 20 units of exonuclease III at room

temperature. The line profile directly below the tiling array images

contains average intensities for the first 90 of 162 unique array

features. Fluorescence signal from the remaining features was at

background levels.

(TIF)

Figure S10 Fragment length profile from digestion of
FoxO1-IGFBP1 with exonuclease III as a function of time
and enzyme dosage. The digestion profile was visualized by

application of the product solution onto DNA tiling arrays and

imaging the chip on a fluorescence scanner. (A) FAM-labeled

IGFBP1 DNA in complex with FoxO1 protein treated for 0, 1, 2,

5 and 15 min with 0.2 units of exonuclease III at room

temperature. (B) Complex treated for 0, 1, 2, 5 and 15 min with

2 units of exonuclease III at room temperature. (C) Complex

treated for 0, 1, 2, 5 and 15 min with 20 units of exonuclease III at

room temperature. The line profile directly below the tiling array

images contains average intensities for the first 90 of 162 unique
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array features. Fluorescence signal from the remaining features

was at background levels.

(TIF)

Figure S11 Fragment length profile from digestion of
dsDNA with 0.2 units of exonuclease III as a function of
time. Exonuclease III was used to digest 100 ng FAM-labeled

IGFBP1 DNA for 0, 1, 2, 5 and 15 min at room temperature.

Exonuclease III digestions were stopped by addition of EDTA to a

final concentration of 25 mM. The samples were subjected to

fragment analysis using an ABI 3130xl Genetic Analyzer (Applied

Biosystems, CA, USA).

(TIF)

Figure S12 Fragment length profile from digestion of
dsDNA with 2 units of exonuclease III as a function of
time. Exonuclease III was used to digest 100 ng FAM-labeled

IGFBP1 DNA for 0, 1, 2, 5, and 15 min at room temperature.

Exonuclease III digestions were stopped by addition of EDTA to a

final concentration of 25 mM. The samples were then subjected to

fragment analysis using an ABI 3130xl Genetic Analyzer (Applied

Biosystems, CA, USA).

(TIF)

Figure S13 Fragment length profile from digestion of
dsDNA with 20 units of exonuclease III as a function of
time. Exonuclease III was used to digest 100 ng FAM-labeled

IGFBP1 DNA for 0, 1, 2, 5, and 15 min at room temperature.

Exonuclease III digestions were stopped by addition of EDTA to a

final concentration of 25 mM. The samples were then subjected to

fragment analysis using an ABI 3130xl Genetic Analyzer (Applied

Biosystems, CA, USA).

(TIF)

Figure S14 Fragment length profile from digestion of
formaldehyde-treated FoxO1-IGFBP1 with 2 units of
exonuclease III as a function of time and temperature.
Exonuclease III was used to digest 100 ng (DNA weight) FAM-

labeled FoxO1-IGFBP1 complex pre-treated with 0.75% (v/v)

formaldehyde for 0, 15, 45, and 120 min at 37uC as well as 45 min

at room temperature. The digested complex was treated by

proteinase K for 2 h at 65uC followed by cross-linking reversal in

250 mM Tris, pH 8.8, 0.5 M b-mercaptoethanol, and 2% SDS at

99uC for 25 min. The samples were then subjected to fragment

analysis using an ABI 3130xl Genetic Analyzer (Applied

Biosystems, CA, USA).

(TIF)

Figure S15 Fragment length profile from digestion of
formaldehyde-treated FoxO1-IGFBP1 with 20 units of

exonuclease III as a function of time and temperature.
Exonuclease III was used to digest 100 ng (DNA weight) FAM-

labeled FoxO1-IGFBP1 complex pre-treated with 0.75% (v/v)

formaldehyde for 0, 15, 45, and 120 min at 37uC. The digested

complex was treated by proteinase K for 2 h at 65uC followed by

cross-linking reversal in 250 mM Tris, pH 8.8, 0.5 M b-

mercaptoethanol, and 2% SDS at 99uC for 25 min. The samples

were then subjected to fragment analysis using an ABI 3130xl

Genetic Analyzer (Applied Biosystems, CA, USA).

(TIF)

Text S1 Sequence of IGFBP1 promoter region (225 to
2204) PCR amplicon (59R39). Character bordered sequences

show the primers used for PCR amplification. Underlined

sequences indicate FoxO1 binding sites including the FNBS

(FoxO1 new binding site, 59-ACAAACA-39, described previously

in Hatta et al. 2007) and two sites located in the IRE (insulin

response element).

(PDF)

Table S1 Target peptides for SRM analysis.

(DOC)

Table S2 The effects of cross-linking and cross-linking
reversal on mass spectrometric analysis of the FoxO1-
DNA complex using the SRM assay.

(DOC)

Table S3 Data Table for Discovery Mode Analysis of
FoxO1 Protein Captured on Solid Supports Modified
with Complementary and Non-Complementary (control)
Capture Oligonucleotides.

(DOC)

Table S4 Oligonucleotide sequences on the DNA arrays.

(DOC)
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