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Abstract

Extended female sexuality in species living in multimale-multifemale groups appears to enhance benefits from multiple
males. Mating with many males, however, requires a low female monopolizability, which is affected by the spatiotemporal
distribution of receptive females. Ovarian cycle synchrony potentially promotes overlapping receptivity if fertile and
receptive periods are tightly linked. In primates, however, mating is often decoupled from hormonal control, hence
reducing the need for synchronizing ovarian events. Here, we test the alternative hypothesis that females behaviorally
coordinate their receptivity while simultaneously investigating ovarian cycle synchrony in wild, seasonal Assamese
macaques (Macaca assamensis), a promiscuous species with extremely extended female sexuality. Using fecal hormone
analysis to assess ovarian activity we show that fertile phases are randomly distributed, and that dyadic spatial proximity
does not affect their distribution. We present evidence for mating synchrony, i.e., the occurrence of the females’ receptivity
was significantly associated with the proportion of other females mating on a given day. Our results suggest social
facilitation of mating synchrony, which explains (i) the high number of simultaneously receptive females, and (ii) the low
male mating skew in this species. Active mating synchronization may serve to enhance the benefits of extended female
sexuality, and may proximately explain its patterning and maintenance.
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Introduction

Extended female sexuality (i.e. non-conceptive receptivity) has

been reported for numerous vertebrate and invertebrate species

and is most likely part of a female strategy to obtain male-delivered

benefits (e.g. [1–7]). Many examples come from pair-living species

including birds and mammals (e.g. [5,7,8]). Here, extended

sexuality appears to predominantly function to gain material

assistance delivered by primary partners (e.g. [4,5]). Conversely, in

mammals with multimale-multifemale social organization, such as

many non-human primates, extended female sexuality often co-

occurs with promiscuity, and thus, has been argued to enhance

benefits from multiple males, namely to refrain from infanticide or

to provide care for future infants (e.g. [2,3,6,9–12]).

Females in multimale-multifemale groups, however, usually face

the problem of being monopolized by a single (dominant) male

(e.g. [11–13]). Thus, for extended sexuality to be effective, i.e. to

enhance polyandrous mating, at least some degree of female

behavioral freedom is required which can be achieved by

increasing the number of simultaneously sexually active females.

Female reproductive synchrony, i.e. the spatiotemporal clustering

of receptive females, limits the degree to which females can be

monopolized by a single male [14–22], hence enabling them to

mate with multiple males and also to exert alternative mate

choices (e.g. [3,6,23,24]).

The temporal coordination of reproductive activity can be

facilitated by seasonal breeding (likely to be regulated through

external cues; [25,26]) because several females may get into

breeding condition during a short period of time [15,22], or it can

be achieved through active synchronization (see below). This may

sometimes make it difficult to disentangle the potential ecological

and social factors underlying reproductive synchrony, in particular

in highly seasonal species (e.g. [18,27]).

Studies focusing on mammalian reproductive synchrony are

generally based on the assumption that females achieve synchrony

by synchronizing (and asynchrony by desynchronizing) their

ovarian cycles (e.g. [27–37]). Studies on rodents revealed mixed

evidence for ovarian cycle synchrony (e.g. Rattus norvegicus: [33,38];

Mesocricetus auratus: [28,30]). Similarly, in primates, the results

remain controversial and inconclusive. Apart from a few studies

(Homo sapiens: [32]; Pan troglodytes: [37]; Leonthopithecus rosalia: [29];

but see [39,40]) most investigations found no evidence for ovarian

cycle synchrony (e.g. Papio hamadryas: [36]; Homo sapiens: [41];

Mandrillus sphinx: [35]; Leontopithecus rosalia: [34]) or report

asynchrony (e.g. Papio hamadryas: [42]; Pan troglodytes: [31]; Lemur

catta: [27]).

Several primate-typical reproductive features may potentially

explain the lack of ovarian cycle synchrony observed in most

species: First, and in contrast to most mammals (e.g. [26]), female

receptivity in primates is usually decoupled from hormonal control
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(e.g. [2,43,44]). Second, most primates exhibit extended mating

periods within ovarian cycles (some Old World monkeys mate

throughout their complete cycle), a phenomenon that has been

attributed to prolonged follicular phases [11,45]. Third, primate

females often show an increased number of cycles to conception,

extending their total mating period (e.g. [46]), hence increasing the

chance to overlap in mating activity with other females. Fourth,

male knowledge about female fertility status usually is imperfect

(e.g. [10,47]). In general, the ‘‘need’’ for ovarian cycle synchrony

in order to reduce male monopolization potential should decrease

with (i) the degree of emancipation of sexual behavior from

hormonal control, (ii) increasing length of the mating period, and

(iii) increasing unpredictability of fertility (note that these factors

are not independent). To illustrate an extreme: in species where

fertility is undisclosed to males, and females potentially mate

throughout and beyond their cycles, synchronizing ovarian events

becomes unnecessary to achieve overlapping receptive periods.

Furthermore, ovarian cycle synchrony cannot explain synchro-

nous receptivity during acyclic stages (e.g. pregnancy).

Here, we focus on an alternative, non-mutually exclusive,

hypothesis that females synchronize their mating activity.

Assuming that male monopolization potential is affected by the

spatiotemporal distribution of receptive females (e.g. [14–22]), and

that mating is decoupled from hormonal control, females may

mate non-randomly with respect to time, in order to avoid male

monopolization. On a proximate level, and in contrast to ovarian

cycle synchrony which is assumed to be regulated by pheromonal

cues (e.g. rats: [48]; humans: [49,50]), mating synchrony may be

achieved through behavioral coordination [51], i.e. females may

respond to the mating activity of other females in the group. In

other words, the probability of a given female to copulate may be

affected by the number of other females mating.

To our knowledge, no study has yet attempted to investigate

whether females synchronize their mating activity independent of

ovarian cycle synchrony. Here, we use hormone and mating data

obtained from wild female Assamese macaques (Macaca assamensis)

to test this hypothesis. Using permutation procedures and Linear

Mixed Effects Models we investigate whether females synchronize

their mating activity. We simultaneously examine whether female

fertile phases are significantly more synchronous or asynchronous

than expected from a random distribution using permutation

procedures. Also, we investigate whether dyadic spatial proximity

affects the temporal distribution of fertile phases, to test the

hypothesis that those females who spend more time in close

proximity cycle more closely together (e.g. see [48,49]).

Assamese macaques breed seasonally, and females mostly

conceive in their first ovarian cycle [52] with fertile phases

overlapping to some extent [53]. Females exhibit no apparent

coordination between receptive and fertile periods as they become

sexually receptive (i.e. sexually active) in unison (up to 3 months

before the onset of cyclic ovarian activity) and mate, at low daily

frequencies, throughout the 4-month mating season and even into

pregnancy [53]. As a consequence, on nearly 90% of mating

season days there is more than one female receptive. The extreme

extended female sexuality together with concealed fertility [53]

diminishes male monopolization potential which is reflected in an

unusually low alpha male mating skew (17.5%; [54]). Despite a

high degree of promiscuity (i.e. females mate with virtually all

males) females exhibit non-dominance based mating biases

towards different (high- and low-ranking) male individuals [53].

Only top ranking males engage in long sexual consortships, not

linked to female fertile phases [53,54]. The strong seasonality of

the species may account for some overlap in both fertility and

receptivity. The extreme non-conceptive mating activity beyond

ovarian cyclicity (see [53]), however, is puzzling and making the

setting ideal to test whether females behaviorally coordinate their

mating activity.

Methods

This study was carried out in the field with wild monkeys and

was completely non-invasive. Approval and permission to conduct

research was granted by the authorities of Thailand (permit no.

0004.3/3618), and all research was undertaken in strict accor-

dance with the ABS/ASAB guidelines for the ethical treatment of

animals in research, the recommendations of the Weatherall

report on the use of non-human primates in research, and the laws

set forth by the National Research Council of Thailand and the

regulations of the Department of National Parks, Wildlife and

Plant Conservation, Bangkok, as well as the guidelines of the

involved institutes.

Subjects
During two consecutive mating seasons (MS) behavioral and

hormone data were obtained from a wild group of Assamese

macaques at the Phu Khieo Wildlife Sanctuary (157,300 ha,

16u59-359N, 101u209-559E, 300-1,300 m a.s.l.), north-eastern

Thailand. During the MS 07/08 (Oct 1st-Jan 31st) the study

group comprised 53 individuals including 13 males and 12 adult

females, seven of which conceived and data are presented for.

During the MS 08/09 (Oct 1st-Feb 13th) the group consisted of 55

individuals including 15 males and 14 adult females, ten of which

conceived and eight of which data are presented for (two females

conceived unexpectedly, hence had not been sampled). No subject

was included twice in the study (i.e. n = 15 females).

Behavioral data
The study group was followed from dawn to dusk (2,837 contact

hrs; 11.160.7 contact hrs/day) throughout the two mating seasons

combining ad libitum and focal observations. We recorded social

and sexual behaviors (for details on female sexuality see [53]), and

conducted proximity scans (n = 5627) every ten minutes during

focal observations by noting all females within 5m of the focal

female. In order to control for rank effects, female dominance rank

was established based on the exchange of clear submissive signals,

i.e. ‘‘silent bared teeth’’ [55] and ‘‘make room’’ [56]. Both mating

seasons were treated separately because one female died in June

2008, and three primiparous females were added to the data set in

the MS 08/09. Female dominance hierarchy was assessed using

the I&SI method as implemented in MATMANTM 1.1.4 (Noldus

2003). We then standardized ranks to a range from 0 (lowest

ranking) to 1 (highest ranking), and with the females considered in

the study evenly spaced between these two values.

Assessment of fertile phases
Fecal hormone analysis to assess ovulation and fertile periods

has been described in detail by Fürtbauer et al. [52,53]. In brief,

we collected on average6sd 4.660.5 samples per week from each

study female. Following hormone extraction from freeze-dried

samples, extracts were measured for concentrations of progesto-

gens (20a-dihydroprogesterone; 20a-OHP) using a validated

microtiterplate enzyme immunoassay (EIA; [52]). Sensitivity of

the assay at 90% binding was 1.5 pg. Intra- and interassay

coefficients of variation, calculated from replicate determinations

of high- and low-value quality controls were 7.5% and 13.1%

(high) and 9.2% and 16.7% (low).

As described in Fürtbauer et al. [52], the timing of ovulation

was determined by using the defined post-ovulatory rise in fecal
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progestogen levels, taking into account the fecal excretion time lag.

Day -3 relative to the day of the defined progestogen increase (day

0) was considered as the most likely day of ovulation. The fertile

phase was defined as a 5-day period including days -2 and -3

(relative to day 0) plus the three preceding days (see [53]). For two

females the exact timing of the fertile phase could not be

determined but could be narrowed down to the first half of

February 2009.

Ovarian cycle synchrony
To test for synchrony of fertile periods we used the approach of

Matsumoto-Oda et al., [31]. We measured the Synchrony-Index

(SI) as described therein and tested its significance based on 1,000

permutations into which we included the original data as one

permutation. Units of permutation were the fertile periods and the

intervals between them (permuted separately). Other than in

Matsumoto-Oda et al. [31] we imposed a restriction on the

permutation algorithm which ensured that the total duration of

the period lasting from the beginning of the first to the end of the

last fertile period was kept constant. In case a female went through

two fertile periods (n = 3 females, MS 07/08; see [52]) we kept the

time interval between them constant and just permuted the two

fertile periods. Since synchrony could in principle be smaller as

well as larger (i.e. asynchrony versus synchrony) we determined

two one-tailed p-values. In the MS 08/09 the precise timing of the

fertile periods for 2 females was not known (see above). Hence, we

constructed data sets representing all possible combinations of

timings of the fertile periods of these two females and tested each

of them using the approach described above. For these we report

the average p-value. Permutation tests were calculated using a

program written by R.M. (we did not use a linear model for this

analysis because fertile periods last 5 continuous days, hence

making the occurrence of fertile and non-fertile days within

periods clearly non-independent).

To test whether close spatial proximity between females affected

the timing of their fertile phases (see [48,49]), we first determined

for each dyad the proportion of scans at which the two females

were no more than five meters apart. Furthermore, we determined

for each dyad the absolute number of days elapsed between the

onsets of their fertile phases. We then correlated the two matrices

using a Mantel test [57]. This test was exact (i.e. enumerating all

possible permutations of the data) and based on Spearman’s rho as

the test statistic. For the MS 08/09 where the exact onset of fertile

phases could not be determined for two females, we used the

approach described above (averaging the result for all possible

combinations of onset days). Mantel tests were calculated using a

program written by R.M.

Mating synchrony
To test whether females synchronized days on which they

copulated we used the following approach: First, we calculated for

each female and day the proportion of the other females which

copulated that day. We then used a Generalized Linear Mixed

Model (GLMM; [58]) to test whether the probability of a given

female to copulate (response variable: yes/no) on a given day was

influenced by the proportion of other females copulating that day.

Besides the proportion of females copulating we also included the

conception status (pre- and post-conception), its interaction with

the former variable, and the females’ rank as fixed effects. In

addition, we included female ID and MS (07/08 and 08/09) as

random effects.

The response variable in the model was likely to show temporal

autocorrelation unexplained by the fixed effects included. Thus,

the assumption of independent residuals was likely to be violated

(i.e. neighboring residuals being more similar than more distant

ones) devaluating the reliability of the model. Hence, we decided

to explicitly incorporate temporal autocorrelation into the model

using the following approach: We first ran the model with all fixed

and random effects included and derived the residuals from it.

Then, for each data point we calculated an ‘autocorrelation term’

as the average of the residuals of all other data points of the same

female with the contribution of the residuals being weighted by

their time lag to the particular data point. The weight followed a

normal distribution, with its standard deviation determined by

minimizing the AIC [59] of the GLMM including the autocor-

relation term as an additional fixed effect.

Regarding significance testing we first determined the signifi-

cance of the full model (including all fixed effects, the interaction,

the autocorrelation term and random effects) as compared to the

corresponding null model (including only the autocorrelation term

and the random effects) using a likelihood ratio test [60]. Only if

this revealed significance we considered the significance of the

individual predictors. P-values of main effects we considered only

if they were not included in a significant interaction.

We calculated the GLMM in R (version 2.11.1, [61]) using the

function lmer of the R package lme4 [62]. GLMM’s were fitted

with binomial error structure and logit link function and likelihood

ratio tests were calculated using the R function anova. To enhance

the reliability of this likelihood ratio test we used maximum

likelihood estimation in the mixed model (argument REML of the

function lmer set to FALSE). Significance of the individual fixed

effects was determined based on the z- and p-values provided by

lmer. The autocorrelation term was calculated using a function

written by R.M. and the minimization of the AIC to find the best

fitting standard deviation of the weight function for the

autocorrelation term was done using the R function optimize.

Additionally, we used a permutation procedure similar to that

described for ovarian cycle synchrony (see above). We did this

because the assessment of P-values for fixed effects can be

unreliable in Mixed Models [63]. We first measured the variance

in mating synchrony as described in Matsumoto-Oda et al. [31]

and then used the following approach: we first identified,

separately for each female, sections of consecutive days all of

which comprising at least one copulation, and sections of

consecutive days none of which comprising at least one copulation.

We then permuted these sections, separately for sections with and

without copulations. In addition, we permuted data only for days

between the first and the last day with copulation. Since there were

two days without observations in the MS 07/08 and one day

without observations in the MS 08/09, we subdivided the study

period into three phases in the MS 07/08 and two phases in the

MS 08/09, respectively, and permuted data only within these

phases. We determined the P-value as the proportion of

permutations revealing variance in synchrony being at least as

large as that of the original data. We used 1,000 permutations and

the original data were included as one permutation.

Results

Ovarian cycle synchrony
We investigated patterns of ovarian cycle synchrony during two

mating seasons and found no evidence of synchrony or asynchrony

of female conceptive fertile phases (5 days; hormonally deter-

mined; MS 07/08; SI = 0.187, p(syn) = 0.102, p(asyn) = 0.939; MS

08/09: SI = 0.118, p(syn) = 0.455, p(asyn) = 0.640; no error level

correction applied). Because in the MS 07/08 three females

conceived during their second cycle (all other females in the same

year and in the MS 08/09 conceived in their first cycle), we ran

Macaque Females Synchronize Sex not Cycles
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the permutation procedure with including the three non-

conception cycles, and achieved similar non-significant results

(SI = 0.162, p(syn) = 0.2, p(asyn) = 0.834). Dyadic spatial proximity of

females was not correlated with the interval between the onsets of

fertile periods (Mantel test, MS 07/08: rS = 20.04, n = 7 females,

p = 0.84; MS 08/09, average of 48 tests: rS = 0.22, n = 8 females;

p = 0.24).

Mating synchrony
A GLMM revealed evidence that females synchronized their

mating activity. We found an overall significant effect of the entire

set of predictor variables included in the model (likelihood-ratio

test comparing the fit of the full with that of the null model

comprising only the random effects: x2 = 22.30, df = 4, N = 1927

days and 15 females, p,0.001). The probability of a given female

to copulate (response variable: yes/no) on a given day clearly

increased with the proportion of other females copulating that

same day (Table 1). In addition, higher ranking females were more

likely to copulate. Female conception status (i.e. pre- or post-

conception) had no significant effect on the probability to copulate.

Because assessing the significance of fixed effects in the

framework of Mixed Models is associated with some uncertainty

[63], we backed up our conclusions with a permutation test as

applied for the synchrony of the fertile phases (see above). We

obtained matching results in that sections of consecutive mating

days (see methods for details) were more synchronous than

expected by chance (SI = 0.175, p = 0.002).

Discussion

Our data show that although in Assamese macaques female

fertile phases partly overlap (see [53], Fig. 4), those females who

spent more time in close proximity did not cycle more closely

together (pheromonal hypothesis; [48,49]; but see, e.g. mandrills:

[35], chimps: [64]; mouse lemurs: [65]), and that the observed

ovarian cycle overlap did not deviate from random expectations.

In contrast, we provide evidence for significant synchrony of

mating activity.

The result that females did not synchronize their cycles is not

surprising because specific reproductive and life-history traits may

‘‘prevent’’ females from synchronizing their ovarian cycles. First,

Assamese macaque females are anovulatory during the non-

mating season and mostly conceive during their first ovulatory

cycle within the mating season [52]. ‘Active’ ovarian cycle

synchronization, however, is likely to require several cycles (e.g.

[32]). A recent study on mandrills (Mandrillus sphinx), for example,

found evidence for significant female cycle synchrony in only one

out of ten years, the year with most cycles (overall and per female)

recorded, suggesting a link between ovarian cycle synchrony and

the number of cycles to conception [35]. Second, as shown

recently for Assamese macaques, early conception within the

mating season may allow for a 1-year inter-birth interval (IBI)

whereas females conceiving late in the season are more likely to

conceive their next infant after two years [52]. Any shifting of

ovarian cycles towards the end of the mating season, for the benefit

of ovarian cycle synchrony, may have to be paid with a 2-year

instead of a 1-year IBI, and thus considerably affects female

lifetime reproductive success, and should not be selected for. In

line with this, the period between parturition and consecutive

conception in Assamese macaque females with 1-year IBIs is

relatively constant (265 to 290 days; [52]), indicating that females

are impregnated as soon as they resume cycling (female primates

need to attain a critical body weight to resume cycling; e.g.

[66,67]). Third, the main hypothesis to explain ovarian cycle

synchrony is to increase the number of simultaneously receptive

females in order to decrease male monopolization potential and to

mate with multiple males (e.g. [14-22]). In Assamese macaques,

however, fertility is undisclosed to males, and females mate rather

continuously throughout the 4-month mating season, i.e. during

acyclic, cyclic, and pregnant stages [53]. So, females do not need

to synchronize their fertile periods because males appear to be

unable to recognize them, and because mating is largely decoupled

from hormonal control.

The alternative hypothesis tested here is that females actively

synchronize their mating not their ovarian activity. We found that

the occurrence of a female’s receptivity on a given day was

significantly associated with the proportion of other females

mating that day. Female Assamese macaques start being sexually

active in unison with some females mating up to three months

before they experience their first ovulatory cycle (see [53], Fig.1).

Our results not only explain the high number of simultaneously

receptive females not due to ovarian cycle synchrony and

environmental seasonality, but also offer a possible proximate

explanation for the patterning and maintenance of extended

sexuality as described in the following scenario: In Assamese

macaques, conceptions are spread over the mating season, with

few conceptions occurring in October, i.e. at the beginning of the

mating season [52]. The onset of the mating season is likely to be

triggered by external cues (e.g. photoperiod; [25,26]) which induce

the onset of ovulatory and sexual activity in a few females, namely

those who conceived their last infant two years ago (see above).

Other females who resume cycling later in the season start being

receptive in response to the mating of these females. Thus,

receptivity is socially (behaviourally and not via pheromones)

mediated and induced before the onset of ovulatory activity and,

furthermore, maintained after conception, i.e. during pregnancy.

In Assamese macaques, 70% of copulations are female-initiated

[53] (and females very rarely refuse copulations; IF, pers. obs.),

which supports the active nature of the observed female mating

synchrony.

Social facilitation of sexual behavior has already been proposed

for patas monkeys (Erythrocebus patas; [68]). A study on rhesus

macaques (Macaca mulatta) has shown that not only male sexual

behavior increased due to the presence of females which were

experimentally brought into sexual receptivity during the non-

mating season but also untreated females exhibited copulatory

behavior [69]. In blue monkeys (Cercopithecus mitis stuhlmanni), the

Table 1. Factors influencing the probability of a given female
to copulate on a given day (binary variable).

predictor variable estimate ± SE z value p

Intercept 21.1460.16 27.18 ,0.001

Other females copulating 0.6460.24 2.71 0.007

Conception status 0.1760.12 1.38 0.17

Dominance rank 0.8760.20 4.47 ,0.001

Autocorrelation term 2.0060.17 11.45 ,0.001

Predictor variables: Proportion of other females copulating, conception status
(pre- or postconception), female dominance rank (standardized across the two
mating seasons), and autocorrelation term.
Female ID (n = 15) and season (n = 2) were included as random factors. The
interaction between the number of other females copulating and conception
status was not significant (estimate6SE = -0.0560.51, z = -0.10, P = 0.92). The
numbers presented in the table are from a model not comprising this
interaction.
doi:10.1371/journal.pone.0026144.t001
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simultaneous onset of receptivity may also be socially mediated;

however, no endocrine data are available in order to rule out

ovarian cycle synchrony [70]. The mating patterns of vervet

monkeys (Cercopithecus aethiops; see [71,72]) and Tibetan macaques

(Macaca thibetana; see [73]) both closely resembling that of Assamese

macaques, suggest a behaviorally coordinated mating activity. It

would be rewarding to test whether female receptivity is more

synchronous than random in the species mentioned above in order

to evaluate the general applicability of the mating-synchrony-

hypothesis. Also, the discrepancy between observed and expected

female mating overlap in some primate species (see [19,74]), may,

given our results, be explained by active mating and not

necessarily ovarian cycle synchrony (which anyway is disputed in

primates; e.g. [39]). Theoretical support for socially induced

mating behavior comes from a recent model on the evolution of

increased female sexuality which indicates that sexual behavior

outside fertile periods can occur as soon as some fertile females

appear in the population [5].

On an ultimate level, although not tested here, behavioral

coordination [51] of sexual activity may have different functions.

The two main potential explanations, depending, at least partly,

on the social system of the species, relate to (1) female-female

reproductive competition and (2) intersexual conflict over

paternity concentration. In uni-male groups of western lowland

gorillas (Gorilla gorilla), for example, females synchronize post-

conception copulations to occur when other females mate, which

has been linked to female mating competition [75,76]. In contrast,

in species with multimale-multifemale social organization, we

propose that active mating synchrony may be an effective female

strategy whenever paternity concentration in the dominant male is

less important than paternity dilution among many males (e.g.

inside take-over species; see [77]), or when females adopt an

alternative mate choice strategy not based on male dominance

rank (e.g. MHC-associated mating; [78,79]). In Assamese

macaques, females are highly promiscuous (i.e. they mate with

virtually all males) while at the same time expressing non-

dominance based mating biases (towards different males), and

mating repeatedly with their ‘primary partner’ (for details see

[53]). Furthermore, in this species, females rarely interfere in

copulations of other females (IF, pers. obs.), indicative of female-

female competition being an unlikely explanation for the observed

mating synchrony. Active mating synchrony, i.e. great flexibility in

sexual behavior, throughout the mating season (i.e. pre- and post-

conception) appears to diminish largely male monopolization

potential and reproductive skew in Assamese macaques (17.5%

alpha male mating share; [54]), which enables females to exert

their reproductive strategy, i.e. creating differentiated mating

relationships within a promiscuous mating system (see [53]).

Finally, we call for the use of consistent terminology.

Irrespective of conflicting evidence for synchrony in the context

of animal reproduction, numerous terms (ovarian-, menstrual-,

estrous-, cycle-, female-, receptive-, reproductive-, breeding-, and

mating synchrony) have been inconsistently used between and

within studies in order to describe any overlap in female

reproductive events. Hence, we explicitly stress the differentiation

of physiological and behavioral reproductive synchrony given our

finding that mating synchrony can occur in the absence of ovarian

cycle synchrony.
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