
The Energy Landscape Analysis of Cancer Mutations in
Protein Kinases
Anshuman Dixit1, Gennady M. Verkhivker2,3*

1 Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America, 2 School of Computational

Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America,

3 Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America

Abstract

The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer
mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined
computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic
mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase
core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction
networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational
transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric
eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced
allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally
frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the
thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and
increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity
of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in
activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites
critical for allosteric regulation in complex biomolecular systems.
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Introduction

Rapid and efficient communication of long-range conforma-

tional changes in proteins plays a vital role in allosteric regulation

of biological systems[1,2]. Recent seminal reviews of protein

allostery have emphasized a central role of cooperativity and the

notion that catalysis and allostery may emerge via common

communication routes [3,4]. Modeling of allosteric transitions in

biological molecules has been significantly advanced by the

development of elastic network models and normal mode analysis

approaches [5-22]. Elastic network models of protein dynamics

and signal propagation theory have allowed for a quantitative

analysis of long-range allosteric protein interactions [13-16].

Sequence-based evolutionary analysis [23,24] and structure-based

approaches [19,20,25-27] have demonstrated that allosteric

pathways in proteins may be formed through interactions of

evolutionary conserved and sparsely connected clusters of residues

that are energetically coupled to mediate long-range communica-

tion. A comprehensive analysis of allosteric mechanisms has led to

a unified view of allosteric regulation that implies the existence of

preexisting conformational states and multiple communication

pathways on the conformational landscape [28-32]. Energy

landscape theories and simplified energy models have provided a

robust theoretical framework to elucidate fundamental aspects of

protein structure, dynamics and allosteric regulation [33-43].

According to the modern energy landscape theory, random

sequences have rugged landscapes with many local minima due to

severe conflicting interactions (a phenomenon termed ‘‘frustra-

tion’’) and, as a result, the prevalence of structurally alternative yet

energetically similar conformations. The energy landscape models

have also suggested that protein-like sequences may have evolved

to partially eliminate frustrated interactions between amino acids

and have smoothed (‘‘funnel-like’’) landscapes to ensure fast

folding to their thermodynamically stable native structures. This

has become known as the ‘principle of minimal frustration’

[44,45]. The funneled-like nature of the energy landscapes for

natural proteins implies that the conformations that are structur-

ally similar to the native state are also low in energy, and the native

state interactions are minimally frustrated [33-45]. A generalized

view of allosteric regulation based on the energy landscape theory

(often termed as a ‘‘conformational selection model’’) suggests that

a protein may function in a dynamic equilibrium of structurally

different conformational states, whereby the effect of binding or

mutation can be propagated over long distances by cooperatively

shifting the equilibrium towards a functionally relevant confor-

mation [46-52]. The "old" view (induced fit mechanism) and the

"new" view (conformational selection mechanism) of protein

allostery appeared not to be mutually exclusive but rather
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complementary in rationalizing allosteric mechanisms at the

molecular level [53-56]. Physics-based simulation approaches

have provided a compelling evidence of coupling between

collective motions and local structural changes as an important

underlying principle of allosteric communication in biomolecules

[53-60]. Thermodynamics-based approaches have further linked

global and local structural perturbations with free energy changes

of allosteric coupling in mechanisms conformational switching

[61-64]. Moreover, the energy landscape models have suggested

that long-range cooperativity of protein-protein interactions

during allosteric transitions may favor a combination of the

population-shift and induced-fit mechanisms, whereas short-range,

allosteric binding of proteins with inhibitors could often proceed

via the population-shift mechanism [65-72].

Ferreiro and Wolynes [69] have recently advanced the energy

landscape theory by combining biophysical modeling and

structural bioinformatics analyses of local protein interactions that

are fundamental for folding, binding and allosteric regulation.

According to this model, minimally frustrated landscapes of

protein networks may have evolved to acquire the ability for

regulation via cooperative allosteric changes. The proposed

method has quantified the degree of spatial local frustration in

proteins using a local version of the global gap criterion

formulation of the minimal frustration principle [33-45]. This

model introduced a local frustration metric termed ‘‘configura-

tional frustration index’’ as a measure of local stabilization for an

individual native pair with respect to a set of structural decoys

generated by perturbing both the identities and location of the

interacting amino acids [69,70]. According to this criterion, if the

interaction energy of a native pair of residues is sufficiently

stabilizing as compared to the set of structural decoys, this residue

pair is designated as ‘‘minimally frustrated’’, otherwise the

interactions may be classified as either ‘‘neutral’’ or ‘‘locally

frustrated’’. It is worth noting that the principle of minimal

frustration does not require a complete elimination of locally stable

alternative structures. A certain degree of local frustration is always

present in an otherwise largely unfrustrated protein structure and

may have arisen from evolutionary requirements to adapt protein

dynamics for specific functions [43].

The analysis of locally frustrated protein regions using a non-

redundant set of 314 monomeric protein domains and a curated

set of nonredundant dimeric complexes has shown that the locally

frustrated sites correspond to the regions involved in binding with

other macromolecules and ligands and could often collocate with

the functional groups prone to large structural changes [69,70].

Wolynes and coworkers have recently surveyed a curated database

of allosteric proteins with known inactive and active crystal

structures and have demonstrated that allosteric protein domains

are connected by a web of minimally frustrated interactions, while

highly frustrated residues could be preferentially clustered near the

protein surface [71,72]. According to this study, minimally

frustrated regions in allosteric proteins domains constitute nearly

40% of the total contacts, with about 10% of the total interactions

considered to be ‘‘highly frustrated’’, and the remainder of

interactions attributed to the ‘‘’neutral’’ category.

Protein kinases are signaling switches with a conserved catalytic

domain that phosphorylate protein substrates and play a critical

role in cell signaling pathways [73-82]. Protein kinase genes

constitute ,2% of all genes in human genome and this protein

family consists of more than 500 diverse members. The crystal

structures of human protein kinases include 167 unique human

protein kinase domains and 170 kinases, considering closely

related orthologues (http://www.sgc.ox.ac.uk/research/kinases/).

Structural studies of protein kinase catalytic domain structures and

regulatory protein complexes have revealed distinct scenarios by

which kinases can control a dynamic equilibrium between

structurally similar active and highly specific inactive kinase states

- a structural hallmark of the kinase domain critical for its normal

function [83-89]. Allosteric regulation may be achieved via

different mechanisms including inhibitor-induced stabilization of

the specific inactive conformation in ABL [90-95], BRAF [96],

KIT [97], PDGFR, P38 [98], PI3K kinases [99] and binding to

the allosteric myristoyl-binding pocket in ABL [100-103]. Protein

kinase activation can be also regulated via formation of structurally

diverse regulatory complexes most notably exemplified for ABL

[104,105] and EGFR kinases [106-109], yet a unifying structural

mechanism associated with asymmetric tyrosine kinase arrange-

ments in regulatory complexes could underlie the activation

mechanism of the entire EGF protein family [110-113]. A steady

progress in understanding of protein kinase mechanisms has fueled

a considerable effort to discover and design selective ATP-

competitive and allosteric inhibitors targeting specific forms of

cancer, kinase cancer mutants and associated targeted pathways

[114-116].

Abnormal activation of regulation in protein kinases is a

dominant source of tumor-associated somatic mutations. Struc-

tural and mutagenesis investigations of ABL [93-95] and EGFR

kinases [117-119] have revealed structural divergence of the

kinases in response to activating mutations. Kinome-wide

bioinformatics studies have contributed to the identification of

conserved sequence motifs harboring disease-associated and

cancer mutations, suggesting that a significant number of

oncogenic cancer mutations could form structurally conserved

mutational hotspots within the kinase catalytic core [120-123].

Computer simulation studies have investigated molecular mech-

anisms of protein kinase activation in c-Src [124-127], adenylate

kinase [128], ABL [129], CDK5 [130], KIT [131], RET, MET

[132] and EGFR kinase [133-135]. Multi-scale simulation studies

of conformational transitions in the normal and oncogenic forms

of ABL and EGFR kinases have indicated that the impact of the

oncogenic mutants may spread beyond the immediate site of

mutation leading to global allosteric changes [134]. Most recently,

computational modeling of allosteric regulation has revealed

organizing principles of mutation-induced activation in ABL and

EGFR kinases, which may be determined by a dynamic coupling

between structurally rigid aF-helix and conformationally adaptive

aI-helix and aC-helices [136]. These structural elements form a

dynamic network of efficiently interacting functional regions that

may universally control the long-range interdomain communica-

tion and allosteric activation in protein kinases. The energy

landscape studies have previously suggested that localized

frustration may be connected with allosteric conformational

changes in proteins [69-72].

Collectively, computational studies have suggested that molec-

ular mechanisms of allosteric regulation in protein kinases can be

described using models of mutation-induced modulation of the

conformational landscape and conformational selection principles

of the thermodynamically relevant states. In this work, kinome-

based structural bioinformatics analysis and biophysical modeling

of protein kinase structures were employed to characterize and

quantify the interplay between oncogenic kinase mutations and

locally frustrated sites as potential catalysts and mediators of kinase

activation. The results of this study suggest that the energy

landscape effect of oncogenic mutations may be allosteric in

nature, eliciting global changes in the spatial distribution of highly

frustrated residues. We show that cancer mutations could act by

simultaneously perturbing the network of minimally frustrated

interactions in the inactive kinase state, while reducing local
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frustration and restoring allosteric interactions in the active kinase

form. Hence, locally frustrated sites in the catalytic core may serve

an important functional role by enabling mutation-induced

conformational transitions towards the constitutively active kinase

conformation.

Results

The Energy Landscapes and Local Frustration in Protein
Kinases

In the present study, we combined molecular dynamics (MD)

simulations of protein kinases with the energy landscape analysis to

characterize the role of local frustration as an important factor

associated with allostetric kinase activation. From the energy

landscape perspective, the mechanistic features of the activation

transitions should be determined by the structural topology of the

kinase domain fold and therefore could capture salient aspects of

the activating mechanism. To investigate the role of local

frustration in conformational transitions between structurally

different functional states, we surveyed the local frustration profiles

in protein kinase structures and characterized the network of

minimally frustrated interactions responsible for structural stability

of the kinase catalytic core. We also located and characterized

clusters of locally frustrated sites where the minimal frustration

principle could be violated. The change in the configurational

frustration index upon mutation can provide a quantitative

measure of a tendency to bring about a conformational change

in the protein. The effect of kinase cancer mutations on local

frustration profiles allowed us to quantify how mutation-induced

redistribution of locally frustrated residues can promote allosteric

transitions between structurally distinct functional states. The

configuration frustration index could measure the relative stability

of a particular native contact relative to the set of all possible

contacts in that location, thus allowing to classify the individual

native contacts in the protein structure according to their

frustration level. A kinome-wide examination of the configura-

tional frustration index computed for a large number of protein

kinase crystal structures (Table S1 in File S1) revealed that the

typical values may range between 24 to +4. The overall residue-

based distribution of a frustration index for the wild type (WT)

kinases was biased towards minimally frustrated residues with the

positive values of the frustration index (Figure 1A). The

distribution also displayed a smaller shallow peak corresponding

to locally frustrated residues with the frustration index in the range

of 20.6 to 20.7 units. The impact of mutations resulted in a subtle

yet noticeable change in the distribution local of frustration in the

catalytic core, revealing a second equally important peak around -

1.0 value. Hence, the overall distribution was almost evenly

divided between the minimally frustrated and frustrated residues,

leaving fewer residues at the neutral status (Figure 1B).

We focused then on the local frustration analysis performed for

a subset of protein kinase genes (ABL, EGFR, BTK, KIT, BRAF,

MET, and RET) that account for the vast majority of highly

oncogenic mutations in the catalytic domain (Table S2 in File
S1). These protein kinase genes were chosen for a more detailed

analysis because of the wealth of structural and functional

information that provided complementary experimental data for

validation of our models. More importantly, however, a diverse

repertoire of activating and drug resistant mutations in these

kinases genes represent critical cancer culprits that could

frequently contribute to a state of oncogene dependency in a

variety of cancers. The distribution of local frustration in these

kinase genes, as measured by the configurational frustration index,

revealed a distinct pattern where the peaks were noticeably shifted

towards more frustrated residues for both the WT and mutant

kinases (Figure 2). The percentage of minimally frustrated

interactions in the catalytic core accounted for more than 40%

of the total contacts, with about 15-20% of the interactions be

Figure 1. The histogram of a residue-based frustration index values in the catalytic domain from a kinome-based analysis. (A) Wild-
type kinases and (B) Mutant kinases.
doi:10.1371/journal.pone.0026071.g001
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considered as frustrated and the remainder neutral. This analysis

generally agreed with the reported distribution of frustrated

regions and partition of minimally and highly frustrated residues in

proteins [69,70]. However, the average fraction of locally

frustrated residues was higher in protein kinases than the one

reported for small monomeric proteins. Hence, our data suggested

that conformational landscapes of kinase oncogenes may be

characterized by an increased level of local frustration and protein

mobility.

Based on this analysis, we proposed that the spatial distribution

of local frustration in protein kinases may be regulated and readily

changed by oncogenic mutations. According to our conjecture,

activating kinase mutations could amplify the local frustration in

the inactive state, while eliminating (or partly removing) locally

frustrated sites in the active state. As result, mutation-induced

redistribution of local frustration in protein kinase structures may

contribute to the molecular mechanisms that control kinase

activity by altering the dynamic equilibrium between functional

kinase forms. To verify this hypothesis, we analyzed changes in the

local frustration profiles for a representative set of highly onco-

genic ABL (Figure 3) and EGFR kinase mutants (Figure 4) in

both inactive and active states. We observed that highly oncogenic

mutations may indeed cause an increase in the local frustration of

mutated residues in the inactive autoinhibitory state of ABL (PDB

ID 1IEP) [90] and EGFR (PDB ID 1XKK) [117] (Figures 3, 4).

Hence, kinase mutations with a high oncogenic potential may

destabilize the autoinhibited kinase form. Importantly, oncogenic

mutations could partly alleviate local frustration in the active

kinase state (Figures 3, 4). A more extensive minimally frustrated

network of interactions rigidifies the active form of the catalytic

domain for ABL (PDB ID 1M52) [91,92] and EGFR (PDB ID

2J6M) [118]. Although the crystal structures employed in our

study (Table S1 in File S1) were mostly solved in the unbound

form, there were some structures in the studied set (particularly

ABL and EGFR kinases) that were originally crystallized in

complexes with ATP or small molecule inhibitors. Since ATP

binding could potentially increase structural rigidity of the

catalytic domain, the local frustration analysis that included

structures with a removed ATP may produce artificial changes in

the frustration index for binding site residues. We evaluated the

overall statistical distribution of the configurationally frustration

index using crystal structures with bound molecules. The effect

was found to be rather negligible and the resulting distribution

was virtually indistinguishable from the one shown in Figure 1.
Indeed, a significant fraction of the protein kinase residues

involved in binding site interactions belong to the structurally

rigid hinge region which is a minimally frustrated element of the

catalytic core and as such robust to minor perturbations of

interactions. However, we found some interesting small variations

in the local frustration profiles of ABL (Figure S1) and EGFR

kinases (Figure S2), which were observed for oncogenic

mutations in the glycine-rich P-loop (ABL-G250E, ABL-

Q252H, ABL-E255K, EGFR-G719S, EGFR-G719A, EGFR-

G719C). It is known that the P-loop in ABL kinase may be

stabilized in the Imatinib-bound inactive structure, which may

explain the increased local frustration upon P-loop mutations in

the inactive state (Figures S1,S2). Interestingly, these point

mutations are known to impair the binding of Imatinib (Gleevec)

to ABL by shifting the thermodynamic equilibrium towards the

active form incompatible with the inhibitor binding [114-116].

Our data suggested that mutation-induced local frustration in the

inhibitor-bound inactive kinase state may partly contribute to

initiating a population shift between functional forms. We also

analyzed the distribution and structural partition of minimally

Figure 2. The histogram of a residue-based frustration index values in the kinase catalytic domain from a statistical analysis of
dominant kinase oncogenes. (A) Wild-type kinases and (B) Mutant kinases. A set of employed kinase oncogenes included ABL, EGFR, BTK, KIT,
MET, BRAF, and RET kinases. The analysis included mutants of these kinase genes with high oncogenic potential according to the frequency profiles
in the mutational samples (.5) obtained from the COSMIC repository [153].
doi:10.1371/journal.pone.0026071.g002
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frustrated and locally frustrated regions in the ABL kinase

(Figure S3). A dense network of minimally frustrated residues

was found in the structurally rigid core of the catalytic domain

(connected by green lines). This minimally frustrated

web was formed by structurally conserved aF-helix and aE-helix.

In contrast, the clusters of locally frustrated residues (connected

by red lines) assembled on the protein periphery, including the

aC-helix, activation loop, the P+1 loop in the C-terminal lobe.

As the autoinhibiting interactions released in the active form,

protein kinases could become more flexible with a considerable

degree of residual local frustration. This was reflected in the

increased presence of locally frustrated residues connected by red

lines in the aC-helix, and the C-terminal lobe of the active ABL

(Figure S3B).

Figure 3. The effect of oncogenic mutations on local frustration in the ABL kinase. The residue-based frustration index values are shown
for a set of oncogenic ABL kinase mutants in the inactive (A) and active forms (B). The frustration index values are shown in filled yellow bars for the
wild-type kinase form and in red filled bars for the mutant forms. The analysis was performed on the unbound form of the crystal structures of ABL in
the inactive form (PDB ID 1IEP) [90] and active form (PDB ID 1M52) [91,92].
doi:10.1371/journal.pone.0026071.g003

Figure 4. The effect of oncogenic mutations on local frustration in the EGFR kinase. The residue-based frustration index values are shown
for a set of oncogenic EGFR kinase mutants in the inactive (A) and active forms (B). The frustration index values are shown in filled yellow bars for the
wild-type kinase form and in red filled bars for the mutant forms. The analysis was performed on the unbound form of the crystal structures of EGFR
in the inactive form (PDB ID 1XKK) [117] and active form (PDB ID 2J6M) [118].
doi:10.1371/journal.pone.0026071.g004
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Local Frustration and Protein Flexibility
We also investigated a relationship between local frustration and

protein flexibility of kinase structures. In our previous studies, we

have characterized the conformational landscapes of ABL, EGFR,

RET and MET kinases as well as various cancer mutants using

MD simulations of the Apo kinase and complexes with ATP and

small molecule inhibitors [132,134,136]. Here, we compared the

results of local frustration analysis with the kinase flexibility

profiles, which were inferred from MD simulations and evaluated

using the root mean square fluctuations (RMSF) of the catalytic

domain residues. In particular, MD studies of ABL and EGFR

kinases in the normal and oncogenic states displayed a high local

flexibility in the lower portion of the activation loop [134,136].

Similarly, the bundle of a-helices in the C-terminal, which

represented the densest cluster of minimally frustrated residues

(Figures S4,S5), also demonstrated the smallest variation in the

RMSF values - a characteristic of structurally rigid protein core

[134]. The local frustration profiles also matched up nicely with

the B-factors of the protein kinase residues. An example of such

comparative analysis was detailed for the EGFR-WT in the active

form (Figure S5). A robust correlation was found between the

residue-based local frustration index and the B-factor values

(Figure S5 D). We also observed that the highly frustrated EGFR

residues corresponded to the conformationally mobile regions with

the higher B-factor values. To further illustrate these findings, we

performed structural mapping of the average B-factors onto a set

of inactive (Figure S5 A) and active structures (Figure S5 B) of

ABL, EGFR, BTK, KIT, BRAF, MET, and RET kinases.

Additionally, locally frustrated residues were also mapped onto the

catalytic core. The locally frustrated sites corresponded to protein

regions with the increased thermal mobility and overlapped with

the protein residues of higher B-factors.

The analysis of protein kinase flexibility has also demonstrated

that conformational changes in functionally important kinase

regions may be allosterically coupled and highly correlated. More

specifically, we found evidence of highly correlated protein

motions and allosteric coupling of the aC-helix and activation

loop with all other kinase regions (Table S3 in File S1).

Interestingly, the aC-helix and the activation loop represented two

most highly coupled protein kinase regions. Other highly

correlated segments of the catalytic domain included (a) the hinge

region and catalytic loop, and (b) the P-loop and activation loop.

These findings consistent with our recent analysis of collective

motions in ABL and EGFR regulatory complexes that manifested

in ‘‘breathing’’ rigid body movements of the catalytic core coupled

with the fluctuations of the P-loop, activation loop, aC-helix and

the aG-helix of the C-terminal [136]. Numerous structural

biology studies have also indicated a central involvement of the

aC-helix and activation loop in allosteric coupling that control

regulation of protein kinase activity [110-113].

Allosteric Effect of Oncogenic Mutations on Local
Frustration

We investigated if spatial distribution of local frustration may

present initiation points for global conformational changes and

whether the effect of oncogenic mutations on the local frustration

would be local or allosteric. If the effect of oncogenic mutations

was local, it would cause only local perturbations and result in the

negative values of the frustration index for residues in the

immediate proximity of the mutational site. However, if the effect

of oncogenic mutations was global, the spatial distribution of

highly frustrated residues may be allosterically affected and result

in noticeable changes at the remote from the mutational site

regions. A comparison of locally frustrated residues mapping in the

ABL-WT and ABL-T315I mutant revealed subtle yet relevant

changes, where most of the effected residues were remote from the

mutational site (Figure 5). We observed that the gate-keeper

mutation in the inactive kinase form may allosterically perturb

structural rigidity of the catalytic core and increase local

frustration of the aF-helix, aE-helix, and aC-helix regions. Our

findings corroborated with a hydrogen exchange mass spectrom-

etry (HX MS) study of ABL kinase [100], indicating that the effect

of the ABL-T315I mutation could result not only in local

conformational disturbances near the aC-helix, but also alloste-

rically change protein flexibility in the distant from mutation

protein regions. The changes in the local frustration induced by

ABL-T315I mutation in the inactive kinase could be illustrated in

examples presented in Figures S6, S7. While frustration plots of

ABL-WT and ABL-T315I were generally similar, there were some

changes in the red line clusters connecting Asp-381 of the DFG

motif to Glu-286 which makes an important hydrogen bond with

Lys-271 (Figure S6). Another change could be noted in the anti-

parallel b-sheet from the lower part of the activation loop (Figure
S7). In this region a few of the residues become highly frustrated

upon mutation as evident by red lines connecting residues Tyr-

393, Ala-395 and Pro-402.

Importantly, partial unfolding of the anti-parallel b-sheet at the

lower end of the activation loop was previously determined as a

prerequisite for stabilization of the intermediate Src-like structure

and a common mechanistic feature of the ABL and EGFR

activation pathways [134]. In the Src-like conformation, aC-helix

was rotated and moved out of the active site (aC-helix-Glu-out

position), the DFG motif flipped in the intermediate DFG-in

position, the anti-parallel b-sheet from the lower part of the

activation loop unfolded and the P-loop moved in towards the

active site. These structural changes were accompanied by a

concerted breakage of the K271-E286 ion pair and formation of

the E286-R386 salt bridge. A conserved salt bridge between the

K271 and E286 is a structural hallmark of the inactive and active

forms of ABL, while it is absent in the Src-like inactive structure.

The formation and breakage of this critical interaction coupled

with the conformational changes in the DFG motif are critical

structural features underlying mechanisms of kinase activation

[134]. A mutation-induced development of local frustration in the

DFG motif and the b-sheet of the activation loop could present the

‘‘initiation cracking points’’ [65-72] that would likely to perturb

the inactive kinase form and facilitate conformational transitions

between alternative kinase states. These results agree with the

energy landscape analysis of adenylate kinase [66], in which the

high stress region in the activation loop may ‘‘crack’’ or locally

unfold releasing the strain and thus catalyzing a global

conformational transformation. According to the ‘‘cracking’’

model [137-139], allosteric conformational changes can be

triggered by the increased local frustration causing thermodynam-

ic destabilization of a protein region via local unfolding. We found

that mutation-induced perturbation of minimally frustrated

interactions and amplification of protein flexibility in the inactive

kinase state could be compounded by a partial reduction of local

frustration and structural consolidation of the active kinase.

Collectively these effects may present a feasible mechanism of

kinase activation by cancer mutations via exploiting redistribution

of local frustration to facilitate conformational transitions and

enhance the thermodynamic stability of the constitutively active

kinase. The proposed model is consistent with the energy

landscape ideas according to which low local stability should

accompany high local frustration and locally frustrated regions

may act as local cracking points or specific hinges during allosteric

changes [65-72,137-139].

The Energy Landscapes of Protein Kinases
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Oncogenic Mutations as Allosteric Switches of Local
Frustration

We proposed that locally frustrated kinase sites may catalyze

large scale cooperative transitions by activating specific pathways

of allosteric transformation, which may be modulated by cancer

mutations. According to this conjecture, structural localization of

kinase cancer mutations would be collocated with the locally

frustrated sites. Structural bioinformatics analysis of protein

kinases has previously revealed that highly oncogenic kinase

mutations could fall at structurally conserved positions within the

kinase catalytic core [123]. Moreover, these structurally conserved

mutational hotspots could be shared by multiple kinase genes. To

test our hypotheses, we performed a comparative analysis of the

spatial distribution of highly oncogenic kinase mutations and

highly frustrated residues mapped onto the kinase catalytic domain

(Figure 6). We found that local frustration was not randomly

scattered on the protein surface or uniformly distributed in the

protein kinase structure. Interestingly, locally frustrated clusters

could overlap with the kinase segments involved in allosteric

interactions and collocate with the regions directly involved in

conformational changes associated with the kinase function

(Figure 6). In particular, our analysis revealed that the vast

majority of locally frustrated sites resided in the C-terminal lobe,

most notably populating the substrate binding region of the

catalytic core framed by the aF, aG, aH, and aI helices, including

the activation loop segment, and the P+1 loop (Figure 6). We

have previously demonstrated that coupling between structurally

rigid aF-helix (minimally frustrated site) and conformationally

adaptive aI-helix, aC-helix and the P+1 loop (more frustrated

sites) may control allosteric activation in protein kinases [136].

Our present results indicated that highly frustrated residues could

be localized near hinges (Figure 6) coordinating collective

motions of kinase regions during allosteric conformational

changes. We also analyzed the distribution of known oncogenic

mutations across catalytic core subdomains using a set of kinase

oncogenes ABL, EGFR, BTK, KIT, BRAF, MET, and RET

(Figure 7A). It appeared that this distribution was characterized

by a bias towards specific functional regions, and functionally

important activation loop along with the downstream P+1 loop

region tend to be more densely populated than other subdomains.

Other segments such as P-loop and catalytic loop could also

harbor oncogenic mutations, but were less frequently populated by

functionally important mutations. Parallel with this analysis, we

carried out structural mapping of highly frustrated residues onto

the kinase catalytic core and quantified the distribution of the local

frustration index as a function of the kinase subdomain

(Figure 7B). Importantly, the vast majority of highly frustrated

kinase residues were mapped onto the C-terminal lobe, including

the activation loop and regulatory P+1 loop. The locally frustrated

residue clusters that populated the activation loop and the C-

terminal lobe were collocated with the disease associated

mutations and residues involved in allosteric conformational

changes. Indeed, a relatively high concentration of highly

frustrated residues in a single functional region is especially

pronounced for the P+1 motif, which includes residues in the

activation segment, and contains the conserved APE motif. The

P+1 segment links the subdomains of the C-terminal lobe with the

ATP and substrate binding regions in the N-terminal lobe. This

segment is critical for protein substrate recognition and allosteric

regulatory interactions [75-81], serving as a hydrophobic glue

holding the sub-domains of the C-lobe together. The APE motif is

involved in allosteric regulation, as it is anchored to the aF, aG

and aI-helices, providing direct communication between the

activation segment and C-terminal. In addition, one of the highest

concentrations of disease associated mutations localized in the

vicinity of the P+1 pocket [120-123]. Functional role of these

Figure 5. The effect of oncogenic mutation on spatial distribution of local frustration in the ABL kinase. The spatial distribution of local
frustration in the inactive forms of ABL-WT (A) and ABL-T315I (B). The color sliding scheme of local frustration ranges from minimally frustrated
(shown in blue) to highly frustrated (shown red). The key functional regions of the protein kinase along with the respective range of protein residues
are referred to by arrows. Structural mapping of local frustration on the ABL kinase catalytic core is shown for the inactive ABL-WT structure (PDB ID
1IEP) [90]. The effect of T315I on the inactive ABL structure was evaluated via structural modeling detailed in the Materials and Methods section. The
Pymol program was used for visualization of protein kinase structures and the local frustration mapping (The PyMOL Molecular Graphics System,
Version 1.2r3pre, Schrödinger, and LLC).
doi:10.1371/journal.pone.0026071.g005

The Energy Landscapes of Protein Kinases

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e26071



Figure 6. The spatial distribution of highly oncogenic mutations and highly frustrated residues in the kinase catalytic core. The
kinase mutations with known high oncogenic potential were mapped onto kinase catalytic domain (A). Structurally conserved hotspots of kinase
cancer mutations are annotated by large red spheres and their location is indicated by arrows in (A). The locally frustrated sites (FI,-2.0) mapped
onto kinase catalytic domain and depicted as small red spheres (B). The crystal structure of EGFR-WT in the active form (PDB ID 2J6M) [118] was used
as a template for structural mapping. The Pymol program was used for visualization of protein kinase structures and the local frustration mapping
(The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, and LLC.).
doi:10.1371/journal.pone.0026071.g006

Figure 7. The distribution of oncogenic mutations and locally frustrated sites at each structural region in the catalytic core. The
distribution of cancer mutations (A) and the distribution of local frustration (B) across catalytic core subdomains. The analysis is performed based on
known oncogenic mutations in the ABL, EGFR, BTK, KIT, BRAF, MET, and RET kinase genes. The residue ranges of the kinase subdomains (SD) were
determined based on the ABL kinase crystal structure (PDB ID 1IEP) [90] as the reference and in accordance to our previous study [123]: SDI:242-
261(P-loop region); SD2:262-278; SD3:279-291(aC-helix); SD4:292-309; SD5:310-335 (hinge region); SD6A:336-356; SD6B357-374 (catalytic loop);
SD7:375-393 (activation loop); SD8:394-416 (P+l loop); SD9:417-438; SD10:439-461; SD11:462-480; SD12:481-498. The C-terminal region encompasses
SD8-SD12 subdomains.
doi:10.1371/journal.pone.0026071.g007
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residues as catalysts of kinase activation may be determined by

their strategic location critical for regulation.

Discussion

Activating kinase mutations result in a ligand-independent

constitutive activation of the kinase activity. Among most prominent

examples are activating mutations in the EGFR gene, where a

single-point mutation L858R accounts for about 41% of all EGFR

activating mutations [140,141]. Strikingly, recent functional studies

have revealed the impaired nuclear EGFR accumulation in cells

expressing EGFR-L858R may be due to the lack of allosteric

activation rather than a direct consequence of constitutive kinase

activity [142]. Hence, the primary functional effect of the activating

EGFR-L858R mutation, which was shown to thermodynamically

stabilize EGFR [134,143], is to allow for receptor activation that

does not require the allosteric conformational change. The results of

our current study corroborate with these central experimental

findings. We observed a high density of locally frustrated residues in

the regions involved in allosteric conformational transitions,

particularly in the lower portion of the activation loop and the

P+1 loop. While these locally frustrated sites could overlap with the

mutational hotspots of disease-causing mutations, allosteric changes

cannot occur if critical residues are mutated. This seeming

contradiction may be partly explained based on the proposed

functional role of locally frustrated sites as initiation points of

allosteric transitions. Indeed, locally frustrated sites may trigger

global structural changes via local rearrangements in the vicinity of

pivotal hinge points and rigid body motions involving coupling of

minimally frustrated and locally frustrated regions. The observed

mutation-induced reduction of locally frustrated sites and thermo-

dynamic stabilization of the active kinase form may thus help to

suppress allosteric mechanism of activation.

This study suggested that the interplay between a minimally

frustrated structural core and locally frustrated regions may

collectively enable robust allosteric activation of protein kinases.

Indeed, whereas a broad web of minimally frustrated residues in

the kinase catalytic core could reflect robustness of the protein

kinase fold to evolutionary pressure and mutations, the presence of

locally frustrated residue clusters may not only be evolutionary

tolerable but also potentially advantageous for tailoring protein

kinase dynamics to maintain a dynamic equilibrium between

alternative kinase states required for normal function. Diverse

mechanisms of allosteric communication can span extreme cases,

from a sequential model, where binding of a molecule at one site

causes a sequential propagation of conformational changes across

the protein to a fully cooperative model, where structural changes

are tightly coupled and conformational switching is first-order

phase transition. Our data seemed to support a ‘‘block-based’’

model of allosteric communication, according to which clusters of

optimally interacting residues can recruit blocks of more flexible

residues into communication pathways [32]. Although minimally

frustrated residue clusters with optimized local interactions

constitute the structurally rigid core of the kinase catalytic domain,

locally frustrated residue clusters, whose interaction networks may

not be energetically optimized, could define ‘‘soft spots’’, that are

weakly coupled to the kinase core and prone to dynamic

modulation by mutations or binding.

In the present study, we combined computer simulations and

the energy landscape analysis of protein kinases to characterize the

interplay between oncogenic mutations, local frustration and

protein flexibility as important catalysts of allostetric kinase

activation and regulation. The results of this study suggested that

mutation-induced allosteric signaling may involve a dynamic

coupling between structurally rigid (minimally frustrated) and

plastic (locally frustrated) clusters of residues. We found that the

energy landscape effect of oncogenic mutations may be allosteric

in nature, eliciting global changes in the spatial distribution of

highly frustrated residues. Furthermore, the protein kinase regions

undergoing large structural changes during allosteric transitions

could be enriched in clusters of highly frustrated residues. The

present study indicated that activating cancer mutations could act

as catalysts of kinase activation by simultaneously perturbing the

network of minimally frustrated interactions in the inactive kinase

state, while reducing local frustration and allosterically restoring

structural stability in the active kinase form. Allosterically induced

switch in the state of locally frustrated residues upon mutation can

shift the thermodynamic equilibrium and ‘‘lock’’ the oncogenic

kinase in a constitutively active form. This may present a feasible

mechanism by which oncogenic mutations may function as

catalysts of kinase activation by detrimentally affecting the

thermodynamic equilibrium between kinase states. The energy

landsape analysis of protein kinases and the proposed role of

locally frustrated sites in activation mechanisms may have useful

implications for bioinformatics-based screening and detection of

functional sites critical for allosteric regulation in complex

biomolecular systems. The results may be also potentially

interesting for protein design, where rationale engineering of

locally frustrated regions may provide means for probing

activation mechanisms in a desired regime.

Materials and Methods

Protein Kinase Mutants
Protein kinase sequences were obtained from Kinbase (http://

kinase.com/kinbase/). Sequence analysis of protein kinase muta-

tions was done using data collected from different sources,

including PupaSNP [144], dbSNP database [145], Online

Mendelian Inheritance in Man (OMIM) from National Center

for Biotechnology Information (NCBI) [146,147], KinMutBase

[148,149], BTKbase [150], Human gene mutation database

(HGMD) [151,152], Catalogue of Somatic Mutations in Cancer

database (COSMIC) [153], Mutations of Kinases in Cancer

(MoKCa) [154] SwissProt [155-157] Protein Kinase Resource

(PKR) [158], and PDB [159]. The assembled set of somatic kinase

mutations was categorized based on a quantitative metric of

oncogenic potential corresponding to the frequency profiles of

somatic mutations in the protein kinases genes obtained from the

COSMIC repository [153]. Since only a subset of cancer mutations

can be directly mapped onto the crystal structure of the catalytic

domain, there are some protein kinase genes with the known WT

crystal structures, yet no mutational models could be reliably

produced, because either all known mutations reside outside of the

resolved crystal structure of the kinase catalytic domain or only

synonymous mutations were available. A collection of somatic

kinase mutations that corresponded to the catalytic domain

included ABL (36 mutations), EGFR (85 mutations), BTK (100

mutations), KIT (54 mutations), BRAF (62 mutations), MET (46

mutations), and RET (39 mutations) (Figure S8). To facilitate

structure-functional analysis, we generated structural models of

various protein kinase mutants using the respective WT crystal

structure as a template (see Supporting Information in File S1). A

total of 57 kinase genes that covered a wide range of kinase

subfamilies were used in the present study (Table S1 in File S1).

Analysis of Local Frustration in Protein Kinases
The protein kinase crystal structures as well as structural models

of kinase mutants with the known WT crystal structure were used
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in the calculation of the residue-based configurational frustration

index. We focused on the local frustration analysis conducted for

ABL, EGFR, BTK, KIT, BRAF, MET, and RET kinase genes

based on simulations of these kinases in both the inactive and

active forms (see Supporting Information in File S1). These kinase

genes also account for the vast majority of highly oncogenic

mutations in the catalytic domain. We computed residue-based

configurational frustration index via a web server (http://www.

frustratometer.tk). The local frustration analysis adapted a recently

proposed method of quantifying the degree of frustration

manifested by spatially local protein interactions [69]. The local

frustration index for the contact between the amino acids i,j was

defined as a Z-score of the energy of the native pair compared to

the N decoys. According to the Ferreiro-Wolynes model, a

residue-based frustration index can measure the energetic stability

of a particular native contact as compared to a set of all possible

contacts sampled by automatic generation of ,1000 distributed

decoys and recomputing the energy change. The frustration index

can be calculated by mutating the identities and the distances

between the interacting amino acids. In the mutational frustration

index, the decoy set randomizes only the identities of the

interacting amino acids i, j while keeping all other interaction

parameters at their native value. We employed a more general

configurational frustration index, where the decoy set involved

randomizing not only the residue identities but also the distance

between the interacting amino acids i, j. The index value that

corresponded to a positive Z-score value would indicate that the

majority of other amino acid pairs in that position were

unfavorable. A contact was defined as minimally frustrated if its

native energy was at the lower end of the distribution of decoy

energies, and a frustration index as measured by a Z-score would

be of 0.78 or higher magnitude. Conversely, a contact was defined

as highly frustrated if its native energy was at the higher end of the

distribution with a local frustration index lower than -1. If the

native energy was in between these limits, the contact was defined

as neutral.

Structural Modeling of Protein Kinases
The protein kinase crystal structures corresponding to 57

kinase genes were collected from PDB [159] and were employed

in the structural bioinformatics analysis and biophysical modeling

(Table S1 in File S1). To facilitate structure-functional analysis

of genetic variations in kinase genes, all crystal structures and

mutational models were structurally aligned using a java- based

multiple alignment tool STRAP (http://www.charite.de/bioinf/

strap) and TM-align algorithm [160]. Structural modeling of

kinase mutants was carried out using MODELLER [161,162]

with a subsequent refinement of side-chains by the SCRWL3

program [163]. Initial models were built in MODELLER using a

flexible sphere of 5 Å around mutated residue. A protocol

involving a conjugate gradient (CG) minimization, followed by

simulated annealing refinement was repeated 20 times to

generate 100 initial models for each studied mutant. The

mutational models were chosen out of the 100 models as scored

by the MODELLER default scoring function, followed by

structural refinement using MD simulations protocol detailed in

[123]. MD refinement simulations were done using NAMD 2.6

[164] with the CHARMM27 force field [165,166] and the

explicit TIP3P water model as implemented in NAMD 2.6 [167].

The VMD program was used for the preparation and analysis of

simulations [168,169]. Protein kinase flexibility was also

analyzed by combining the results of MD simulations with the

principal component analysis of conformational ensembles

[170,171].

Supporting Information

Figure S1 The Effect of Oncogenic Mutations on Local
Frustration in the Inhibitor-bound ABL Kinase Struc-
tures. The residue-based frustration index values are shown for a

set of oncogenic ABL kinase mutants in the inactive (A) and active

forms (B). The frustration index values are shown in filled yellow

bars for the WT kinase form and in red filled bars for the mutant

forms. The analysis was performed using inhibitor-bound crystal

structures of ABL in the inactive form (PDB ID 1IEP) [90] and

active form (PDB ID 1M52) [91,92].

(TIF)

Figure S2 The Effect of Oncogenic Mutations on Local
Frustration in the Inhibitor-bound EGFR Kinase Struc-
tures. The residue-based frustration index values are shown for a

set of oncogenic EGFR kinase mutants in the inactive (A) and

active forms (B). The frustration index values are shown in filled

yellow bars for the WT kinase form and in red filled bars for the

mutant forms. The analysis was performed using inhibitor-bound

crystal structures of EGFR in the inactive form (PDB ID 1XKK)

[117] and active form (PDB ID 2J6M) [118].

(TIF)

Figure S3 The Energy Landscape of the ABL Kinase
Catalytic Domain. The spatial distribution and partition of

minimally frustrated and locally frustrated regions in the inactive

ABL kinase (A) and active ABL state (B). The protein backbone is

displayed as blue ribbons, the direct residue interactions are shown

with solid lines. Minimally frustrated interactions are shown in

green, highly frustrated contacts in red, neutral contacts are not

drawn. This analysis illustrated common similarities and differ-

ences in the local frustration of inactive and active kinase forms.

Structural mapping of local frustration on the ABL kinase catalytic

core is shown for the inactive ABL-WT structure (PDB ID 1IEP)

[90] and active ABL-WT structure (PDB ID 1M52) [91,92]. The

VMD program was used for protein kinase structure visualization

[168,169].

(TIF)

Figure S4 A Residue-based Comparative Analysis of
Local Frustration and Protein Flexibility. The values of the

B-factors (A), the configurational frustration index FI (B), and the

RMSF (C) for the protein kinase residues. The crystal structure of

EGFR-WT in the active form (PDB ID 2J6M) [118] was used in

this example of a comparative analysis.

(TIF)

Figure S5 Structural Mapping of B-factors and Locally
Frustrated Sites onto the Kinase Catalytic Core. Struc-

tural mapping of the average B-factors and locally frustrated

residues onto a set of inactive (A) and active kinase structures (B).

The set of inactive kinase conformations included ABL (PDB

1IEP), KIT (PDB ID 1T45), MET (PDB ID 2G15) and BRAF

(PDB ID 1UWH). The set of active kinase conformations included

EGFR (PDB ID 2J6M), BTK (PDB ID 1K2P), and RET (PDB ID

2IVS). The protein residues were colored accordingly to their B-

factor (temperature factor) from dark blue for low B-factor to red

for high B-factor. The locally frustrated residues are shown as red

spheres. The Pymol program was used for visualization of protein

kinase structures and the local frustration mapping (The PyMOL

Molecular Graphics System, Version 1.2r3pre, Schrödinger, and

LLC.).

(TIF)

Figure S6 Mutation-induced Redistribution of the Local
Frustration in the ABL Kinase DFG Motif. The mutation-
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induced changes in the local frustration between ABL-WT (A) and

ABL-T315I (B).

(TIF)

Figure S7 Mutation-induced Redistribution of the Local
Frustration in the ABL Kinase Activation Loop. The

mutation-induced changes in the local frustration between ABL-

WT (A) and ABL-T315I (B).

(TIF)

Figure S8 Gene-based Pie Diagram of Kinase Cancer
Mutations. The arc length of each sector is proportional to the

number of cancer mutations for a given kinase gene. For clarity of

presentation, only top 70 kinase genes with the cancer-causing

mutations that can be mapped onto three-dimensional structure of

the catalytic core are presented.

(TIF)

File S1 Supporting tables.

(DOC)
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