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Abstract

Activation of erythropoietin receptor allows erythroblasts to generate erythrocytes. In a search for genes that are up-
regulated during this differentiation process, we have identified ISG15 as being induced during late erythroid
differentiation. ISG15 belongs to the ubiquitin-like protein family and is covalently linked to target proteins by the
enzymes of the ISGylation machinery. Using both in vivo and in vitro differentiating erythroblasts, we show that expression
of ISG15 as well as the ISGylation process related enzymes Ube1L, UbcM8 and Herc6 are induced during erythroid
differentiation. Loss of ISG15 in mice results in decreased number of BFU-E/CFU-E in bone marrow, concomitant with an
increased number of these cells in the spleen of these animals. ISG15-/- bone marrow and spleen-derived erythroblasts show
a less differentiated phenotype both in vivo and in vitro, and over-expression of ISG15 in erythroblasts is found to facilitate
erythroid differentiation. Furthermore, we have shown that important players of erythroid development, such as STAT5,
Globin, PLC c and ERK2 are ISGylated in erythroid cells. This establishes a new role for ISG15, besides its well-characterized
anti-viral functions, during erythroid differentiation.
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Introduction

Erythropoiesis is a tightly regulated process that allows the daily

production of large numbers of circulating red blood cells. In

adults, it mainly occurs in bone marrow but upon anemia

induction, erythropoiesis can also shift to the spleen as ‘‘stress

erythropoiesis’’ [1]. The earliest characterized erythroid progen-

itor is the BFU-E that can be identified by its ability to form large

multifocal colonies in semi-solid medium. This progenitor then

matures into more differentiated progenitors, CFU-E. From this

stage, erythroblasts undergo further maturation that can be

identified notably by morphological changes, sequentially giving

rise to pro-erythroblasts, basophilic, polychromatic and ortho-

chromatic erythroblasts that finally enucleate to generate reticu-

locytes. Several signaling pathways have been shown to regulate

the balance between proliferation/differentiation and apoptosis of

erythroid cells. In vivo and in vitro studies have highlighted the

essential role of the erythropoietin receptor (EpoR) during

terminal differentiation. In vivo, knockout of either the Epo or

EpoR genes lead to embryonic death around E13.5, associated

with anemia [2]. This phenotype is linked to the inability of

committed CFU-E progenitors to terminally differentiate in

erythrocytes. At the molecular level, EpoR is pre-associated with

the protein tyrosine kinase JAK2, which becomes activated after

Epo binding to its receptor. This results in the phosphorylation of

tyrosine residues of the cytoplasmic tail of EpoR leading to the

subsequent activation of intracellular signaling pathways including

PI3K, ERK1/2 and STAT transcription factors [3]. Several

STATs can be activated by EpoR which includes STAT1, STAT3

and STAT5 depending upon the experimental setting. Studies of

genetically modified mice for either STAT1 or STAT5 have

shown that these factors play an important role during

erythropoiesis. Indeed, STAT5 a/b knockout mice suffer from

anemia and die around birth [4,5,6]. Lack of STAT1 results in a

general reduction of erythroid progenitors that are delayed in their

terminal differentiation, accompanied by increased splenic stress

erythropoisis [7].

In a search for new candidates which could be of importance to

regulate erythroid differentiation, we have identified ISG15 as an

induced gene during this process. ISG15 is one of the earliest genes

induced upon interferon (IFN) type I (a/b) stimulation [8]. Study

of its promoter has allowed to characterize the ISRE (Interferon-

Stimulated Response Element), on which several transcription

factors can bind, in particular the ISGF3 complex composed by

STAT1, STAT2 and IRF9 [9]. ISG15 belongs to the ubiquitin-

like protein family that also includes SUMO, Nedd8 and Fat10.

Akin to the ubiquitylation process, ISG15 can be covalently linked

to lysine residues of target proteins following a cascade of

enzymatic reactions that involves an E1 activating enzyme

(Ube1L), an E2 conjugating enzyme (UbcM8) and several E3

ligases (Herc6, EFP and HHARI) in a process named ISGylation.

This process can be reversed and several proteases able to remove

ISG15 have been identified, among them Usp18 [10]. Recently,

ISGylation was shown to broadly target newly synthesized proteins
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in IFN-I-stimulated cells [11], yet for only a few number of

proteins, the consequences of ISGylation have been elucidated

[12,13]. ISG15 knockout mice are born viable and fertile without

major developmental defect under steady state conditions [14].

However, and in line with the fact that ISG15 is an interferon-

inducible gene, these mice show an increased susceptibility to a

variety of viruses [10].

We report here that: (i) ISG15 expression and protein

ISGylation are induced during erythroid differentiation; (ii)

ISG15 induction is mostly independent of IFN signaling and

partially dependent upon activation of EpoR signaling; (iii)

ISG15-/- erythroblasts have an intrinsic differentiation defect in

vitro; (iv) mice lacking ISG15 show impaired erythropoiesis in vivo;

(v) important players of erythroid development, including STAT5,

Globin, PLCc and ERK2 are ISGylated in erythroid cells.

Results

ISG15 expression and protein ISGylation are induced
during erythroid differentiation

To determine if ISG15 expression and protein ISGylation are

induced during in vivo erythroid differentiation and if so, at which

stage, mouse bone marrow (BM) cells were sorted according to cell

surface expression of the transferrin receptor (CD71), glycophorin

A-associated protein (Ter119) and size (FSC-H) (Figure 1A). These

markers are conventionally used to sort immature pro-erythro-

blasts (Pro-E) from their progeny, namely basophilic erythroblasts

(EryA), polychromatic erythroblasts (EryB) and orthochromatic

erythroblasts/reticulocytes (EryC) [15]. RNA extracted from each

sorted population was subjected to semi-quantitative RT-PCR

analyses. ISG15 transcript was expressed at low levels in ProE,

increased in EryA and EryB and reduced in EryC (Figure 1B), thus

presenting a kinetic of expression similar to that of ß-Globin, a gene

induced upon erythroid differentiation. Expression of the ISG15

conjugation enzyme UbcM8 and the E3 ligase Herc6 was strongly

induced in EryB, their expression profile resembling that of Bcl-XL,

another gene known to be expressed late during erythroid

differentiation [16–18]. Figure 1C shows that the expression of

these genes is significantly up-regulated comparing ProE and EryB

developmental stages, except for Ube1L. At the protein level,

ISG15 and protein ISGylation were high in EryB and in EryC, as

compared to ProE and EryA progenitors (Figure 1D and

quantification of ISG15 expression in Figure 1E). ISG15

expression remained high in circulating red blood cells (RBC)

(figure 1D). These results show that ISG15 protein expression and

cellular protein ISGylation are up-regulated at the late stages of

erythroid differentiation.

Because ISG15 and the genes encoding the enzymes involved in

protein ISGylation were first characterized as IFN regulated genes

[9], we next investigated whether IFN signaling was responsible

for the induction of ISG15 expression and protein ISGylation

during terminal erythroid differentiation. For this, we compared

the expression of both ISG15 and of the components of the

ISGylation machinery in differentiating wild-type and IFNAR-/-

primary erythroblasts in which IFNa/b signaling is abrogated

[19]. Primary cultures of proliferating erythroblasts can be

expanded from bone marrow cells in the presence of Epo, Stem

Cell Factor (SCF) and Dexamethasone (Dex) and can be induced

to terminally differentiate within 3 days upon SCF and Dex

removal and in the continuous presence of Epo [20]. Under these

conditions, cells undergo 3 to 4 divisions accompanied with G1

phase shortening which ultimately results in cell size reduction,

hemoglobin accumulation and finally enucleation. In the absence

of Epo these erythroblasts rapidly die by apoptosis [20]. We found

that ISG15, Ube1L, UbcM8 and Herc6 transcripts were up-regulated

at the late stages of Epo-induced differentiation of primary wild-

type erythroblasts (Figure 2A, WT panel and Figure 2B for

quantification and statistical analyses). Their induction profile

resembles that of Bcl-XL and ß-Major-Globin (Figure 2A). At the

protein level, up-regulation of ISG15 expression was accompanied

by protein ISGylation, as evidenced by the accumulation of ISG15

adducts to high molecular weight proteins (Figure 2C, WT panel).

Similar results were obtained using a p53-/- erythroid cell line [21]

(data not shown and see thereafter). The induction kinetics of

ISG15, Ube1L, UbcM8 and Herc6 was found unchanged in

differentiating IFNAR1-/- erythroblasts (Figure 2A) as compared

to wild-type cells, although dampening of the overall expression

level of these genes was observed (Figure 2A and 2B). In contrast,

expression of Irf7, a bona fide IFNa/b responsive gene, was

abrogated in IFNAR1-/- differentiating erythroblasts (Figure 2A).

At the protein level, ISG15 and ISGylation were also found

induced in differentiating IFNAR-/- erythroblasts, although at

somewhat reduced levels as compared to wild-type cells (Figure 2C

and 2D). Similar results were found using primary erythroblasts

from IFNAR/IFNGR double-deficient mice (data not shown).

These data show that ISG15 upregulation and ensuing protein

ISGylation are mostly independent of IFNa/b and IFNc signaling

in differentiating erythroblasts.

EpoR signaling is an absolute prerequisite for the differentiation

of CFU-E cells [2]. We thus analyzed whether ISG15 expression

could be regulated through this signaling pathway. Since

erythroblasts rapidly die by apoptosis when deprived from Epo,

we relied upon previous observations that enforced expression of

anti-apoptotic members of the BCL-2 family can rescue this cell

death phenotype and allows their terminal differentiation in

absence of Epo [22,23]. In the absence of Epo, exogenously

expressed hBCL-XL allowed survival and terminal differentiation

of erythroblasts as analyzed by flow cytometry (Figure 2E),

morphological analysis (Figure 2F) and western blot analysis of

globin accumulation (Figure 2G). Under this condition, expression

of ISG15 was slightly induced but was clearly weaker as compared

to parallel culture of hBCL-xL-expressing erythroblasts differenti-

ated in the presence of Epo (Figure 2G). This suggests that

activation of the EpoR signaling pathway may participate to

ISG15 induction. Furthermore, as shown in Figure 2H, the level of

ISG15 was also found induced in proliferating, undifferentiated

erythroblasts expressing a constitutively activated form of STAT5

(STAT5S710F), an essential effector of EpoR signaling in erythroid

development [4–6]. Although acute Epo stimulation does not

immediately induce ISG15 expression (our unpublished observa-

tions), these data suggest that ISG15 expression during erythroid

terminal differentiation is at least partially dependent upon EpoR

signaling.

ISG15-/- erythroblasts show an impaired ability to
differentiate ex vivo

To address the importance of ISG15 expression for erythroid

differentiation, we compared expansion and differentiation of

erythroblast primary cultures derived from wild-type and ISG15-/-

mice. We observed no major difference in expansion kinetics

between WT and ISG15-/- erythroblasts cultures (Figure 3A, left

panel). However, when these cultures were switched to differen-

tiation conditions, cumulative cell numbers observed 2 and 3 days

after differentiation induction were lower in ISG15-/- cultures as

compared to wild-type erythroblasts (Figure 3A, right panel). This

was accompanied by a lower level of hemoglobin accumulation in

ISG15-/- erythroblasts, as analyzed by a colorimetric staining for

Hb (Figure 3B) and by the reduced proportion of hemoglobin-

ISG15 in the Erythroid Lineage
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positive cells in cytocentrifugation analyses (Figure 3C and 3D).

We also observed the subsistence of immature erythroblasts in

ISG15-/- cultures 2 days after differentiation induction (Figure 3C

and quantification in Figure 3D). These results thus show that

ISG15 deficiency intrinsically interferes with terminal erythroid

differentiation.

In the reverse experiment, the p53-/- erythroid cell line was

transduced with a retroviral vector expressing Flag-tagged ISG15

Figure 1. ISG15 expression and protein ISGylation are induced during in vivo erythroid differentiation. (A) Sorting procedure of the
different erythroblasts populations from bone marrow cells of WT Bl6/J mice. (B) RT-PCR analyses of ISG15, UbcM8, Herc6, Ube1L, Bcl-XL and ß-Major-
Globin mRNA in sorted Pro-erythroblasts (Pro-E: large cells, CD71high, Ter119med), basophilic erythroblasts (EryA: large cells, CD71high, Ter119high),
polychromatic (EryB: small cells, CD71med, ter119high) and orthochromatic erythroblasts/reticulocytes (EryC: small cells, CD71low, ter119high) as
described in Mat & Met. Experiments were normalized to 18S Ribosomal RNA expression. (C) Statistical analysis of the induction of the expression of
ß-Maj-Globin, Bcl-XL, ISG15, Ube1L, UbcM8 and Herc6 mRNA. Quantification was performed as described in Mat & Met. Note the two-fold decreased
expression of a second housekeeping gene, ß-actin during differentiation. au = arbitrary unit. (D) Western blot analyses of whole cell extracts of the
indicated erythroid subpopulations using anti-ISG15 (top panels) antibody. Middle panels show GAPDH levels as loading control. Bottom panels
show globin accumulation as detected with Ponceau staining of the membranes. Whole cell extracts were prepared from sorted wild-type bone
marrow cells as in A or from RBC of WT and ISG15-/- mice. (E) Statistical analysis of the induction of ISG15 at the protein level during in vivo erythroid
differentiation normalized to ß-Actin. Quantification was performed as described in Mat & Met. au = arbitrary unit.
doi:10.1371/journal.pone.0026068.g001

ISG15 in the Erythroid Lineage
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Figure 2. ISG15 expression during erythroid differentiation is independent of IFN signaling and partially dependent upon Epo
signaling. (A) semi-quantitative RT-PCR analyses of ISG15, Ube1L, UbcM8, Herc6, Irf7, Bcl-xL and ß-Major-Globin mRNA expression in WT or IFNAR-/-

differentiating primary erythroblasts. Bone marrow erythroblasts of each genotype were maintained in proliferation conditions (SCF, Epo and Dex) for
one week and next induced to differentiate in response to Epo alone for three days. Cells were collected every 24 hours as indicated and RNA
extracted. The experiment was normalized to ß-Actin mRNA expression. (B) Statistical analysis of the induction of the expression of ß-Maj-Globin, Bcl-
XL, ISG15, Ube1L, UbcM8 and Herc6 mRNA in differentiating WT and IFNAR-/- erythroblasts. Quantification was performed as described in Mat & Met.
Note the unchanged expression of a second housekeeping gene HPRT. au = arbitrary unit. (C) Whole cell protein extracts were prepared from WT or
IFNAR-/- erythroblasts maintained as in A and analyzed on a 10% acrylamide gel for ISG15 expression using an anti-ISG15 antibody. Anti-ß-Actin and
anti-GAPDH were used as loading controls. (D) Statistical analysis of the induction of ISG15 during erythroid differentiation as normalized to ß-Actin.
Quantification was performed as described in Mat & Met. au = arbitrary unit. (E and F) A p53-/- erythroid cell line expressing exogenous hBcl-XL was
switched from proliferation conditions (Epo, SCF, Dex) to differentiating medium in the presence or absence of Epo. Cells were collected every
24 hours as indicated and analyzed for their ability to (e) survive as measured by propidium iodide staining in flow cytometry analyses; (f)
differentiate as shown by analysis of their morphology after benzidine/May-Grunwald staining. Note the significant induction of cell death in control
cells maintained in absence of Epo; in contrast, hBCL-xL erythroblasts are strongly protected from apoptosis. (G) Cells were lyzed according to cell

ISG15 in the Erythroid Lineage
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(Figure 4A). We observed that expression of ISG15 in p53-/-

erythroid cell line was accompanied by an increase in protein

ISGylation even under proliferative conditions (Figure 4A). When

switched to differentiation conditions, ISG15 expressing erythro-

blasts showed an improved ability to differentiate as evidenced by

a higher hemoglobin accumulation per live cell (Figure 4B), an

increased proportion of hemoglobinized, benzidine-positive cells

(Figure 4C), and a higher level of Ter119 expression as compared

to controls (Figure 4D). Taken together, these data show that

ISG15, the expression of which is increased during erythroid

differentiation, facilitates the transition of differentiating cells

through the late stages of erythroid maturation.

ISG15-/- mice show an altered distribution of erythroid
progenitors in bone marrow and spleen

To investigate the importance of ISG15 in erythropoiesis in vivo,

we compared erythroblasts maturation in bone marrow and spleen

of wild-type and ISG15-/- mice. We observed a decreased

proportion of EryC, accompanied by an increased proportion of

EryB in ISG15-/- bone marrow cells as compared to wild-type mice

(Table 1B, bone marrow). This reduction of EryC population in

ISG15-/- erythroblasts did not result from impaired survival of

these cells or their progenitors as no increase in annexin V-positive

cells was observed in any of the erythroblasts subpopulations from

ISG15-/- bone marrow cells. Rather, ISG15-/- erythroblasts showed

a reduction in apoptosis as compared to matched wild-type cells

(data not shown). These results rather favor the notion of a

requirement for ISG15 for the transition of polychromatic

erythroblasts to the orthochromatic/reticulocyte stage.

Although blood erythrocytes numbers and hematocrit level

were similar in ISG15-/- and wild-type mice (Table 1A), a slight

modification of erythrocytes properties (cell volume and width

distribution, Table 1A) was observed. Moreover the reticulocyte

numbers were doubled in ISG15-/- mice. This suggested that

ISG15-/- mice may develop compensatory stress erythropoiesis. To

address this question, we compared the number of BFU-E and

CFU-E from wild-type and ISG15-/- mice in both bone marrow

and spleen. ISG15-/- bone marrow contained a reduced number of

BFU-E and CFU-E as compared to wild-type bone marrow

(Table 1C). This decrease in bone marrow BFU-E/CFU-E was

associated with an increase in splenic BFU-E/CFU-E (Table 1C,

spleen) and a slight but significant increase of ISG15-/- spleen

weight as compared to wild-type mice (Table 1C). These results

show that early bone marrow erythropoiesis is inhibited in

ISG15-/- mice and is accompanied by a compensatory increase

in splenic erythropoiesis. Of note, terminal erythroid differentia-

tion was also altered in splenic erythroblasts. Indeed, a significant

decrease in the EryC fraction was observed in ISG15-/- splenic cells

as compared to wild-type, with a concomitant increase in the

proportion of ProE, EryA and EryB erythroblasts (see Table 1B,

Spleen). We next analyzed the response of ISG15-/- mice to stress-

induced erythropoiesis. Upon phenylhydrazine-induced hemolytic

anemia, the percentage of reticulocytes in peripheral blood was

increased in ISG15-/- mice 3 days after the start of the treatment,

but reached the same level as that observed in wild-type mice

afterwards. However, this faster response did not lead to

accelerated recovery from anemia in ISG15-/- mice (data not

shown), a phenotype reminiscent to that described in STAT1-

deficient mice [7]. Finally, as the level of ISG15 protein was high

in erythrocytes (Figure 1B), the consequences of its absence on the

lifespan of RBC was analyzed. No major difference could be

noticed between wild-type and ISG15-/- RBC lifespan (data not

shown).

PLCc, ERK2, Globin and STAT5 transcription factors are
ISGylated in erythroid cells

We next investigated the nature of cellular proteins ISGylated in

erythroblasts. For this, we used the flag-ISG15-expressing p53-/-

erythroid cell line. These cells show an expression level of ISG15

comparable to that obtained in response to IFNß stimulation, a

physiological inducer of ISG15 (Figure 5A and quantification in

Figure 5B). Besides, this exogenous level of ISG15 was found only

2 fold higher than the level of ISG15 detected in terminally

differentiating erythroblasts (Figure 5A and 5B, compare lane 2 to

lane 8). ISGylated proteins were purified by a flag immunopre-

cipitation from either control or flag-ISG15-expressing erythro-

blasts (Figure 5C, left panel). Western blot analysis of these

immunoprecipitates using either an anti-Flag or an anti-ISG15

antibody revealed, besides ISG15 itself, several ISGylated proteins

(arrows in Figure 5C). Western blot analyses of the same

immunoprecipitates using antibodies specific to ERK2, PLCc,

STAT5 and Globin identified higher molecular weight adducts

only in flag-ISG15 precipitates (Figure 5C, arrows). This shows

that endogenous ERK2, PLCc, STAT5 and Globin can be

ISGylated in erythroblasts, the proportion of ISGylated protein

never exceeding 4 to 5% of total protein for STAT5 for instance.

While enforced ISG15 expression could lead to unspecific

ISGylation of a broad spectrum of proteins, we found several

other proteins not being ISGylated under the same experimental

setting (data not shown). Furthermore, when p53-/- erythroid cell

line engineered to express a STAT5-flag protein was analyzed for

the status of STAT5 ISGylation using the same immunoprecip-

itation protocol as in Figure 5C, ISGylated STAT5 was detected

in differentiating cells but not in proliferating erythroblasts

(Figure 5D). This showed that STAT5 is also ISGylated by

endogenous levels of ISG15 during erythroid differentiation.

Ubiquitination is increased in ISG15-/- RBC
A cross-talk between ISG15 and ubiquitination has been

previously suggested [12,24,25]. We thus sought to investigate

whether absence of ISG15 could alter the ubiquination profile of

erythroid cells. For this, RBC from wild-type and ISG15-/- mice

were collected and cell lysates performed in the presence of NEM

to prevent degradation of ubiquitinated proteins. ISGylation and

ubiquitination were examined by Western blot analysis. High

levels of ISG15 as well as ISGylated cellular proteins were

observed in RBC but not in ISG15-/- RBC (Figure 5E, top panels).

In ISG15-/- RBC, the anti-ubiquitin antibody recognized several

additional bands that were weaker or absent in wild-type RBC

lysates (Figure 5E, middle panels). These results suggest that a

mechanism of ISG15 action in erythroid cells could be its

interference with the ubiquitination pathway.

number and volume. ISG15 expression was analyzed on a 15% acrylamide gel using anti-ISG15 antibody, activation of the EpoR/STAT5 signaling
pathway was monitored using anti-P-STAT5 antibody, differentiation was monitored using anti-Globin antibody and loading control was performed
using anti-SAM68 antibody. (H) Mock and mscv-puro-STAT5S710F transduced p53-/- erythroid cell line maintained under proliferation conditions were
lyzed and analyzed for ISG15 expression using anti-ISG15 antibody on a 10% acrylamide gel (Top panel). P-STAT5 was detected at a higher level in
mscv-puro-STAT5S710F transduced cells while only a modest increase in the total amount of STAT5 can be noted. Anti-b -Actin was used as a loading
control.
doi:10.1371/journal.pone.0026068.g002

ISG15 in the Erythroid Lineage
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Discussion

The results presented in this study demonstrate that the

expression of ISG15 is physiologically up-regulated during late

stages of erythropoiesis, show a consistent role for ISG15 in in vivo

and in vitro erythroid differentiation and identify new targets of

ISG15 in the erythroid lineage. ISG15 is one of the earliest genes

shown to be induced upon type I IFN (a/b) stimulation [8]. In this

study we show that ISG15 up-regulation is mostly independent of

IFN signaling in the erythroid lineage. Indeed, in both IFNAR1-/-

and IFNAR1-/-/IFNGR-/- double deficient erythroblasts, up-

regulation of ISG15, Ube1L, UbcM8 and Herc6 transcripts is

Figure 3. ISG15 deficiency impairs in vitro-induced erythroid differentiation. (A) Erythroblasts from the BM of either wild-type or ISG15-/-

mice were maintained under proliferation conditions (SCF, Epo, Dex) and switched to Epo alone to induce differentiation. Cumulative cell number of
three independent wild-type (black symbols) and ISG15-/- erythroblasts cultures (open symbols) are shown both under proliferation and
differentiation conditions. Cells were counted with an electronic counter (CASY Scharfe). (B) Quantitative determination of hemoglobin contents of
differentiating WT and ISG15-/- erythroblasts 24, 48 and 72 hours after differentiation induction. Normalized values (hemoglobin level per 106 live
cells) are shown. (C) Cytocentrifugation analyses followed by Benzidine-May-Grunwald staining of cells maintained either under proliferation
conditions (day 0) or induced to differentiate in response to Epo. Differentiating cells are stained in brown by Benzidine (black arrow), immature
eryhroblasts stain in blue. Note the presence of a significant proportion of immature cells in ISG15-/- culture (open arrow) as compared to WT culture.
Representative fields are shown. (D) Quantification of cells of increasing maturity 24 h, 48 h and 72 h after the cells had been induced to
differentitate. Cells ($200) were counted per slide and mean values 6s.d. calculated from at least three independent experiments.
doi:10.1371/journal.pone.0026068.g003

ISG15 in the Erythroid Lineage
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maintained during erythroid differentiation, whereas the expres-

sion of Irf7, a bona fide IFN-stimulated gene, is suppressed as

expected. This suggests that in differentiating erythroblasts, IFN

plays a minor role in the up-regulation of ISG15 and of the

Figure 4. Enforced ISG15 expression facilitates erythroid
terminal differentiation. (A) Western blot analysis of whole cell
extract obtained from proliferating p53-/- erythroid cell line transduced
with either the control MSCV-puro, or MSCV-puro-ISG15-flag retrovi-
ruses. An anti-ISG15 antibody was used to show ISG15 expression and
induction of protein ISGylation on a 10% acrylamide gel while anti-
STAT5 was used as a loading control. (B) Hemoglobin content
quantification analyses 48 and 72 hours after differentiation induction.
(C) Quantification of cytospin preparation of 48 h-differentiating
control and ISG15-overexpressing erythroblasts. Cells ($200) were
counted per slide and mean values 6s.d. calculated from at least three
independent experiments (D) Flow cytometry analysis of erythroid cell
surface marker Ter119, 72 hours after differentiation induction. Grey
line: isotypic control, grey dashed line: control proliferating erythro-
blasts (1,34% Ter119 positive cells), black dashed line: control
differentiating erythroblasts (24,2% Ter119 positive cells); black line:
ISG15-differentiating erythroblasts (34,4% Ter119 positive cells).
doi:10.1371/journal.pone.0026068.g004

Table 1. Altered distribution of erythroid progenitors in
ISG15-/- bone marrow and splenic cells.

WT ISG15-/- Pvalue Sign

A. Blood parameters (N = 14)

RBC count. M/mm3 10.90 +/- 0.14 10.71 +/- 0.13 0.338 ns

HGB level. g/dL 19.94 +/- 0.26 19.97 +/- 0.22 0.916 ns

MCH. pg 18.29 +/- 0.13 18.66 +/- 0.15 0.073 ns

MCHC. g/dL 39.29 +/- 0.28 39.24 +/- 0.21 0.889 ns

HCT. % 50.74 +/- 0.62 50.90 +/- 0.58 0.849 ns

MCV. fL 46.58 +/- 0.28 47.56 +/- 0.36 0.041 *

RDW. % 16.41 +/- 0.007 16.12 +/- 0.008 0.014 *

Retic count. % 2.75 +/- 0.20 5.03 +/- 0.49 0.0008 ***

PLT count. m/mm3 972 +/- 61.92 830 +/- 88.43 0.199 ns

WBC count m/mm3 12.08 +/- 0.84 13.59 +/-1.03 0.265 ns

MONO. % 2.346 +/- 0.06 2.615 +/- 0.13 0.074 ns

LYMP. % 87.83 +/- 0.72 84.91 +/- 1.38 0.072 ns

GR. % 9.864 +/- 0.68 12.37 +/- 1.26 0.091 ns

B. Flow cytometry analysis (N = 13)

Bone marrow

Ter119+ 47 +/- 1.1 46 +/- 1.1 0.6816 ns

ProE 1.0 +/-0.008 1.3 +/- 0.11 0.0475 *

EryA 16.90 +/- 0.55 17.42 +/- 0.66 0.5554 ns

EryB 21.67 +/- 0.62 26.89 +/- 1.87 0.0141 *

EryC 57.50 +/- 0.71 51.58 +/- 1.94 0.0086 **

Spleen

Ter119+ 66 +/- 2.3 56 +/- 2.1 0.0045 **

ProE 0.06 +/- 0.01 0.15 +/- 0.04 0.0427 *

EryA 0.90 +/-0.17 2.14 +/- 0.36 0.0087 **

EryB 1.70 +/- 0.17 2.48 +/- 0.26 0.0277 *

EryC 93.91 +/- 0.50 90.52 +/- 0.68 0.0008 ***

C. Colony assays (N = 11)

Bone marrow

BFU-E 57.20 +/- 5.28 38.70 +/- 5.25 0.023 *

CFU-E 413.4 +/- 26.65 320.8 +/- 31.02 0.033 *

Spleen

BFU-E 10.31 +/- 1.68 17.62 +/- 2.13 0.013 *

CFU-E 22.54 +/- 2.71 61.23 +/- 5.90 P,0.0001 ***

Spl. Weight. g 0.083 +/- 0.002 0.100 +/- 0.003 0.0006 ***

(A) Blood was collected from mice at 8–10 weeks of age. Hematologic
measurements were performed on a MS9 Hematology Analyzer (MELET
SCHLOESING Laboratoires). The data are mean +/- SEM (N = 14). RBC indicates
red blood cells; HGB, hemoglobin; MCH, mean corpuscular hemoglobin; MCHC,
MCH concentration (calculated); HCT, hematocrit; MCV, mean corpuscular
volume; RDW, RBC distribution width, Retic, reticulocytes; PLT, platelets; WBC,
white blood cells; MONO, monocytes, LYMP, lymphocytes and GR, granuloctes.
(B) Quantitative analysis of the distribution of the different erythroblasts
subsets in age-matched WT versus ISG15-/- mice. Flow cytometry analyses using
the cell surface markers CD71 and Ter119 of bone marrow and spleen cells
isolated from WT or ISG15-/- mice (as described in Figure 1A). Dead cells (7AAD+)
were excluded from the analysis. The data are mean +/- SEM (n = 13). (C) 2.105

BM and 2.106 spleen cells from mice at 8–10 weeks of age were used to assay
BFU-E and CFU-E numbers in MethoCult M3334 (StemCell Technologies). For
CFU-E assays, colonies were counted at day 2 and for BFU-E assay, at day 4. The
data are mean +/- SEM (n = 11).
doi:10.1371/journal.pone.0026068.t001
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ISGylation machinery enzymes and implies that other signaling

pathways regulate the expression of these genes in erythroid cells.

Using erythroid cell culture models, we show that activation of the

EpoR signaling pathway participates to ISG15 and ISGylation up-

regulation. Indeed, Bcl-XL expressing erythroblasts, that can

differentiate either in the absence or presence of Epo [22], show a

Figure 5. Identification of several ISGylation substrates in erythroid cells and increased ubiquitination in ISG15-/- RBCs. (A)
Proliferating erythroblasts were left either untreated (1), or stimulated with IFNß (100 U/ml) for 24 h (3), or induced to differentiate for 72 h (lane 4 to
8). Cells were lyzed according to size and number and ISG15/ISGylation level was compared by western blotting to the level of ISG15/ISGylation
present in proliferating Flag-ISG15-expressing p53-/- erythroid cell line. The arrow points to ISG15 band (B) Quantification of ISG15 level in
independent western blot experiments. (C) Proliferating control and Flag-ISG15-expressing p53-/- erythroid cell line were lysed and ISGylated proteins
searched after a Flag immunoprecipitation. Anti-Flag detect ISG15-Flag and ISGylated proteins (arrow heads) in the crude lysates (dashed line) and
are found enriched after the immunoprecipitation (plain line bar). Stars point to light and heavy chains of immunoglobulin. For the detection of
ISGylated Globins, cells were induced to differentiate for 72 hours in order to induce globin expression. ISGylated proteins are indicated by
arrowheads. Normal unmodified molecular weight of the proteins are: ERK2 (42kDa), PLCc (150kDa), STAT5 (90kDa), Globin (13kDa). For ERK2 and
STAT5 detection, cell lysates were run on a 10% acrylamide gel, for ISG15 and Globins detection on a 15% acrylamide gel and for PLCc on a 8% gel.
(D) Proliferating or 48 hours-differentiating control and STAT5-Flag-expressing p53-/- cell line were lysed and analyzed for exogenous STAT5
expression either using a Flag (upper left panel) or a STAT5 antibody (upper right panel). Note the modest increase in the total amount of STAT5
induced by the expression of STAT5-Flag. ISGylated STAT5 was searched after a Flag immunoprecipitation followed by either a Flag (bottom left
panel) or an ISG15 western blot analyses (bottom right panel). Extracts were run on a 7% acrylamide gel. (C) Western blot analysis of RBC extracts
from WT and ISG15-/- mice using a 15% acylamide gel. ISG15 expression and ISGylation were analysed using anti-ISG15 antibody (top panel),
ubiquitination was monitored using anti-ubi antibody (intermediate panel) and anti-b-Actin was used as a loading control.
doi:10.1371/journal.pone.0026068.g005
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stronger up-regulation of ISG15 and protein ISGylation when

differentiated in the presence of Epo as compared to cells

differentiated in the absence of Epo. Besides, expression of a

constitutively active mutant of STAT5 in proliferating, undiffer-

entiated erythroblasts was sufficient to induce ISG15 and

ISGylation. It is interesting to note that, although ISG15 is not

an immediate early gene induced in response to Epo (our

unpublished observation), its expression closely follows that of

BCL-xL, another indirect target of the EpoR/STAT5 axis [17,26].

Our studies of ISG15-deficient mouse show that ISG15 plays a

facilitating role in erythroid differentiation. Indeed, ISG15-/-

primary erythroblasts present an impaired ability to terminally

differentiate in vitro as shown by the decreased accumulation of

erythrocytes and the persistence of immature cells in ISG15-/-

cultures at the late stages the differentiation process, as compared

to wild-type cultures. Although we cannot exclude a role of ISG15

on the erythroid stromal microenvironment, these observations

indicate that ISG15-/- erythroblasts have an intrinsic defect at the

late stages of differentiation. In vivo, ISG15-/- mice show decreased

number of bone-marrow-derived BFU-E and CFU-E with a

concomitant increase in the number of these progenitors in the

spleen. This phenotype is reminiscent of stress erythropoiesis,

which could result from the impaired erythroid terminal

differentiation observed in ISG15-/- mice. Indeed, a smaller

proportion of orthochromatic erythroblasts/reticulocytes accom-

panied by an increased proportion of polychromatic erythroblasts

was observed in ISG15-/- mice as compared to wild-type mice, a

phenotype observed in the erythroid compartment of both the

bone marrow and spleen of ISG15-/- animals. However, this

altered erythroid differentiation is not due to increased apoptosis

of ISG15-/- early erythroblasts, as observed in either STAT5- or

STAT1-deficient mice [5,7,27]. Instead, a decreased level of

apoptosis was observed in all ISG15-/- erythroblast populations

(data not shown). This phenotype is reminiscent to that observed,

for example, in Nix-deficient mice. Lack of Nix, a pro-apoptotic

protein also induced at the last stages of erythroid differentiation

[28,29], leads to a decrease in apoptosis and a defect in terminal

erythroid differentiation [30]. As the importance of pro-apoptotic

proteins in erythroid differentiation has been previously demon-

strated [31,32], one can hypothesize that ISG15, which is

normally induced by IFN (a known inducer of apoptosis) could

participate as a pro-apoptotic protein important for erythroid

differentiation.

At the molecular level, it has been shown that ISG15 can act at

least by three distinct mechanisms: (i) ISG15 can play a role of a

cytokine; (ii) it can modulate the activity of specific target proteins

via ISGylation; (iii) it can modulate the activity of proteins via non-

covalent interaction. ISG15 has been purified as a RBC-derived

neutrophil chemotactic factor from Plasmodium-yoelii infected

mice [33]. We found high level of ISG15 in circulating RBC. It is

thus tempting to speculate for a role of ISG15 in the immune

defense against Plasmodium following its release from infected

RBC and its ability to mobilize neutrophils. Only the comparison

of the immune response of wild-type mice and mice deficient for

ISG15 in the erythroid lineage will allow to investigate the

contribution of ISG15 in RBC to plasmodium infection resistance.

A number of proteins have been reported to be modified by

ISGylation. The functional consequences of this post-translational

modification could be determined for only a restricted number of

these targets. For instance, ISGylation of the transcription factor

IRF3 and the cap structure-binding protein 4EHP positively

regulates the activity of these proteins [13,34] while ISGylation

inhibits the activity of other proteins, like CHMP5, a protein

important for vesicular transport [35]. We report the identification

of four ISGylation targets in erythroid cells, namely PLCc, ERK2,

STAT5 and globin. While PLCc and ERK2 were previously

identified as targets of ISG15, STAT5 and Globin represent novel

substrates for ISGylation. These proteins have been shown to play

essential roles in the erythroid lineage [5,36,37]. Thus, identifica-

tion of the functional consequences of ISGylation of these targets

may allow to better understand the role of ISG15 in erythroid

differentiation.

Finally, ISG15 itself has been described to play a role in the

regulation of specific target proteins, independently of the

ISGylation process. For example, ISG15 inhibits virus budding

via its ability to interact with the E3 ubiquitin ligase Nedd4 and

thus prevent the ubiquitination of viral proteins [12,25].

Additional experimental evidence suggests a cross-talk between

ISG15 and the ubiquitination pathway. For instance, the level of

polyubiquitinated proteins is increased in response to ISG15

knockdown in ZR-75-1 breast cancer cells [24], which could result

from a competition between ISG15 and ubiquitin for common E2

enzymes, such as UbcH8 [38,39], and UbcH6 [40]. As (i) several

essential proteins for the erythroid lineage have been shown to be

regulated via their ubiquitination [41–43] and (ii) protein

degradation via the proteasome is important for reticulocyte

maturation [44], interference of ubiquitination by ISG15 could

represent an alternative molecular mechanism to modulate

erythroid differentiation. In line with this, we have noticed that

ISG15-/- RBCs indeed show an increase in some ubiquitinated

proteins, thus showing that ISG15 could modulate protein

ubiquitination in erythroid cells. Taken together, our results

suggest that ISG15 plays an important role in erythroid

differentiation, but that the molecular cues underlying this

phenotype may rely on ISGylation dependent and independent

mechanisms.

Materials and Methods

Mice
ISG15-/- BL6 and their control littermates [14] and IFNAR-/-

129Sv mice and their control littermates [19] were maintained in

specific-pathogen-free conditions at the animal facility of the Curie

Institute (Orsay, France) and Pasteur Institute (Paris, France)

respectively. Genotyping of ISG15-/- mice was done by PCR analysis of

tail DNA. The primers used were: WT forward 59GCCCCCATC-

CAGAGCCAGTGTT39, WT/KO reverse 59AGCCCCGATGAG-

GATGAGGTGT39 and KO forward 59CGCGAAGGGGCCAC-

CAAAGAA39. All experimental procedures were performed in

accordance with the recommendations of the European Community

(86/609/EEC) and the French National Committee (87/848) for the

care and use of laboratory animals. All animal experiments were

carried out under the supervision of J.G., who was authorized by the

director of the Veterinary Services of the Prefecture de l’Essonne

(agreement number 91-7). Animal care and use for this study were

specifically approved by the ethics committee of the Curie Institute in

compliance with the institutional guidelines.

DNA plasmid constructs
Generation of pMSCV puro-flag-ISG15 was performed by

cloning the amplified flag-ISG15 fragment using as template the

pFlag-CMV-ISG17 plasmid and the primers: (Forward: 59CCA-

GATCTGCCACCATGGACTACAAAGACGATGACG39; Re-

verse: 59CCTGGAATTCTTAGGCACACTGGTCCCCTCC39).

The PCR product was cloned into the EcoRI/BglII-digested

pCR2.1 Topo plasmid (TOPO TA Cloning kit, Invitrogen) and

sequenced. The EcoRI/BglII fragment was then cloned into the

BglII/EcoRI –digested pMSCV-puro vector.
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Cell culture and retroviral transduction
PlatE ecotropic packaging cell line [45] were cultured in

DMEM containing 10% FBS, 100 U/ml penicillin and 100 mg/

ml streptomycin and transfected using Ca3(PO4)2 co-precipitation

method with 40 mg/ml of pMSCV-puro-based retroviral con-

structs (Clonetech). Twenty-four hours after transfection, medium

was changed and 24 hours later medium was collected as

retroviral stocks. Primary erythroid progenitors and p53-/-

immortalized erythroid cell line (derived from fetal liver cells of

p53-/- mice) were cultured in serum-free medium (StemPro 34 plus

nutrient supplement, Invitrogen) supplemented with 1 U/ml of

human recombinant Erythropoietin (Jansen Cilag), 100 ng/mL of

murine recombinant SCF (Peprotech) and 1 mM of Dexametha-

sone (Sigma). For differentiation induction, erythroblasts were

washed twice with PBS and cultured in StemPro medium

supplemented with 2 U/mL Epo and 0,5 mg/mL human holo-

transferrin (Sigma). Cell numbers and size/volume were deter-

mined every day using an electronic cell counter (CASY-1,

Scharfe-System) and cell density was maintained at 2–46106 cells/

ml. Differentiated cells were analysed for hemoglobin content, cell

size/volume and morphology as previously described [46]. For

quantification of maturing cells, fields of cytospin preparation of

three independent cultures were counted (.200 cells). Large, blue

and Benzidine-negative cells were counted as erythroblasts, lightly

benzidine stained cells as differentiating cells (Benz +) and dark,

small cells as differentiated cells (Benz +++). Retroviral transduc-

tion of erythroblasts was performed by centrifuging 46106

erythroblasts, with 5 ml of platE supernatant containing the

retroviral particules of interest and 6 mg/ml of polybrene for

2 hours, at 3000 rpm at 32uC, cultured as described and 48 hours

post-infection, transduced cells selected in the presence of 1 mg/

ml of puromycin (Sigma).

Semi-quantitative RT-PCR analysis
Total RNA was isolated from 3.106 cells using Trizol reagent

(Invitrogen). 0,5 to 1 mg of RNA was reverse transcripted (RT)-

PCR using random primers and the kit ImProm II Reverse

Transcription System (Promega Corporation) according to the

manufacturer’s instructions. PCR were performed using two

increasing doses (1:2) of cDNA as indicated by the increment sign

in the figures. GOTaq DNA Polymerase (Promega Corporation)

and the following conditions were used: 94uC for 5 min, followed

by n cycles at 94uC for 1 min, 58uC for 1 min, and 72uC for

1 min. The sequence of the amplimers were as follows: ISG15,

forward 59CCAGTCTCTGACTGTGAGAGC 39, reverse 59

GCATCACTGTGCTGCTGGGAC 39; Ube1L, forward 59CG-

AGTCAGGATGGATGAAG 39, reverse 59CAGTAGGTCCT-

CAGTGATG39; UbcM8, forward 59TGATGAAGCGTCAGGA-

ACTG39, reverse 59CCTCTTCCGTTGCGTACTTC39; Bcl-XL,

forward 59TGGAGTCAGTTTAGTGATGTCG39, reverse 59C-

CAGCAGAACCACACCAGCC39; Irf7, forward 59CAGCGA-

GTGCTGTTTGGAGAC39, reverse 59AAGTTCGTACACCT-

TATGCGG39; 18S RNA, forward 59CGCCGCTAGAGGTGA-

AATTCT39, reverse 59CAATCTCGGGTGGCTGAAC39; ß-

Actin, forward 59GTGGGCCGCCCTAGGCACCA39, reverse

59CTCTTTGATGTCACGCACGATTTC39. Herc6[47]: for-

ward 59GGCAGTTGGCTCTCAGCGGG39, reverse 59CTCT-

GCGGGGGCCTCCTGAT39; HPRT: forward: GCTGGTGA-

AAAGGACCTC reverse: CACAGGACTAGACCTGC. Signal

quantification was performed by scanning the gels images and

analyzed with Image J software. Raw data were normalized to

either 18S (Fig 1C) or ß-actin (Fig. 2 B) signals. Statistical analysis

was performed using at least three independent experiments with

GraphPrism as indicated below.

Flow cytometry
Cultured erythroblasts or single cell suspensions of freshly

isolated spleen or bone marrow were obtained from 8 to 12 weeks

old mice and were stained with fluorochrome-conjugated

monoclonal antibodies, all from BD Biosciences. 2.106 cells were

washed with PBS, 3% of FBS, 10 mM of sodium azide and

incubated for 30 minutes at 4uC with phycoerythrin (PE)– Ter119

antibody and either fluorescein (FITC)– anti CD71 or biotin-anti

CD71. After washing, the cells were incubated with (APC)-

streptavidin, 7AAD and FITC-AnnexinV when indicated. Annex-

inV staining was performed using FITC-AnnexinV Apoptosis

Detection Kit (BD Biosciences), according to the manufacturer’s

recommendations.

Cells were analysed on a FACSCalibur cytometer (BD

Biosciences) or sorted using a FACS-ARIA II cytometer (BD

Biosciences). For sorting, DAPI was used instead of 7AAD to

exclude dead cells. Data were analysed with FlowJo (Tree Star).

Immunoprecipitation and western blot
Erythroblasts were washed twice in ice-cold PBS and lysed

according to cell number and volume (1.106 cells/10 ml) in RIPA

buffer containing 1% aprotinin; 100 mg/ml phenylmethylsulfonyl

fluoride; 10 mg/ml leupeptin, 50 nM NaF, 10 mMNaPi and

10 mM N-ethylmaleimide (NEM). The lysates were cleared by

centrifugation at 16.000 xg for 20 min, at 4uC. Immunoprecip-

itation were carried out using 20 ml of anti FLAG M2-agarose

beads/500 ml cell lysates (Sigma-Aldrich), for 1 to 2 hours on a

rotating platform. After 3 washes with RIPA, immunoprecipitates

were eluted with Laemmli sample buffer, samples boiled and

analyzed by western blotting. Proteins were separated by SDS-

PAGE and processed for western-blot analysis using the indicated

rabbit polyclonal antibodies: anti-STAT5 C17 (Santa Cruz), anti-

ISG15 (a generous gift from D.J. Lenschow, Washington

University School of Medicine, St Louis, Missouri 63110, USA),

anti-ERK2 (sc-154 Santa Cruz), anti-STAT1 (Cell signaling,

9172), anti- PLCc (Cell signaling 2822), anti-Globin N19 (Santa

Cruz), and monoclonals anti-PY694/699-STAT5 (Upstate Bio-

technology), anti-Bcl-XL (Transduction Laboratories), anti- Flag

(F3165 Sigma), anti-actin (AC15, Sigma), anti-GAPDH (mAB374,

Millipore). For western blot quantification, films were scanned,

bands quantified using ImageJ software and raw data normalized

to ß-actin signals. Statistical analysis was performed using at least

three independent experiments with GraphPrism as indicated

below.

Statistical analyses
Statistical analyses were performed using GraphPad Prism. The

student t test was used to calculate P values (two tailed). P values of

0,05 or less were indicated by one asterisk, P values of 0,01 or less

by two asterisks and P values of 0,001 or less by three asterisks.

Data were presented as mean values plus or minus SEM.
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