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Abstract

Previous morphological studies indicated that development of the human prefrontal cortex (PFC) appears to continue into
late adolescence. Although functional brain imaging studies have sought to determine the time course of functional
development of the PFC, it is unclear whether the developmental change occurs after adolescence to adulthood and when
it achieves a peak because of the narrow or discontinuous range in the participant’s age. Moreover, previous functional
studies have not focused on the anterior frontal region, that is, the frontopolar regions (BA9/10). Thus, the present study
investigated the developmental change in frontopolar PFC activation associated with letter fluency task by using near-
infrared spectroscopy (NIRS), in subjects from preschool children to adults. We analyzed the relative concentration of
hemoglobin (DHb) in the prefrontal cortex measured during the activation task in 48 typically-developing children and
adolescents and 22 healthy adults. Consistent with prior morphological studies, we found developmental change with age
in the children/adolescents. Moreover, the average Doxy-Hb in adult males was significantly larger than that in child/
adolescent males, but was not true for females. These data suggested that functional development of the PFC continues
into late adolescence. Although the developmental change of the frontopolar PFC was independent of gender from
childhood to adolescence, in adulthood a gender difference was shown.
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Introduction

The pattern of development and maturation of the human

prefrontal cortex (PFC) from childhood through early adulthood is

an important research question in neuroscience. The activity of

the catechol-o-methyltransferase (COMT) enzyme that modulates

dopamine levels in the PFC increases from the neonate through to

adulthood [1], consistent with the critical role of dopamine in

modulating normal PFC function [2]. Previous morphological

studies have used postmortem brains and MRI to indicate that

development appears to continue into late adolescence in terms of

synaptic density [3], gray matter volume [4,5] and cortical

thickness [6].

Functional brain imaging studies have also sought to determine

the time course of functional development of the PFC, although

the findings have been equivocal. A positron emission tomography

(PET) study showed that glucose metabolism at 4 years and 9–10

years was at a high plateau and after 9–10 years began to decline

and gradually reaches adult values by 16–18 years [7]. Some

functional MRI (fMRI) studies showed that the activation of the

dorsolateral PFC (DLPFC) increased with age during the

declarative memory task for 8–24 year-olds [8], and that the

greater activation in adults than in adolescents during the Stroop

task for 7–22 year-olds [9]. Others indicated that DLPFC was

more active in children (9–12 year-olds) than in adults (20–30

year-olds) in the go/no-go task [10], and that adolescents (14–17

year-olds) showed greater activation than children (8–13 year-olds)

and adults (18–30 year-olds) in the saccade task [11]. The

ventrolateral PFC (VLPFC) was activated in adults only during the

go/no-go task, but not in children (8–12 year-olds) [12], while

children (8–13 year-olds) demonstrated greater activation than

adults (19–48 year-olds) in the verbal fluency task [13]. In a near-

infrared spectroscopy (NIRS) study, both adults and preschool

children (5–6 year-olds) increased oxyhemoglobin (oxyHb) in the

lateral PFC (LPFC) during the working memory task and the

activation of LPFC was larger and broader in children than in

adults, although children were not directly compared with adults

[14]. Another study using the Stroop task, however, showed that

the oxyHb responses in the young adults were greater and faster

than those in children (7–13 year-olds), and reported that the

DLPFC activation increased with age [15]. To summarize the

above findings, previous studies have been mixed regarding in

which life stage (childhood, adolescence, adulthood) the LPFC

activation becomes largest.
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The disagreement in functional brain imaging studies might be

attributed to participant’s age, task demands or the experimental

paradigm, such as event-related design or blocked design. Since

few studies included participants with a broad range in age from

childhood to adulthood, it is unclear whether the developmental

change occurs between adolescence and adulthood and when it

achieves its peak. Moreover, although previous studies have

investigated the anterior frontal region, that is, the frontopolar

regions (BA9/10), they have not focused on it. The frontopolar

regions have a higher-order integrative prefrontal function [16]

and comparative studies of humans and apes [17] suggested that

they have enlarged and become specialized during hominid

evolution. The frontopolar regions might coordinate VLPFC and

DLPFC functions in order to achieve task goals or maximize task

performance [18–20], and might evaluate internally generated

information [21]. Because the frontopolar cortex is located in the

vicinity of air-filled spaces of the nasal cavity, the corresponding

magnetic susceptibility differences at air–tissue or bone–tissue

interfaces result in severe distortions and regional signal losses in

long-TE gradient-echo images, particularly for ultrafast imaging

techniques such as echo-planar imaging in a high magnetic field.

Therefore, such observation without signal losses in the frontopo-

lar PFC might be one of the reasons for the superiority of NIRS.

NIRS is one of the most promising noninvasive functional

neuroimaging tools to allow comparative evaluation of cortical

hemodynamic response for children and individuals with psychi-

atric disorders. NIRS can measure the signals reflecting relative

concentrations change of oxy-hemoglobin (Doxy-Hb) and deoxy-

hemoglobin (Ddeoxy-Hb), which are assumed to reflect regional

cerebral blood volume (rCBV). While fMRI and PET have an

excellent spatial resolution, they are limited in that they require a

large apparatuse that prevents their use in bedside settings for

diagnostic and treatment purposes. In contrast, NIRS is a

neuroimaging modality that, for the following reasons is especially

suitable for assessing the PFC of infants [22], children [14,15] and

psychiatric disorders [23–28] because NIRS is relatively insensitive

to motion artifacts, it can be applied to experiments that might

cause some motion of the subjects, such as vocalization. Second,

the subject can be examined in a natural sitting position, without

any surrounding distraction. Third, the cost is much lower than

other neuroimaging modalities and the set-up is very easy. Fourth,

as the test-retest reliability at weekly and monthly intervals has

demonstrated [29,30], NIRS can be applied to longitudinal

assessment following intervention. Fifth, the high temporal

resolution of NIRS is useful in characterizing the time course of

prefrontal activity [23–25].

By simultaneous measurements with other methodologies, it has

been shown that the Doxy-Hb measured by NIRS correlates with

the rCBF change in 15H2O PET [31] and the blood oxygenation

level-dependent [32] signal in fMRI [33]. In other fMRI studies

[32,34,35], in which the Doxy-Hb was not analyzed, the Ddeoxy-

Hb in NIRS has been correlated with the BOLD signal.

Moreover, previous studies showed that the verbal fluency test is

a valid cognitive activation task to evaluate DHb in PFC using

NIRS [24–26,28,31]. In NIRS studies recording the DHb during

several tasks for the same subject group, the smaller-than-normal

Doxy-Hb during the cognitive tasks involving primarily the PFC,

such as the letter fluency test and the random number generation

task, was task specific in schizophrenia, i.e., this was not evident

during other tasks, such as the sequential finger-to-thumb task

[36], or the finger tapping task [24]. These findings suggested that

the Doxy-Hb reflected the neural activation but not general or

nonspecific factors, such as impaired vascular responsiveness

irrespective of neural activation or optical pathlength.

Thus, the present study investigated the developmental change

in frontopolar PFC activation associated with the letter fluency

task by using NIRS, in a group of subjects that included preschool

children to adults.

Methods

1) Subjects
Subjects were 48 typically-developing children and adolescents

(22 male and 26 female; age range, 5–18 years; mean age, 10.9;

mean IQ, 106.2) and 22 healthy adults (11 male and 11 female;

age range, 21–37 years; mean age, 27.3; mean IQ, 113.1) (Table 1).

Participants were mainly recruited from college students, hospital

staff, their acquaintances and children, and those who volunteered

for participating through the laboratory’s web site. When siblings

or twin pairs participated in this study, only one was randomly

selected and included in the data analysis (five children were from

siblings and 23 children from twin pairs). As shown in the results

section, the twin subjects and non-twin subjects did not

significantly differ in DHb. The exclusion criteria were neurolog-

ical illness, traumatic brain injury with any known cognitive

consequences or loss of consciousness for more than 5 minutes, a

history of electroconvulsive therapy, and alcohol/substance abuse

or addiction. An additional exclusion criterion was a history of

psychiatric disease or a family history of axis I disorder in their

first-degree relatives. IQs were evaluated with the WISC-III or

WAIS-R. All participants were right-handed as based on the

Edinburgh Inventory [37] and were native Japanese speakers.

2) Ethics
The ethical committee of the Faculty of Medicine, University of

Tokyo approved this study (No. 630-5). All adult participants gave

written informed consent. All child participants gave informed

assent and their parents gave written informed consent.

3) Activation task
The activation task consisted of a 30 sec rest, a 30 sec letter

fluency task and a 30 sec rest. In the letter fluency task,

participants were asked to say as many words that began with a

Japanese character /a/ as they could. The participants sat on a

chair with their eyes open and held their hands on their lap

throughout the measurement. The auditory cues were presented at

the start and end of the letter fluency task or rest. Hemoglobin

concentration changes were measured during the activation task.

The activation task was similar to that in previous studies [24,26],

but 3 changes were introduced to make the task suitable for

children: 1) In the pre- and post-task participants were silent

Table 1. Mean of age and IQ in each group.

Child/
adolescent Adult

Male Female Male Female

n 22 26 11 11

age 9.962.7 11.763.8 26.565.7 28.265.5

(range) (5.8,17.1) (5.5,18.6) (21.4,37.4) (21.8,36.4)

IQa 108.5613.5 104.2611.0 115.9611.4 110.4610.1

(range) (81,137) (82,123) (94,128) (92,125)

aFor participants aged 15 and under IQ was evaluated with the WISC-III, for
participants aged 16 and over it was estimated by four subtests of the WAIS-R.

doi:10.1371/journal.pone.0025944.t001
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instead of repeating moras; 2) The time period of the letter fluency

task and post-task was shortened to 30 sec from 60 sec; 3) Only a

single mora was used in the letter fluency task. The number of

words generated during the letter fluency task was determined as a

measure of task performance.

4) NIRS measurement
Doxy-Hb and Ddeoxy-Hb was measured using a 2-channel

NIRS machine (NIRO200, Hamamatsu Photonics, Inc) at three

wavelengths of near-infrared light (775, 810, 850 nm). The

measurement principles were based on the modified Beer-Lambert

law, which calculates Doxy-Hb and Ddeoxy-Hb from the light

attenuation change at a given measured point. Doxy-Hb and

Ddeoxy-Hb values include a differential pathlength factor and are

given in units of mMmm. Each of the two probes consisted of an

emitter and a detector separated by 4 cm. The two NIRS probes

were placed on the subject’s prefrontal regions and secured using

double-sided adhesive tape such that the detectors were positioned

at Fp1 and Fp2 with the emitters positioned 4 cm on the lateral side

of the detectors along the T3–T4 line, according to the international

10/20 system. The machine measured DHb approximately 2–3 cm

beneath the scalp, i.e., the cortical surface area [31,34]. NIRS

probes measured oxygenation at the Brodmann’s area 10 (figure 1).

The correspondence of the probe positions and the measurement

areas on the cerebral cortex was confirmed by superimposing the

measurement positions on a magnetic resonance image of a three-

dimensionally reconstructed cerebral cortex for a healthy adult. The

locations of NIRO probe were probabilistically estimated and

anatomically labeled in the standard brain space (Brodmann’s Area)

according to [38]. Also, the correspondence was supported by a

multisubject study of anatomical cranio-cerebral correction via the

international 10–20 system [39]. The sampling time for the

recording was 0.5 sec. Baseline correction was made by using the

average DHb value during the first 30 sec rest, and then the average

DHb value during the 30 sec task period was calculated in each

hemisphere.

5) Statistical Analysis
A 2-way ANOVA with age (child/adolescent, adult) and gender

(male, female) as the between-subjects factors used to analyze task

performance.

For the mean DHb during the 30 sec task period, a 3-way

ANCOVA was performed with age (child/adolescent, adult) and

gender (male, female) as the between-subjects factors, hemisphere

(left, right) as the within-subjects factor and task performance as a

covariate. When the sphericity assumption was violated, Green-

Figure 1. The probe positions and the measurement areas. a:The correspondence of the probe positions and the measurement areas on the
cerebral cortex. b: The locations of NIRO probe were probabilistically estimated and anatomically labeled in the standard brain space (Brodmann’s
Area) according to [39].
doi:10.1371/journal.pone.0025944.g001
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house-Geisser correction was applied and the associated epsilon

was reported. For post-hoc analysis, the mean DHb of the

hemispheres was used as the dependent variable with task

performance as a covariate and statistically significant level was

defined as p,.025 (Bonferroni correction).

We calculated the Pearson’s correlation between the average

DHb and task performance and age separately for each gender in

the child/adolescent and adult groups. Second, the comparison of

correlation coefficients between male and female was performed.

Results

1) Task performance
The mean number of words generated during the letter fluency

task was: 4.32 (SD = 2.61) for male; 4.38 (SD = 2.23) for female in

the child/adolescent group, and 9.27 (SD = 2.90) for male; 8.55

(SD = 1.51) for female in the adult group. A main effect of age was

significant (F(1,66) = 55.20, p,.001), but the effect of gender and

the interaction were not significant (gender: F(1,66) = .29, p = .59;

interaction gender and age: F(1,66) = .42, p = .52).

2) Group comparisons of the DHb
Twenty-three of the participants in the child/adolescent group

were one of a pair of twins. T-test showed that the mean DHb was

not significantly different between non-twin and twin subject in the

child/adolescent group (oxy-Hb: t(46) = .48, p = .63; deoxy-Hb:

t(46) = 2.90, p = .37), indicating that including one of twins may

not have significantly influenced the conclusions of the study.

Figure 2 shows grand average waveforms of hemoglobin

concentration changes for each group. The average Doxy-Hb in

the right hemisphere was: mean 0.15 (SD = 0.36) for male; 0.30

(SD = 0.30) for female in the child/adolescent group and 0.65

(SD = 0.45) for male; 0.13 (SD = 0.20) for female in the adult

group, and that in the left hemisphere was: mean 0.12 (SD = 0.44)

for male; 0.26 (SD = 0.29) for female in the child/adolescent group

and 0.57 (SD = 0.49) for male; 0.17 (SD = 0.11) for female in the

adult group. For the Doxy-Hb, there was a significant interaction

between age and gender (F(1,65) = 12.27, p,.001). All main effects

and other interactions were not significant (age: F(1, 65) = 3.69,

p = .059; gender: F(1,65) = 3.54, p = .07; hemisphere: F(1,65) =

1.13, p = .29; interactions of age and hemisphere: F(1,65) = 1.64,

p = .21, gender and hemisphere: F(1,65) = 0.97, p = .33, age,

gender and hemisphere: F(1,65) = 1.00, p = .32).

Since we found a significant interaction between age and

gender, we next conducted post-hoc analyses in two ways using the

mean Doxy-Hb of the hemispheres as the dependent variable with

task performance as a covariate (Figure 3). First, we compared

Doxy-Hb two age groups separately for each gender. For male, the

average Doxy-Hb in the adult group was significantly larger than

that in the child/adolescent group (F(1,30) = 11.55, p,.01). For

female, however, it did not reach at a significant level

(F(1,34) = 4.69, p = .04). Second, we compared Doxy-Hb between

two gender groups separately for each age group. For the child/

adolescent group, there was not a significant difference

(F(1,45) = 2.01, p = .16), but in the adult group the average

Doxy-Hb in male was significantly larger than that in female

(F(1,19) = 16.15, p,.01).

The average Ddeoxy-Hb in the right hemisphere was mean

2.02 (SD = .08) in the child/adolescent group, 2.05 (SD = .13) in

the adult group, and in the left hemisphere was mean 2.03

(SD = .10) in the child/adolescent group, and 2.05 (SD = .11) in

the adult group. For the Ddeoxy-Hb, there was a significant main

effect of hemisphere (F(1,65) = .4.40, p = .04). There were no other

significant main effects and any interactions (age: F(1,65) = .57,

p = .46; gender: F(1,65) = 1.48, p = .23; interactions of age

and gender (F(1,65) = 1.54, p = .22, age and hemisphere:

F(1,65) = 2.64, p = .11, gender and hemisphere: F(1,65) = .17,

p = .69, age, gender and hemisphere: F(1,65) = 2.69, p = .11).

3) Correlation analysis
Since hemoglobin concentrations of both hemispheres did not

behave differently as indicated by a lack of significant interactions

with hemisphere in the main ANCOVA, we used the mean DHb

of the hemispheres for the correlational analyses. The the child/

adolescent group showed a strongly positive correlation between

Doxy-Hb and age (male: r = 0.50, p = .017; female: r = .67,

p,.001), whereas the adult group showed a weak negative

correlation which did not reach a significant level (male: r = 2.15,

p = .65; female: r = 2.37, p = .27) (Figure 4). The difference in

correlation coefficients between male and female was not

significant in the child/adolescent or adult groups (Fisher’s r to z

transformation; child/adolescent, z = 2.76, p = .45; adult, z = .47,

p = .64). There were no correlations between the Doxy-Hb and

task performance in the child/adolescent (male: r = 2.07, p = .75;

female: r = .30, p = .14) or adult groups (male: r = 2.59, p = .06;

female: r = .05, p = .90).

The Ddeoxy-Hb were not correlated with age in the child/

adolescent group (male: r = 2.11, p = .62; female: r = 2.04,

p = .85), or in the adult group (male: r = 2.28, p = .41; female:

r = 2.41, p = .21). The difference in correlation coefficients

Figure 2. Grand average waveforms of DHb during the letter fluency task. Upper: male, lower: female, right: adult group, left: child/
adolescent group. Line: red, oxyhemoglobin; blue, deoxyhemoglobin. The period of the activation task is between the two dotted lines.
doi:10.1371/journal.pone.0025944.g002

Functional Development of the PFC

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e25944



between male and female was not significant in the child/

adolescent or adult groups (child/adolescent, z = .23, p = .82;

adult, z = .31, p = .76). There were no correlations between the

Ddeoxy-Hb and task performance in the child/adolescent (male:

r = 2.02, p = .94; female: r = .01, p = .95) or adult groups (male:

r = 2.19, p = .57; female: r = .31, p = .35).

Discussion

To our knowledge, this is the first report of developmental

changes in frontopolar PFC hemodynamic data from preschool

children to adults. First, in the children/adolescent group the Doxy-

Hb during the verbal fluency task was significantly increased with

age. Contrary to the strongly positive correlation between prefrontal

activation and age in the child/adolescent group, the correlation

coefficient was slightly negative but not statistically significant in the

adult group. Second, the effect of gender on Doxy-Hb differed

depending on age, where in the adult group the males showed a

larger Doxy-Hb than the females, but in the child/adolescent group

there was no difference between the males and the females.

1) Developmental change of the frontopolar PFC
Meta-analysis of fMRI [40] and previous multi-channel NIRS

studies [24–26,28] showed that frontopolar areas were not the sites

of typical activation during letter fluency task, but that widespread

regions of the prefrontal cortical surface area and superior

temporal regions were recruited. However, comparative studies

of humans and apes showed that the frontopolar regions have

enlarged and become specialized during hominid evolution [17].

Previous NIRS studies, furthermore, found that the activation of

frontpolar region during the letter fluency test were associated with

the social functioning in schizophrenia [28]. Thus, even if the

frontpolar region was not mainly recruited during the letter

fluency test, the activation of this area has important roles of

human life because the frontopolar regions have a higher-order

integrative prefrontal function [16]. In this study, frontpolar

activation increased with age and boys showed smaller activation

than men. Although an fMRI study using the verbal fluency task

found that activation of the ventrolateral prefrontal cortex (BA44/

45) is larger in children than in adults [13], it is not necessarily

contradictory that the time course does not agree with previous

Figure 3. The mean DHb of the hemispheres in each group. Left: Doxy-Hb, right: Ddeoxy-Hb, blue: male, red: female. The average Doxy-Hb in
the adult group was significantly larger than that in the child/adolescent group for male (F(1,30) = 11.55, p,.01). Moreover, for the adult group the
average Doxy-Hb in male was significantly larger than that in female (F(1,19) = 16.15, p,.01).
doi:10.1371/journal.pone.0025944.g003

Figure 4. The scatter plots of age and the mean DHb of the hemispheres. Left: Doxy-Hb, right: Ddeoxy-Hb, blue: male, red: female. Contrary
to the strongly positive correlation between Doxy-Hb and age in the child/adolescent group (male: r = 0.50, p = .017; female: r = .67, p,.001), the
correlation coefficient was slightly negative but not statistically significant in the adult group.
doi:10.1371/journal.pone.0025944.g004
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developmental studies on the function at other regions of the

prefrontal cortex. Rather, the present NIRS data was consistent in

showing that the BA10 is developed latest in the ontogenetic

change and might suggest that the cortical area recruited by the

verbal fluency task might shift from the dorso-ventrolateral to the

anterior polar region with age. However, this interpretation should

be validated in future studies using an instrument with a wider

coverage of prefrontal and temporal area.

The results of the correlation analysis in the child/adolescent

group suggest that recruitment of the frontopolar PFC during

letter fluency tasks increases with age in childhood and

adolescence, and that development appears to continue into late

adolescence. These results are in agreement with a previous

morphological study on the frontopolar PFC [41].

Contrary to the strongly positive correlation between prefrontal

activation and age in the child/adolescent group, the correlation

coefficient was slightly negative but not statistically significant in

the adult group. This was consistent with previous NIRS studies

using the letter fluency task, in which the Doxy-Hb in middle age

was smaller than that in young adults [42,43]. A failure in reaching

statistically significant level in this study may be due to the narrow

range of the participant’s age and the small sample size in the adult

group.

2) Gender effect on frontopolar PFC activation
In the adult group, the mean Doxy-Hb during the letter fluency

test was larger in the males than in the females. This finding of

gender effect on Doxy-Hb was in agreement with a previous NIRS

study using the same task [25]. Mean IQ and mean age were not

likely to be main confounding factors, since they were not different

between genders.

The gender effect on Doxy-Hb differed depending on age,

where in the child/adolescent group there were no significant

differences in correlation coefficients or mean Doxy-Hb between

genders. This developmental course was compatible with other

morphological data that reported no gender difference in the

fronopolar thickness in subjects 8–20 years of age [41]. In

comparison of Doxy-Hb between the two age groups separately for

each gender, the males showed a larger Doxy-Hb in the adult goup

than in the child/adolescent group, but the females showed no

difference between the two age groups. Taken together, these

results suggested that the developmental change in the frontopolar

PFC hemodynamic response until late adolescence occurred

independent of gender and that the peak of the Doxy-Hb was

younger and smaller in females than in males. Those findings

could be related to a high plateau peak of frontal gray matter at

younger and smaller in females than in males [4].

3) Methodological issues
First, we used the resting state as the baseline to facilitate

applicability of the task for child participants, although we

assumed a simple vocalization task for the baseline would be

more ideal to derive a pure activation related to the letter fluency

task. Therefore, the age-dependent increase in frontopolar PFC

activation may reflect an age-dependent increase in brain activity

due to vocalization per se or age-dependent hypoperfusion during

the baseline period (resting state). PET studies have reported age-

dependent decreased oxygen metabolism and regional cerebral

blood flow (rCBF) during the resting state in the frontal areas

[7,44]. Thus, it may be possible that the adolescents were

hypoperfused during the baseline, and then activation during the

task would have been larger compared with that for the younger

children. However, this interpretation is incomplete because the

age at peak Doxy-Hb in this study was incongruent with a peak of

the rCBF [44] and the glucose metabolic rate [7] in PET studies.

Furthermore, it is impossible to distinguish whether these results

were due to ‘cognitive development’ or just to ‘phonation

development’ and ‘structural development’. Thus, future studies

should add a simple vocalization as the referential condition and

investigate the structural development

Second, the design used in this study suffered from difference in

optical properties of scalp and cortical tissues with age and gender.

Adults are expected to have thicker skulls than children, and

males’ skulls are thicker than females’. Simulation studies on tissue

optical properties [45] indicated that the thicker skull contributes

toward decreasing amplitude of oxyHb signal. However, the

current study showed that that the Doxy-Hb was largest in the

adult male. Thus, although individual difference in optical

properties of scalp and cortical tissues is very important in theory,

it may not have a substantial effect on the statistical conclusion

reported here.

Third, as we measured activation of only the frontopolar regions

of the PFC during a letter fluency test in this study, results could

not be compared with the activation of other regions and tasks.

Thus, a functional control task such as checkerboard rotation or

finger tapping tasks and measurement of other regions as reference

are needed to compensate individual difference in the tissue optical

properties and provide more convincing results in future studies

using a multi-channel NIRS machine.

Fourth, we used the cross-sectional design, not the longitudinal

one. However, IQ was controlled between the child/adolescent

and adult groups for each gender (male: t(31) = 21.56, p = .13;

female: t(35) = 21.58, p = .12). Future research with a longitudinal

design is necessary for a more comprehensive understanding of

developmental change in the PFC.

Fifth, a recent NIRS study showed the influence of skin blood

flow on NIRS signals measured on the forehead during a verbal

fluency task [46]. This study criticized that frontopolar activation

may not represent cortical change but non-cortical physiological

signal, which is autonomic control. Thus, it remains possible that

our data may at least partially represent the development of

autonomic control. Future studies are needed to disentangle

contribution of cerebral and skin blood flow on the NIRS signals

in various NIRS apparatuses by using, for example, simultaneous

measurement of NIRS and fMRI during cognitive activation.

4) Conclusion
The present study, which investigated frontopolar PFC

activation during the verbal fluency test, suggested that functional

development of the area continues to late adolescence. Although

the developmental change of the frontopolar PFC was indepen-

dent of gender from childhood to adolescence, in adulthood a

gender difference was shown.
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