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Abstract

Biofuels derived from algal lipids represent an opportunity to dramatically impact the global energy demand for
transportation fuels. Systems biology analyses of oleaginous algae could greatly accelerate the commercialization of algal-
derived biofuels by elucidating the key components involved in lipid productivity and leading to the initiation of
hypothesis-driven strain-improvement strategies. However, higher-level systems biology analyses, such as transcriptomics
and proteomics, are highly dependent upon available genomic sequence data, and the lack of these data has hindered the
pursuit of such analyses for many oleaginous microalgae. In order to examine the triacylglycerol biosynthetic pathway in the
unsequenced oleaginous microalga, Chlorella vulgaris, we have established a strategy with which to bypass the necessity for
genomic sequence information by using the transcriptome as a guide. Our results indicate an upregulation of both fatty
acid and triacylglycerol biosynthetic machinery under oil-accumulating conditions, and demonstrate the utility of a de novo
assembled transcriptome as a search model for proteomic analysis of an unsequenced microalga.
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Introduction

Oleaginous microalgae produce substantial amounts of neutral

lipids, primarily comprised of triacylglycerides (TAGs) of favorable

fatty acid chain length, making them an ideal feedstock for

conversion to biodiesel or renewable diesel and jet fuel [1,2,3].

Many of these species can also grow rapidly under a large range of

environmental conditions, such as varied light intensity, temper-

ature, and nutrient availability [1,2]. Microalgae are also capable

of growth on non-arable land using a variety of water sources,

including fresh, brackish, saline, and waste water [1,4,5]. At

current production levels, oleaginous microalgae also have the

potential to produce 1–2 orders of magnitude more oil per acre

than soybeans, the most common US oilseed crop (,50 gal acre21

y21) [6]. The Department of Energy funded an almost 20-year

effort, known as the Aquatic Species Program (ASP), aimed at

developing algal biofuels. The ASP was terminated, however, in

1996 because the projected cost of algal biofuels could not

compete at that time with the low price of petroleum. Now, after

more than a decade, microalgae have again risen to international

prominence for their potential to contribute to the global liquid

fuel demand. However, despite the great promise of algae-based

fuels, our understanding of algal lipid metabolism, particularly the

regulation of biosynthetic pathways of fatty acids and TAGs, as

well as the metabolism affecting carbon partitioning, is still largely

inadequate. Furthermore, the lack of available genome sequence

information limits the development of basic biological under-

standing required for strain improvement of unsequenced

microalgae.

Rapidly developing post-genomic, systems biology approaches

such as transcriptomics, proteomics, and metabolomics have

become essential for understanding how microorganisms respond

and adapt to changes in their physical environment. The

application of such high-throughput approaches could greatly

accelerate the commercialization of algal-derived biofuels by

providing the framework for hypothesis-based strain improvement

programs, built on an improved fundamental understanding of the

specific pathways and regulation of networks involved in algal oil

production. However, a systems biology approach to investigating

oleaginous microalgal metabolism remains relatively unexplored

especially in unsequenced organisms. To date, the nuclear

genomes of only about ten eukaryotic microalgae have been

sequenced (http://genome.jgi-psf.org), and though a few of these

strains may have some properties of interest for algal biofuels,
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most, if not all of them, were chosen to be sequenced for reasons

other than biofuel production.

‘‘Higher level -omic’’ analyses – transcriptomics, proteomics, and

metabolomics – of microalgae have largely focused upon those

species with sequenced genomes (for an extensive review, please

refer to Jamers, 2009). For example, the transcriptome of the model

green alga, Chlamydomonas reinhardtii, was recently characterized

under nutrient-replete, anaerobic H2-producing, and sulfur-deplet-

ed growth conditions [7,8,9]. Benning and coworkers have also

extensively examined the nitrogen-deprivation stress response and

its effects upon lipid accumulation in C. reinhardtii, through

comparative transcriptomics and lipid droplet proteomics [10,11].

However, the best cellular lipid accumulation noted for this

organism is only ,20% in wild type cultivars, though ,40% total

lipids have been reported for starchless mutants [12,13]. Many

unsequenced wild-type strains have been reported to make more

than 50% total lipids under these same growth conditions [1].

It is likely that the dearth of microalgal genomics data has

dissuaded biologists from pursuing higher-level systems biology

analyses of unsequenced yet potential commercially relevant

oleaginous microalgae. Transcriptomic analyses focused upon

elucidating specific metabolic pathways have, up until recently,

employed microarrays generated from cDNA libraries, or sandwich

hybridization assays, as opposed to utilization of the high-throughput,

massively parallel, cDNA-sequencing techniques currently available

for global transcriptome analysis [14,15,16]. On the other hand,

Rismani-Yazdi et al. [17] just reported 454 pyrosequencing to carry

out the first de novo transcriptomic sequencing and annotation of the

unsequenced microalgae Dunaliella tertiolecta. This work marks a

meaningful advance in the pursuit of higher-level systems biology

approaches with unsequenced, oleaginous microalgae, and demon-

strates the capability of using transcriptomic data to identify pathways

and targets of interest for metabolic engineering and functional

genomic analyses in non-model microalgae.

Despite its power, transcriptomic analysis does not adequately

define the control points for metabolic regulation. This is especially

true in algae where post-transcriptional regulation is not well

understood. For example, translational regulation of chloroplast

gene expression occurs in a number of microalgae and higher plants

[18,19,20,21,22,23]. Thus, a more complete systems biology

analysis is required to provide useful hypotheses for strain

improvement strategies. Proteomics can bring us closer to this goal,

but the availability of proteome data from unsequenced microalgae

is also sparse. Such proteomic analyses have typically targeted

specific cellular components (sub-proteomes such as chloroplasts)

and yielded relatively low orthologous identification rates

[16,24,25]. For example, Wang et al. [25] employed a cross-species

protein identification strategy in order to examine the proteome of

the Haematococcus pluvialis cell wall. For the identification of proteins

with low sequence identity, a conserved motif and domain strategy

was also implemented. They observed that approximately one half

of the proteins examined failed to be recognized in protein

databases. This was attributed to amino acid substitutions and/or

post-translational modifications, both of which dramatically reduce

the probability of cross-species proteomic identifications. Such

analyses underscore the need for increased sequence information on

diverse microalgae. As we present in this communication, utilization

of a de novo sequenced transcriptome can provide the necessary

sequence information to pursue such proteomic analyses.

After considering the fact that of the over 40,000 species of

microalgae identified to date, fewer than a dozen microalgal

genome sequences are available, it is not surprising that elucidation

of the key pathways and networks regulating lipid accumulation

remains limited [1]. An integrated systems biology examination of

these organisms will be critical in order to understand the unique,

strain-specific mechanisms of lipid accumulation, and to develop

strategies required to engineer improved strains with enhanced lipid

production. Furthermore, genetic engineering of unsequenced

strains will require identification of unique promoter and untrans-

lated region (UTR) sequences for targeted overexpression or

silencing of target genes [22]. Transcriptomics and proteomics

cannot provide complete sequence data for promoters and UTRs,

but can identify genes with desirable expression patterns, thereby

directing strain-engineering strategies to a small region rather than

the entire genome. And so, with the full potential of transcriptomics

and proteomics largely dependent upon genome sequence avail-

ability, many promising algal strains have been left unexplored.

The oleaginous green alga, Chlorella vulgaris, has been extensively

studied due to its relatively fast growth rate and its value as both a

food supplement and potential biofuel feedstock. Additionally, C.

vulgaris has also recently been examined in light of the genus’

biomedical relevance, demonstrating anti-oxidant and anti-

tumorigenic properties, as well as having value in increasing

vascular and immune function [26,27,28,29]. C. vulgaris also

accumulates .50% lipid under nutrient-deplete conditions, with a

favorable fatty acid profile for biodiesel production. Finally, many

reports have been published describing successful genetic trans-

formation of Chlorella cultivars [30,31]. Taken together, we have

concluded that this is an ideal platform to explore algal lipid

metabolism and the biosynthetic pathways involved in fatty acid

and TAG biosynthesis in oleaginous algae. To date, however,

there is no genome sequence available for C. vulgaris (although a

genome sequence has been published for the presumably related

strain, C. variablis NC64A [32]), hindering the further development

of this organism as a food, fuel and biomedical resource.

We have taken a different approach and set out to demonstrate

the utility of bypassing the genome sequencing step by taking

advantage of current high-throughput technologies in order to

pursue direct, higher-level systems biology analyses. Herein, we

have built upon the de novo transcriptome sequencing approach,

and set out to conduct a comparative global transcriptomic and

proteomic study of the microalga, C. vulgaris UTEX 395, chosen

after screening all ten C. vulgaris cultivars in the UTEX Algae

Culture Collection for growth rate and lipid accumulation

capability, under conditions that induce high oil production.

These conditions have been optimized to yield greater than 60%

fatty acid accumulation based on dry cell weight when the algae

were grown under nutrient-deplete conditions. cDNA from C.

vulgaris was sequenced using Illumina technology and de novo

transcriptome assembly was performed using a combination of

readily available software and newly generated bioinformatic tools.

The proteomic analysis was subsequently undertaken utilizing the

assembled C. vulgaris transcriptome as a search model. This work

marks the first comprehensive proteomic investigation of lipid

accumulation in an unsequenced microalga, as well as the first

utilization of a de novo assembled transcriptome as a search model

for proteomic analysis in an unsequenced microalga. Our results

indicate that this approach can provide a powerful and effective

search model for proteomic analysis. Our efforts demonstrate the

feasibility of bypassing the bottleneck of genomic sequencing,

opening the door for a comprehensive systems biology examina-

tion of other unsequenced oleaginous microalgae.

Materials and Methods

Algal strain and culture conditions
Chlorella vulgaris strain UTEX 395 was grown in 1L Roux bottles

using modified Bold’s Basal Media (mBBM) containing: 2.94 mM

Systems Biology Analysis of Chlorella vulgaris
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NaNO3, 0.17 mM CaCl2, 0.30 mM MgSO4, 0.43 mM K2HPO4,

1.00 mM KH2PO4, 0.43 mM NaCl, 0.17 mM EDTA, 18 mM

FeSO4, 0.18 mM H3BO3, 61 mM ZnSO4, 15 mM MnCl2, 10 mM

MoO3, 13 mM CuSO4, and 3.3 mM CoNO3. Cultures were

maintained at 25uC61uC, with continuous (24 hr) white fluores-

cent light illumination (200 mE m22 s21). Cultures were supple-

mented with 2% CO2/air and mixed with a magnetic stir bar at

500 rpm. To induce nitrogen deprivation, rapidly growing cells

were centrifuged for 5 min at 5,0006 g, washed once in nitrogen-

free mBBM, and resuspended in nitrogen-free mBBM for

continued growth. Cell growth was monitored via cell count

measurements using a 0.1 mm depth, Hy Lite_hemocytometer

(Hausser Scientific). Cultures were inoculated at a cell density of

approximately 3.56106 cells/mL.

Fatty Acid Methyl Ester (FAME) analysis
Total fatty acid content was determined via transesterification of

glycerolipids followed by GC-FID analysis, using a method

adapted from Lepage and Roy [33]. Briefly, 50 mL samples of

cell culture at 7.856107 cells/mL (nitrogen replete) and 5.006108

cells/mL (nitrogen deplete) were harvested via centrifugation for

5 min at 5,0006 g. Cell pellets were quenched in liquid nitrogen

and lyophilized overnight. Approximately 5 mg of dry biomass

was suspended in chloroform-methanol (2:1, v/v), and glyceroli-

pids were transesterified in HCl-methanol (5%, v/v) for 1 h at

85uC in the presence of a tridecanoic acid methyl ester as an

internal standard (Sigma Aldrich). Fatty acid methyl esters were

extracted in hexane (Sigma Aldrich) at room temperature for 1 hr

and analyzed by GC-FID. For all FAME analyses, three replicates

were examined.

Fluorescence Microscopy
Non-polar lipid accumulation was qualitatively examined using

epifluorescence microscopy. Cells were harvested from nitrogen

replete and nitrogen deplete media, as described above. Cells were

treated with 10% DMSO (to increase membrane permeability)

and stained for five minutes with 10 mg/ml of the non-polar lipid

fluorescent dye, BODIPY 493/503 (Molecular Probes, Invitrogen

Corporation). Cells were immobilized on microscope coverslips by

mixing with 1% low-melting-temperature agarose (heated to 65uC
to solubilize) in a 1:1 ratio. Images were acquired using a Nikon

Eclipse 80i Epifluorescent microscope. Chlorophyll autofluores-

cence was detected using a 660/50 band-pass optical filter, and

BODIPY 493/503 fluorescence was detected using a 525/50

band-pass filter.

Isolation of mRNA
A 50-mL sample of a nitrogen replete cell culture was harvested

via centrifugation for 2 minutes at 3,0006g. Cell pellets were

resuspended in 5 mL RNeasy Lysis Buffer (Buffer RLT, Qiagen,

RNeasy Plant Mini Kit), frozen in liquid nitrogen, and ground into

a fine powder by mortar and pestle on liquid nitrogen. RNA was

extracted using a Qiagen RNeasy Plant Mini Kit with glass bead

disruption. The lysate was divided among 10 microfuge tubes and

eluted into RNase-free ddH20. A Qiagen RNeasy MinElute

Cleanup Kit was utilized to concentrate the RNA.

Isolation of soluble protein fraction
Cells were harvested at cell densities of 7.856107 cells/mL

(nitrogen replete) and 5.006108 cells/mL (nitrogen deplete) via

centrifugation for 2 minutes at 3,0006 g. Cell pellets were

immediately quenched in liquid nitrogen, thawed and solubilized

on ice in 2 mL of lysis buffer (50 mM Tris, pH 8.0, 150 mM

NaCl, 1 mM DTT, 10% glycerol, supplemented with 16
cOmplete Protease Inhibitor Cocktail solution (Roche Diagnostics

Corporation, Indianapolis, IN)). The cells were then sonicated on

ice at 4uC, at 90% power setting for 30 seconds66 cycles, with a

one minute cool-down period between sonication cycles using a

Braun-Sonic-L ultrasonicator. Lysates were cleared via two cycles

of centrifugation at 16,0006 g at 4uC for 30 minutes, and the

supernatants were isolated for use in subsequent proteomic

analysis.

Transcriptome Analysis
Total RNA was first assessed for quality on a Bioanalyzer 2100

using Nano 6000 LabChip (Agilent Inc., Santa Clara, CA). A

complementary DNA (cDNA) sequencing library was prepared

from the total RNA using a mRNA-seq Sample Preparation Kit

(Illumina). Briefly, poly A+ RNA was isolated from 10 mg total

RNA using Sera-Mag Magnetic Oligo-dT beads. Purified mRNA

was fragmented, annealed to high concentrations of random

hexamers, and reverse transcribed. Following second strand

cDNA synthesis, end repair, and A-tailing, oligo adapters

complementary to sequencing primers were ligated to cDNA

fragment ends. Resultant cDNA libraries were size fractionated on

an agarose gel by excising 200-bp fragments followed by

amplification with 15 cycles of polymerase chain reaction. Clusters

were generated from the cDNA sequencing library on the surface

of a flowcell in the Cluster Station (Illumina) by bridge

amplification. The flowcell was used to perform 56 cycles of

sequencing-by-synthesis chemistry in the Genome Analyzer II.

The manufacturer’s Genome Analysis OLB 1.8 pipeline (Illumina,

San Diego, CA, USA) was used to perform image analysis

(Firecrest), and base calling (Bustard).

Short nucleotide reads obtained via Illumina sequencing were

assembled by the Velvet software [34] to produce error-free,

unique contiguous sequences (contigs). The Oases program [35]

was then utilized to cluster the contigs in the preliminary Velvet

assembly into small groups (loci), and construct transcript isoforms

for each of these loci. For the assembly of contigs using Velvet, we

chose a k-mer length of 25 that maximized the average length of

the transcript isoforms that constituted the output from the Oases

program. Chlorophyta nucleotide sequences were downloaded from

the NCBI Gene database and formatted using the makeblastdb

program from the standalone BLAST+ program suite in order to

obtain a nucleotide database compatible for BLAST analysis.

Transcript isoforms were annotated by the local alignment of

assembled transcript sequences against this Chlorophyta nucleotide

database using the standalone NCBI BLAST+ program suite.

Nucleotide query sequences of the transcript isoforms were locally

aligned against the nucleotide sequences in the database using the

nucleotide blast (blastn) program from the standalone BLAST+
program suite, and the results from this nucleotide BLAST+
search enabled the assignment of gene models to these transcripts.

The nucleotide blast search was complemented by the local

alignment of the six-frame conceptual translation products of the

query transcript sequences against a formatted database of

viridiplantae protein sequences downloaded from the RefSeq

protein database using the blastx program. Gene ontology

enrichment was performed on the annotated transcriptome and

the subset of the transcriptome matching the C. vulgaris proteome

utilizing the Blast2GO software version 2.4.8 [36].

Proteome Analysis
Gel-based liquid chromatography-mass spectrometry (GeLC/

MS) was employed for comparative shotgun proteomic analysis.

20 mg soluble proteins were separated using one-dimensional SDS-

Systems Biology Analysis of Chlorella vulgaris
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PAGE. Entire lanes were excised from the gel and cut into 40

segments. Gel segments were reduced, alkylated, and tryptically

digested robotically, using a ProGest protein digestion station

(DigiLab, Inc.) to provide peptide-containing liquid fractions

suitable for LC/MS/MS analysis on a Waters NanoAcquity

HPLC system interfaced to a ThermoFisher LTQ Orbitrap Velos

mass spectrometer. Peptides were loaded on a trapping column

and eluted over a 75-mm analytical column at 350 nL/min; both

columns were packed with Jupiter Proteo resin (Phenomenex).

The mass spectrometer was operated in data-dependent mode,

with MS performed in the Orbitrap at 60,000 FWHM resolution

and MS/MS performed in the LTQ. The fifteen most abundant

ions were selected for MS/MS. For all proteomic analyses, three

biological replicates were examined.

In-house Awk and Python scripts were used to convert the

annotated transcriptome into a format suitable for input to the

proteomic Mascot program [37]. Mascot was used to perform in

silico six-frame translations of the annotated transcriptome, and the

product ion data were searched against the resultant database.

Product ion data were also searched against concatenated forward

and reverse Chlorophyta databases (using all available sequenced

microalgae). Databases were appended with commonly observed

background proteins (cRAP) to prevent false assignment of

peptides derived from those proteins. Mascot DAT output files

were parsed into the Scaffold program (Proteome Software) for

validation and filtering to assess false discovery rates (FDR), which

allowed only statistically significant protein identifications. Scaffold

parameters were set to a minimum of 2 peptides per protein with

minimum probabilities of 95% at the protein level and 50%

(Prophet scores) at the corresponding peptide level in order to

ensure ,1% FDR. ANOVA statistical analysis and principal

component analysis was applied using ArrayTrack [38] in order to

identify differential significance between nutrient-replete and

depleted samples, as well as between biological replicates. Only

those positive protein identifications for which p-values less than or

equal to 0.05 were obtained were considered statistically

significant for the data presented. Data normalization was applied

based upon the total number of spectral counts under nitrogen-

deplete conditions as described by Zybailov et al. [39].

Results

Growth and lipid accumulation of C. vulgaris under
nitrogen stress

C. vulgaris UTEX395 was cultured photoautotrophically in

small-scale, Roux-bottle photobioreactors under nitrogen-replete

and nitrogen-deplete conditions. Cells were harvested from

cultures in nitrogen-replete media, followed by buffer exchange

to nitrogen-free media, and final harvesting after growth in

nitrogen-deplete media in order to obtain mRNA and protein

fractions for transcriptomic and proteomic analysis (Figure 1a,

circled data points). These harvest points were selected to

maximize the differential in lipid accumulation based upon culture

sampling throughout the growth curve. Growth under nitrogen-

replete conditions led to both faster growth rates as well as higher

cell densities compared to nitrogen-depleted cultures, indicative of

nitrogen-limitation in the latter. Nitrogen-deplete cultures contin-

ued to grow at rates similar to nitrogen-replete cultures for

approximately 24 hours before their growth rates declined. It is an

interesting observation that cells continue to grow post-nitrogen

deprivation. This is likely due to the utilization of internal nitrogen

stores, and potentially through the mobilization of nitrogen

contained in cell wall chitin (discussed further below; Gerken

and Knoshaug, unpublished results). With the decrease in growth

rate, the appearance of the culture changed, turning from dark

green to yellow (Figure 1a, inset).

We selected harvest points for transcriptomic and proteomic

analysis based upon total fatty acid content, as opposed to the

expression levels of specific transcripts or proteins, in order to

maximize the differential in protein expression specifically with

respect to oil accumulation. Lipid accumulation was quantitatively

examined via transesterification of glycerolipids into FAME. We

chose this method of lipid analysis because in our view, all fatty

acids are potential feedstocks for biofuel production and because

the conversion of fatty acids and recovery and quantitation of

FAMEs provide a much more accurate measure of lipid content

than standard gravimetric analyses such as Bligh-Dyer [40]. Under

nutrient replete conditions, C. vulgaris accumulated 10%62% fatty

acids on a dry cell weight basis (dcw) (Figure 1b). When incubated

for ,5 days in the presence of nitrogen free media, C. vulgaris

accumulated 60%66% fatty acids (dcw) (Figure 1b). A major shift

in the profile of fatty acids occurs under nitrogen deprivation when

compared to nutrient replete conditions. Most notably there is a 9-

fold increase in C18:1n9 and a 4-fold decrease of C18:3 (Figure 1c).

This result is similar to that observed by Stephenson et al. [41]

where C. vulgaris cultures grown during nitrogen deprivation

accumulated a significant amount of C18:1, while the amount of

more highly unsaturated fatty acids (C18:2, C18:3, C16:2)

decreased. Conversely, the fatty acid profile observed for C.

vulgaris under nitrogen deprivation dramatically differs from that

observed for C. reinhardtii under nitrogen stress where palmitic and

linoleic acid (C16:0 and C18:2n9,12), as well as oleic acid (C18:1),

significantly increase [42].

We also examined qualitatively the accumulation of neutral

lipids under nitrogen replete and nitrogen-deplete conditions by

fluorescence microscopy, using the neutral lipid dye BODIPY

493/503 (Figure 1d). Under nutrient replete conditions, represen-

tative C. vulgaris cells were found to accumulate a few small,

discrete green fluorescent lipid droplets. However, under nitrogen

deprivation, most C. vulgaris cells accumulated large lipid droplets

that appear to encompass the bulk of the intercellular space. No

notable increase in cell size was observed. This is in contrast to

lipid accumulation observed in C. reinhardtii, in which there is an

increase in the number rather than an increase in size of small lipid

droplets [11,13].

De novo Transcriptome Assembly and Annotation
In order to sequence the C. vulgaris transcriptome, a comple-

mentary DNA (cDNA) library was prepared from total mRNA,

and sequenced-by-synthesis using Illumina technology. Illumina

Pipeline analysis produced 27 million, 55-base reads (Figure 2).

We were unable to use the C. variabilis NC64A and Coccomyxa C-

169 genome sequences as scaffolds for assembly because the

sequence homology was less than 5% for the short reads (http://

genome.jgi-psf.org/Coc_C169_1/Coc_C169_1.home.html, data

not shown). Therefore, Velvet and Oases program suites were

utilized for de novo transcriptome assembly. The resultant assembly

yielded 29,237 transcripts, with an average transcript length of

970 nt (Figure 2).

Unique transcripts were aligned against all NCBI Chlorophyta

non-redundant sequences, including whole genome sequences.

7,067 transcripts had hits with significant Expect values (E-values)

less than 1e-03, suggesting ,77% of assembled C. vulgaris

transcripts are unique amongst available microalgae sequences.

As noted by Rismani-Yazdi et al. [17], this identification rate is

consistent with previously reported values for de novo assembled

eukaryotic transcriptomes. Of the corresponding E-values, 315

(4.4%) were scored 0.0, which indicates that the corresponding hits

Systems Biology Analysis of Chlorella vulgaris
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are the best possible BLAST results. The mean E-value was 3.22e-

06 and median E-value was 2e-38 (data not shown).

Isolation and Fractionation of Soluble Proteome
The cell wall of C. vulgaris contains an extensive network of

biopolymers, largely composed of chitin and algaenan-like

molecules, as well as uronic acid and proteoglycans (for extensive

review of Chlorella sp. cell wall composition, refer to Takeda, 1991

[43]). The robust nature of this cell wall makes C. vulgaris extremely

resistant to cell lysis, and in turn, hinders extraction of the soluble

protein fraction. Numerous mechanical and chemical cell

disruption methods were therefore examined in order to optimize

cell lysis and increase sample complexity. Optimal lysis and

protein extraction, determined by maximal lysate protein

complexity and resolution on SDS-PAGE analysis, was ultimately

obtained via multiple cycles of sonication. Increasing the number

of sonication cycles improved protein identification rates by more

than an order of magnitude (134 proteins from a single cycle,

.2,000 proteins from six cycles). No cells remained intact when

examined microscopically (data not shown). Beyond six cycles of

sonication, protein abundance and complexity did not noticeably

improve. Therefore, we utilized six cycles of sonication to

maximize lysis efficiency and avoid potential protein degradation

caused by excessive sonication treatment. The resulting SDS

polyacrylamide gels demonstrate a high sample complexity, with a

broad range of highly resolved proteins observed. Differential

protein expression patterns between nitrogen-replete and nitro-

gen-deplete conditions are clearly observed (Figure 3a).

Proteomic Analysis and Annotation
Proteomic analysis was performed using Gel-based liquid

chromatography mass spectrometry (GeLC/MS, Figure 2). In-

house Python and Awk scripts were used to annotate the de novo

assembled C. vulgaris transcriptome using nucleotide blast (blastn)

results and to properly format the resulting annotated transcrip-

tome for use in Mascot. Each transcript isoform in the assembled

transcriptome was annotated using the fasta header of the best

blastn hit using Awk and Python codes (Figure 2). Since multiple

Figure 1. Growth and lipid accumulation properties of C. vulgaris under nitrogen limitation. (A) Representative growth curves for C.
vulgaris cultured photoautotrophically under nitrogen-replete (blue) and nitrogen-deplete (red) conditions. Harvest points utilized for all comparative
analyses and images are circled. Inset: cultures grown under nitrogen-replete (green) and nitrogen-deplete (yellow) conditions. (B) Fatty acid methyl
ester (FAME) analysis of C. vulgaris under nitrogen-replete and nitrogen-deplete conditions. (C) Average fatty acid composition (%, w/w) for C. vulgaris
under nitrogen-replete and nitrogen-deplete conditions. (D) Epifluorescent microscopy images of BODIPY-stained C. vulgaris in nitrogen-replete (top
panel) and nitrogen-deplete (bottom panel) medium. Red fluorescence is due to chlorophyll autofluorescence and green fluorescence is due to
BODIPY-neutral lipid interaction. Magnification bar (white) equals 5 mm.
doi:10.1371/journal.pone.0025851.g001
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Figure 2. Workflow for de novo transcriptome assembly and comparative proteomic analyses.
doi:10.1371/journal.pone.0025851.g002

Figure 3. Proteomic Analysis of C. vulgaris. (A) One dimensional SDS-PAGE of C. vulgaris soluble fraction utilized for comparative proteomic
analysis. M, Marker; N+, Nitrogen-replete; N2, Nitrogen-deplete. (B) Mass spectral analysis data for the C. vulgaris proteome searched against all
available Chlorophyta genome databases (left) and the C. vulgaris Transcriptome (right).
doi:10.1371/journal.pone.0025851.g003

Systems Biology Analysis of Chlorella vulgaris

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e25851



transcript isoforms corresponding to the same locus or to different

loci can have the same top blast hit, multiple transcript isoforms

can result in redundant headers, causing errors with the Mascot

program. To bypass this problem, multiple occurrences of a given

fasta header in the annotated transcriptome file were appended

with ascending numbers using a second Python script.

Product ion data was searched against forward and reverse

concatenated Chlorophyta and six-frame translated de novo assembled

C. vulgaris transcriptome databases using the Mascot search

program, using identical search parameters. Searching against

Chlorophyta, the proteomic analysis identified an average of 1,401

proteins under nitrogen-replete conditions, and 1,347 proteins

under nitrogen-deplete conditions, corresponding to 2,061 unique

protein identifications between the two conditions (Figure 3b).

Searching against the de novo assembled C. vulgaris transcriptome

yielded significantly higher positive identifications. Under nitro-

gen-replete conditions, an average of 2,312 proteins were

identified, and an average of 2,209 were identified under

nitrogen-deplete conditions, corresponding to 2,949 unique

protein identifications between the two conditions (Figure 3b).

Thus, of the 7,067 transcripts identified by blastn search against all

Chlorophyta, ,42% were identified in our proteomics analysis. The

numbers of matching spectra, unique peptides, mean and median

spectra/protein (the average and statistically distributed mid-value

of spectral counts, respectively, identifying a given protein), and

mean and median unique peptides/protein (the average and

statistically distributed mid-value, respectively, of observed pep-

tides uniquely matching a given protein) all increased approxi-

mately 2-fold using the de novo assembled C. vulgaris transcriptome,

clearly indicative of a superior search database (Figure 3b). This

identification rate marks the largest number of positive identifi-

cations for a microalgal proteomic analysis to date, and represents

an order of magnitude increase compared to previously identified

microalgal sub-proteomic analyses of unsequenced microalgae.

Annotation of protein identifications was completed by matching

to transcriptomic blastx results. Of 2,949 positive identifications,

2,660 proteins (90.2%) returned a statistically significant blast hit.

We employed molecular function Gene Ontology (GO)

enrichment analysis to assess the functional distribution of

transcripts in the entire annotated C. vulgaris transcriptome, as

well as the 2,949 transcripts corresponding to positive MS/MS

identifications in the soluble sub-proteome. The results of GO

enrichment are represented as the percent of total transcripts in

respective fractions in Figure 4. The GO enrichment represented

several categories of molecular function, with transcripts coding

for nucleotide and nucleic acid binding proteins comprising the

largest percentage (,25%) of all transcripts in both the whole

annotated transcriptome and the corresponding soluble sub-

proteome fraction (Figure 4). Transcripts coding for proteins with

transferase, hydrolase, and lyase activity were also highly enriched

in both the whole transcriptome and soluble sub-proteome

fraction. The gene distribution amongst the whole transcriptome

and the fraction corresponding to the soluble sub-proteome

fraction shows relatively equivalent percent distribution amongst

the functional groupings. This result suggests a large fraction of

proteins that might be expected to reside in the insoluble proteome

fraction (e.g., transporters and membrane bound enzymes) were

isolated by our lysis method and identified in our proteomic

analysis. Indeed, this occurrence is demonstrated in the positive

identification of all enzymes along the TAG biosynthetic pathway,

comprised of a number of membrane-associated proteins in the

endoplasmic reticulum (discussed below). The initial goal of this

study was to examine the soluble proteome fraction without

specific intent to examine the TAG biosynthetic components,

though the identification of these components was a welcome

result. The components of the FA biosynthetic pathway are

expected to be largely associated with the soluble proteome

fraction (not membrane-bound), and as such, the observed

identification of these components was expected.

Approximately 42% of all annotated transcripts were identified

in our proteomic analysis. Given the equivalent distribution across

the various GO categories between the proteome and transcrip-

tome (Figure 4), this value implies that less than half of the

annotated transcribed genes from each category were identified in

the proteome. However, the uniform nature of these absences

suggests this is a limitation of MS/MS identification capabilities, as

opposed to the systematic absence of a given class of proteins. In

cases where a genome is available as a search model, identification

rates for large-scale proteomic analyses are typically 35–60%

[44,45,46], indicating the transcriptome offers a strong search

database in cases where a genome is unavailable.

The utilization of the de novo assembled C. vulgaris transcriptome

led to identification of a number of proteins along the major

metabolic and biosynthetic pathways that were initially absent

from the data obtained using other Chlorophyta sequence databases.

Figure 5 provides more detail for the multiple sequence alignment

of peptide fragments of acetyl-CoA acyltransferase (ACAT)

identified in MS/MS analysis of C. vulgaris against the top seven

Chlorophyta homologs. Despite significantly high sequence similarity

(E-values,6e-124) for all homologs, Mascot searching against all

Chlorophyta databases failed to identify ACAT. Only when utilizing

the de novo assembled C. vulgaris transcriptome was ACAT

identified.

The utilization of our C. vulgaris transcriptome as a proteomic

search model was also successful in identifying otherwise

unidentified proteins that play critical roles in fatty acid and

triacylglycerol biosynthesis (Figure 6). A significant portion of the

FA pathway, including malonyl-CoA:ACP transacylase (MAT), 3-

ketoacyl-ACP synthase (KAS), 3-ketoacyl-ACP reductase (KAR),

and 3-hydroxyacyl-ACP dehydratase (HD) was absent from our

orthologous database analysis results. The components of the

TAG biosynthetic pathway, including glycerol-3-phosphate acyl-

transferase (GPAT), lyso-phosphatidic acid acyltransferase

(LPAAT), phosphatidic acid phosphatase (PAP), lyso-phosphati-

dylcholine acyltransferase (LPAT), and diacylglycerol acyltransfer-

ase (DGAT) – the last of which is required for commitment into

TAG biosynthesis – were also absent from the TAG biosynthetic

pathway, when using orthologous search databases (Figure 6).

However, these proteins were all identified in significant

abundance (.10 spectral counts) using the C. vulgaris UTEX 395

de novo assembled transcriptome, indicating that they went

unidentified due to lack of sequence similarity, as opposed to

abundance below the limits of detection (1 spectral count). Overall,

the number of statistically significant protein identifications

increased nearly 2-fold when using the de novo assembled

transcriptome as a sequence database (Figure 3b).

Differential Protein Abundance in Fatty Acid and
Triacylglycerol Biosynthetic Pathways

Chloroplastic microalgal fatty acid synthesis is proposed to

occur primarily through conversion of acetyl-CoA to malonyl-

CoA precursors, followed by four successive condensation

reactions, ultimately resulting in the production of an acyl-ACP

(Figure 6). Acetyl-CoA carboxylase (ACCase) catalyzes the first

committed step of fatty acid synthesis in a two-step reaction that

results in the conversion of acetyl-CoA to malonyl-CoA. ACCase

inhibition via phosphorylation can be catalyzed by AMP-activated

kinase (AMPK). In the next step of fatty acid synthesis, the malonyl
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group of malonyl-CoA is transferred to acyl carrier protein (ACP)

forming malonyl-ACP in a reaction catalyzed by MAT. The

subsequent series of four condensation reactions is then catalyzed

by KAS, KAR, HD, and enoyl-ACP reductase (ENR). These

condensation reactions ultimately lengthen precursor acyl-ACP

chains by two carbons per cycle. Termination of elongation is

catalyzed by an acyl-ACP thioesterase (FAT), leading to free fatty

acid release and export to the cytosol, or via direct transfer of the

acyl group to glycerol-3-phosphate and/or monoacylglycerol-3-

phosphate in the TAG biosynthetic pathway (discussed below). For

extensive review of plant and microalgal fatty acid biosynthesis,

refer to Ohlrogge and Browse, 1995 and Hu et al., 2008.

Microalgal TAG biosynthesis is proposed to occur via sequential

transfer of fatty acids from CoA to glycerol-3-phosphate (G3P) via

the direct glycerol pathway [1,47] (summarized in Figure 6). Fatty

acid transfer to position one of G3P results in the formation of

lyso-phosphatidic acid (LPA), in a reaction catalyzed by GPAT.

Subsequent acyl transfer to position two of LPA leads to formation

of phosphatidic acid (PA), in a reaction catalyzed by LPAAT. PA

can also be formed via phosphorylation of diacylglycerol (DAG) in

a reaction catalyzed by DAG kinase (DAGK) [48]. The

penultimate step of TAG biosynthesis is catalyzed by PAP,

resulting in dephosphorylation of PA and formation of DAG.

DGAT ultimately catalyzes the final and committed step of TAG

biosynthesis, in which a third acyl chain is transferred to position 3

of G3P, forming a neutral triacylglyceride [1,49].

We examined changes in spectral counts (the total number of

MS/MS spectra identifying a protein) for the components of the

fatty acid and triacylglyceride biosynthetic pathways under

nitrogen-replete and nitrogen-deplete conditions. Normalized

spectral abundance factor (NSAF) values were utilized to calculate

spectral count fold-changes, as described by Zybailov et al. [39].

Figure 6 summarizes the spectral count fold-change for the

components of fatty acid and TAG biosynthetic pathways under

nitrogen-deplete conditions with respect to nitrogen-replete

conditions (the ratio of N-deplete to N-replete). ACCase

abundance was upregulated approximately 2-fold under nitro-

gen-deplete conditions, while AMPK abundance was downregu-

Figure 4. Gene Ontology enrichment analysis. Functional distribution of the complete annotated C. vulgaris transcriptome (grey bars) and the
2,949 transcripts corresponding to proteins identified in sub-proteomic soluble fraction via MS/MS analysis (black bars). Distribution is represented as
percent of total transcripts in respective fractions.
doi:10.1371/journal.pone.0025851.g004
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lated 1.6-fold. Similar to ACCase, MAT abundance was

upregulated, approximately 1.4-fold, under nitrogen-deplete

conditions. Enzymes catalyzing condensation reactions were also

upregulated, with the exception of the approximately 2-fold down-

regulation of KAR, the enzyme catalyzing the conversion of 3-

ketoacyl-ACP to 3-hydroxyacyl-ACP. A protein identified via

sequence alignment as a putative (non-specific) fatty acid

thioesterase, proposed to terminate fatty acid elongation, displayed

no change in abundance [1]. Although the absolute spectral counts

for the components of the TAG biosynthetic pathway were

generally lower than those of the fatty acid biosynthetic pathway

(especially in the replete samples) the change in protein abundance

was far more pronounced, one to two orders of magnitude greater

than those observed in the fatty acid biosynthetic pathway. The

corresponding p-values for observed changes for all components of

the FA and TAG biosynthetic pathways were less than 0.05

(indicating ,5% chance that the difference is random). The

largest increase in abundance was observed for DGAT, with

greater than 100-fold spectral count increase. DAGK showed no

statistically significant change in abundance in the nitrogen-

deplete state, implying that acylation of LPA is the preferred path

to PA synthesis under these conditions.

Discussion

Chlorella vulgaris UTEX395 as a commercially relevant
algal strain

Selection of suitable algal strains will be a critical step in

realizing the full potential of commercial-scale photosynthetic algal

cultivation for biofuel and bioproduct production. An ideal

production strain will have the attributes of fast growth at

acceptable cell density, cultivation robustness, and high lipid-

accumulation capacity and productivity [12]. Genetic engineering,

though perhaps problematic from a regulatory or community

acceptance standpoint, can, at a minimum, help establish upper

limits to lipid productivity and guide classical genetics or breeding

programs. In addition, the glycerolipid profile of a strain will have

a large impact upon the lipid’s potential as a biofuel feedstock, as

chain length and degree of unsaturation are critical for conversion

to both biodiesel and renewable diesel and jet fuel. For example, a

C18:3 fatty acid requires 7 moles of hydrogen per mole of fatty

acid ester for full saturation, while C18:0 requires only 4 moles of

hydrogen. As such, the glycerolipid profile of a microalgal species

can ultimately have a significant impact on production costs

(Robert McCormick, NREL, personal communication).

The green alga, C. reinhardtii, has been extensively examined as

a model organism due to its ease of cultivation in a laboratory

setting and its ability to be genetically manipulated. As such,

investigation of C. reinhardtii has perhaps contributed more to the

elucidation of the fundamental underpinnings of microalgal

biology than any other microalga to date. However, this species

lacks the intrinsic high-lipid productivity of many oleaginous

microalgae. For example, under nitrogen-deplete conditions,

wild-type C. reinhardtii starchless mutant only produces ,20%

lipid on a dry cell weight basis [12]. Conversely, the fatty acid

profile, production, and accumulation capacity of C. vulgaris

under nitrogen-deplete conditions suggests it presents an ideal

feedstock for biodiesel production. Nitrogen limitation dramat-

ically increases the desirable C18:1 fatty acid content at the

expense of less desirable C18:3, C18:2, C16:1 and C16:0 content

(Figure 1c). As such, nutrient-limiting conditions result in the

accumulation of an oil having improved properties as a feedstock

Figure 5. Multiple sequence alignment for acetyl-coA acyltransferase (ACAT) peptides identified via MS/MS analysis. Despite high
sequence identity (Expect values,1e-124), ACAT was not identified using Chlorophyta sequence databases as search models in MS/MS analysis.
Notably, underlined peptides differed by just a single amino acid substitution between C. vulgaris and C. variabilis, preventing positive identification.
Using the C. vulgaris transcriptome as a sequence search database yielded 7 peptide identifications at a confidence interval .95%.
doi:10.1371/journal.pone.0025851.g005
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for biodiesel or renewable diesel and jet fuel. Our experimental

conditions also yield ,60% fatty acids on a dry cell-weight basis,

nearly 3-fold higher than wild type C. reinhardtii, suggesting it is

an excellent model system to examine changes in gene and

protein expression under conditions that induce high-oil

accumulation. We and our co-workers have had limited success

reproducing the transformation techniques with C. vulgaris

reported by Jarvis and Brown [31] and Chow and Tung [30],

but we have recently improved on these methods and have

developed a simple and reproducible transformation protocol

(J.J. Lee and Y.-C. Chou, unpublished results). The concurrent

development of systems biology and genetic tools will help

establish C. vulgaris as a viable model organism for algal biofuels

development.

The utility of a de novo assembled transcriptome as a
proteomic search model

Proteomic analysis using orthologous sequence databases

presents a unique challenge in that it requires nearly identical

m/z values (61–2 Da) between the search model and peptides of

interest in order to positively match an equivalent m/z ratio of

statistical significance. As such, a single amino acid differential

between a search model sequence and a peptide fragment

sequence of interest can often result in a failure to produce a

statistically significant match, leaving significant gaps in protein

identification. One example of an absence caused by a single

amino acid differential was observed for ACAT. Using Chlorophyta

sequence databases, ACAT was not identified via proteomic

analysis, yet was successfully identified using the C. vulgaris

Figure 6. Improved pathway identification using a de novo assembled transcriptome database and changes in protein abundance
under nitrogen depletion. (A) Critical components of the fatty acid and triacylglycerol (TAG) biosynthetic pathways were absent from initial MS/
MS searches against all available Chlorophyta databases. Proteins highlighted in yellow were amongst the proteins absent from initial analyses, yet
positively identified when searching against the C. vulgaris transcriptome database. Proteins in green (not highlighted) were identified using both
Chlorophyta and C. vulgaris transcriptome databases. Numbers below proteins represent NSAF values (105) for nitrogen replete and nitrogen deplete
conditions, respectively. ACCase, acetyl-CoA carboxylase; ACP, acyl carrier protein; AMPK, AMP-activated kinase; DAGK, diacylglycerol kinase; DGAT,
diacylglycerol acyltransferase; DHAP, dihydroxyacetone phosphate; ENR, enoyl-ACP reductase; FATP, fatty acyl-ACP thioesterase (putative); G3PDH,
glycerol-3-phosphate dehydrogenase; GPAT, glycerol-3-phosphate acyltransferase; HD, 3-hydroxyacyl-ACP dehydratase; KAR, 3-ketoacyl-ACP
reductase; KAS, 3-ketoacyl-ACP synthase; LPAAT, lyso-phosphatidic acid acyltransferase; LPAT, lyso-phosphatidylcholine acyltransferase; MAT,
malonyl-CoA:ACP transacylase; PAP, phosphatidic acid phosphatase. Adapted from Radakovits et al., 2010 and Hu et al., 2008. (B) Corresponding
spectral count fold-changes for components of the FA (left panel) and TAG (right panel) biosynthetic components.
doi:10.1371/journal.pone.0025851.g006
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transcriptome as a search database. ACAT peptides identified via

mass spectrometry using the C. vulgaris transcriptome were aligned

against all available Chlorophyta ACAT sequences. Peptide

sequence alignment shows just a single amino acid differential

between C. vulgaris and Chlorophyta peptides in two instances, both

corresponding to a species of same genus, Chlorella variabilis,

demonstrating both the limitation of using orthologous databases

for peptide identification and the advantage of using a de novo

assembled transcriptome as a search database (Figure 5).

Improved identification capability using the transcriptome as a

search database was further underscored on a more global

pathway mapping scale, examining the fatty acid and TAG

biosynthetic pathways. Orthologous searching identified only three

enzyme components of the fatty acid biosynthetic pathway, and

none of the TAG enzymatic components. Conversely, utilization

of the C. vulgaris transcriptome as a search database allowed us to

identify all enzymatic components of the fatty acid and TAG

biosynthetic pathways. It is clear from these data that using the de

novo assembled transcriptome dramatically improves proteomic

identification capabilities. These results might not have been

expected if the assembly or annotation of the C. vulgaris

transcriptome was weak, or if the Chlorophyta database provided

higher sequence identity. This is an important observation because

it most notably confirms our hypothesis, and at the same time

provides a measure of quality of our de novo assembly and

annotation.

Finally, utilization of the de novo assembled C.vulgaris transcrip-

tome allowed for identification and differentiation of critically

important protein isoforms. Though no protein isoforms were

identified for the TAG biosynthetic pathway, homomeric and

heteromeric ACCase isoforms, as well as multiple KAS isoforms,

were identified during the annotation stage. Isoform differentiation

can have a dramatic impact upon strain engineering strategies. For

example, it has been suggested that overexpression of cytosolic

homomeric ACCase, coupled with plastidial sub-cellular localiza-

tion, as opposed to overexpression of the more complex, multi-

subunit heteromeric plastidial isoform, may be a simpler and more

efficient means to increase fatty acid content in oleaginous

organisms [50]. Targeted strain improvement efforts and complete

pathway analyses will thus be greatly facilitated by the isoform

identification and maximal identification coverage a de novo

assembled transcriptome search database affords.

The gene ontology analysis was encouraging because it

indicated that all classes of proteins were equally represented in

the proteome in comparison to the transcriptome, including

proteins that would be expected to reside mainly in the insoluble

fraction. But it is also a warning that the majority of transcribed

genes were not found in the proteome. It is likely that this failure to

identify most transcribed gene products is due to some

combination of quantitative limits to the GeLC-MS methodology

and to post-transcriptional regulation. The distinction between

these two possibilities can have a major impact on the quantitative

proteomic analysis, especially as it would be applied to hypothesis-

driven strain improvement programs and will need to be evaluated

on a gene-by-gene basis for pathways of interest. Future work

involving quantitative transcriptomic analysis, insoluble proteomic

analysis, and more focused searches for specific missing proteins

will help shed light on this missing piece of the puzzle.

Changes in Fatty Acid and TAG Biosynthetic Pathways in
a High-Lipid State

As observed previously for C. cryptica [51], our analysis also

found upregulation of ACCase under lipid-accumulating condi-

tions. More importantly, though, our current work also established

that the majority of the other fatty acid biosynthetic pathway

components are upregulated under nitrogen-depletion and

concurrent lipid accumulation. Interestingly, AMPK was down-

regulated under high-lipid producing conditions. AMPK is

proposed to serve as a fatty acid beta-oxidation ‘‘metabolic master

switch,’’ acting as a direct ACCase inhibitor (and indirect carnitine

palmitoyltransferase (CPT-1) activator in higher eukaryotes) [52].

This lends potential insight into the regulation of fatty acid

synthesis through rate-limiting ACCase activity and concurrent

increase in beta-oxidation. Overexpression of the ACCase gene in

both C. cryptica and N. saprofila failed to significantly increase lipid

accumulation [53]. A number of mechanisms have been proposed

to explain this observation, including post-transcriptional regula-

tion and feedback inhibition. It is possible AMPK also played a

critical role in driving the equilibrium between acetyl-CoA and

malonyl-CoA in the reverse direction, ultimately slowing the rate

of fatty acid biosynthesis and increasing the rates of fatty acid beta-

oxidation. The activity of AMPK under nitrogen-replete and

nitrogen-deplete conditions warrants further investigation.

The possibility must be considered that our decision to harvest

cultures at the onset of stationary phase yielded cells that were past

their peak in abundance of the enzymatic components of the fatty

acid biosynthetic pathway (even though many significant increases

were observed). Resultant late stage down-regulation of synthesis

may explain the decrease observed for KAR under nitrogen-

limited conditions. As synthesis of fatty acid biosynthetic

machinery is shut down, protein turnover is likely to occur, as

cells may be under a state of high catabolic activity in order to

recycle internal nitrogen stores. However, protein abundance is

not directly reflective of protein expression rates or activity. Thus,

it is possible that KAR enzymatic rates remain unchanged despite

decreased abundance. It is also unclear whether the increased

abundance of fatty acid biosynthetic components (and decrease in

KAR abundance) is due to altered rates of mRNA expression and

translation, or mRNA and protein turnover. A more complete

integrated systems biology analysis, incorporating transcriptomic,

proteomic, and metabolomic data will be necessary to fully

elucidate potential flux bottlenecks in the fatty acid pathway.

Our results demonstrate that TAG biosynthetic machinery

abundance is upregulated significantly higher than the fatty acid

synthesis machinery in a high-lipid accumulation state. This

massive upregulation can again likely be attributed to the late-

stage harvest of nitrogen-deplete cells. At this stage, cells have

neared stationary phase, having exhausted internal nitrogen stores.

Photosynthetic energy and carbon fixation can continue (albeit

with presumably altered efficiency indicated by the reduction in

pigmentation in the starved, chlorotic cells, Figure 1a). The most

effective diversion of the fixed carbon and reducing equivalents

generated by photosynthesis is their conversion to TAGs (as

reflected in fluorescence imaging of neutral lipids, Figure 1d). As

observed in C. reinhardtii lipidomics analysis, acyltransferases were

amongst the most abundant lipid droplet-associated proteins

observed [11]. As such, with the intracellular space largely

encompassed by neutral lipids, it is to be expected that we would

observe significant abundance of TAG-related acyltransferases.

The dramatic differential between fatty acid biosynthetic and

TAG biosynthetic components may imply TAG biosynthesis may

also play a significant role in the rate-limiting production of

neutral lipids, suggesting future studies aimed at strain improve-

ment might be focused upon overexpression of TAG biosynthetic

components in addition to fatty acid biosynthetic components.

Notably, none of the TAG biosynthetic machinery was

identified under nitrogen-replete conditions, suggesting TAG

biosynthesis is either largely in an ‘‘off state’’ or at very low levels
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in early growth phase, and the majority of the 10% fatty acids

observed under nitrogen-replete conditions is derived from

structural membrane phospholipids. Interestingly, we observed

steady-state abundance of DAGK between nitrogen-replete and

nitrogen-deplete conditions. DAGK catalyzes the conversion of

DAG to PA via phosphorylation of DAG, and its activity has been

shown to increase upon activation of the phosphoinositide (PI)

pathway. It is, therefore, proposed to function as a termination cue

in the formation of DAG [48]. Steady state abundance may be

indicative of steady-state activation of the PI pathway, potentially

pointing to a minimal baseline phospholipid production level,

required for cell viability.

We hypothesize that future analyses using intermediate harvest

points will lead to a less pronounced differential between fatty acid

and TAG biosynthetic components, with an increased abundance

of fatty acid components and a decrease in abundance of TAG

components prior to nitrogen exhaustion. Future analyses will

therefore be focused upon intermediate accumulation, which will

allow for abundance mapping throughout the lipid accumulation

cycle and help clarify the rates of TAG component expression.

Concurrently, quantitative analyses of PA, DAG, and TAG will

lend further insight into the flux through the TAG pathway, as

well as temporal regulation throughout the lipid accumulation

cycle.

Conclusions
The prevalence of microalgal translational gene regulation

necessitates higher-level omic analyses at the protein level in order

to fully elucidate changes in gene expression under varying

conditions. However, proteomic analysis of unsequenced micro-

algae is clearly limited by the lack of flexibility in fragment

matching. Our results underscore how much more powerful

proteomic analysis can be when accurate sequence information is

available, and demonstrate the utility of a de novo assembled

transcriptome as a search model for proteomic analysis of

unsequenced microalgae. Strain improvement strategies targeting

increased lipid accumulation and productivity as well as improved

understanding of the relevant basic biology will be critically

enhanced by utilization of our transcriptomic sequence data

combined with proteomic abundance data. We have focused our

initial investigation of differential protein expression upon

dramatically different lipid accumulation states (10% vs. 60%

fatty acid) in N-replete and deplete C. vulgaris. These analyses

indicate that the fatty acid and TAG biosynthetic pathways are

dramatically upregulated (TAG.fatty acid) under nitrogen

limitation. Data from intermediate accumulation states will likely

provide a wealth of additional information with regards to the

stages at which gene and protein-expression are initiated. Carbon

flux analyses, glycerolipid speciation, and metabolomic analysis

will ultimately need to be initiated to complement comparative

transcriptomic and proteomic analyses, in order to fully assess flux

through lipid-relevant pathways of interest on a comprehensive

systems biology level.
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