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Abstract

Molecular phylogenies have been used to study the diversification of many clades. However, current methods for inferring
diversification dynamics from molecular phylogenies ignore the possibility that clades may be decreasing in diversity,
despite the fact that the fossil record shows this to be the case for many groups. Here we investigate the molecular
phylogenetic signature of decreasing diversity using the most widely used statistic for inferring diversity dynamics from
molecular phylogenies, the c statistic. We show that if a clade is in decline its molecular phylogeny may show evidence of
the decrease in the diversification rate that occurred between its diversification and decline phases. The ability to detect the
change in diversification rate depends largely on the ratio of the speciation rates of the diversification and decline phases,
the higher the ratio the stronger the signal of the change in diversification rate. Consequently, molecular phylogenies of
clades in relative rapid decline do not carry a signature of their decreasing diversification. Further, the signal of the change
in diversification rate, if present, declines as the diversity drop. Unfortunately, the molecular signature of clades in decline is
the same as the signature produced by diversity dependent diversification. Given this similarity, and the inability of current
methods to detect declining diversity, it is likely that some of the extant clades that show a decrease in diversification rate,
currently interpreted as evidence for diversity dependent diversification, are in fact in decline. Unless methods can be
developed that can discriminate between the different modes of diversification, specifically diversity dependent
diversification and declining diversity, we will need the fossil record, or data from some other source, to distinguish
between these very different diversity trajectories.
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Introduction

Understanding the controls of biodiversity is one of the main

goals of ecology and evolutionary biology. In recent decades this

endeavor has been revitalized by the use of molecular phylogenies

to study the diversification of many clades [1–6]. Key has been the

development of analytic methods for estimating speciation and

extinction rates from molecular phylogenies, despite the absence of

extinct species [7–13], and ways of investigating the tempo of

diversification [1,12,14]. This is especially important given that

many clades do not have a fossil record of sufficient quality (or any

fossil record at all for that matter) to enable detailed diversification

studies.

Currently, these tools have been used to distinguish between

clades that are diversifying exponentially from those that might be

undergoing diversity dependent diversification, and are at or

approaching an equilibrium carrying capacity [4,5,14,15]. In some

cases the relative contributions of changes in speciation and

extinction rate to overall diversification patterns have also been

estimated [4,14,15]. Even though caution is warranted – over-

dispersed sampling commonly used by biologists [1,16] and under-

parameterization of the DNA models [17] might mask true

diversification patterns – many phylogenies show a pattern of

decreasing diversification rates, which in turn are typically

attributed to diversity dependent diversification [4,5,15].

However, molecular phylogenies, by the virtue of only

considering extant species, carry the perceptual bias of increasing

diversity [13], and most biologist, perhaps for this reason, work

with the premise of expanding diversity with time, either

unbounded (exponential growth) or with some sort of diversity

saturation. Yet, the fossil record shows that many clades have been

in decline for a significant part of their history, and, of course,

many are now extinct [18–21]. Hence it is probable that many

extant clades are also currently in decline, and have thus

experienced negative diversification rates over their recent history.

Clades for which the fossil record shows this to be true include the

Cetacea [18], perissodactyl mammals, lungfish, brachiopods,

stenolaemate bryozoans, gymnosperms, sphenophytes (the horse

tails), etc [21].

Unfortunately, none of the current methods used for deducing

diversity trajectories from molecular phylogenies incorporate this

very real possibility of negative diversification rates [18]. Hence, if

we want to understand whether molecular phylogenies are able to

properly reveal a clade’s true diversity dynamics, we need to

understand what effect declining diversity will have on the

appearance of molecular phylogenies. Here we use computer

simulation to conduct this investigation, and explore the

robustness of some of the ecological interpretations currently

drawn from the analysis of molecular phylogenies, including
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testing the hypothesis that molecular phylogenies of clades in

decline look similar to those driven by diversity-dependent

diversification [18].

Methods

Simulation scenarios
The fossil record clearly shows that clades rise and fall in

diversity [19–21] so our main goal is to use computer simulation to

investigate the consequences of declining diversity on the

diversification signature of molecular phylogenies. The rise and

fall of clades could in theory happen in many different ways. For

example, a clade could spend most of its ‘‘life’’ either in the rise

phase, or in the decline phase, or have approximately symmetric

rise and decline phases. Additionally, during either the rise or

decline phases, the rates of extinction and speciation could be

constant (i.e., exponential growth or decline) or decrease (or

increase) with respect to time or diversity. There are obviously

even more complex dynamics, but our purpose is not to explore all

the possibilities, but to focus on a few simple scenarios to explore

the first order molecular signature of clades in decline.

The specific simulation approach used here was motivated by

importance of diversity dependent diversification reported in the

literature [4,5,15], and our suspicion that exponential decline

could leave a similar signature on molecular phylogenies [18].

Thus, we choose the simplest diversification scenario that would

allow us to: 1) broadly characterize the molecular signature of

clades in decline; 2) highlight potential shortcomings in current

interpretations of the diversity dependent dynamics; and, 3)

enhance our understanding of the extent to which molecular

phylogenies can, or cannot, be used to study the diversification

process. Thus, we simulated the diversity trajectories with an

expansion of diversity at a constant rate followed by declining

diversity, also at a constant rate (Figure 1).

For each set of simulations a total of 100 replicates were run, a

sample size large enough to capture the stochastic variation in the

models used. We used the R package TreeSim [22,23] for

simulating trees and the R packages Geiger [24] and paleoPhylo

[25] to manipulate and analyze the data. TreeSim enabled us to

run simulations that conditioned both on a specific final diversity

(10 lineages) and on a specific duration for the decline (10 million

years).

Metric for comparing simulated phylogenies
Several different tools are available for using molecular

phylogenies to infer diversity dynamics [1,7–9,12,14]. However,

it is becoming apparent that the methods developed for estimating

speciation and extinction rates are unable to estimate extinction

rates when clades are in decline [18], which in turn leads to

inaccurate estimates of speciation rates as well [18]. Given the

inability of these methods to handle clades in decline, we chose to

work with a simpler method, the c statistic [1], introduced to

simply detect changes in the diversification rate. We note,

however, that while the c statistic cannot be used to estimate

speciation and origination rates, per se, simulation studies show

that when the c statistic indicates a change in the diversification

rate, it must have been driven in part by a decrease in the

speciation rate [15,18,26].

The c statistic has some other advantages. First, it is easily

understood (negative values mean the nodes are concentrated deep

in the tree). Second, it is widely used, especially in the literature on

diversity-dependent diversification [1,4–6,18]. Third, by virtue of

being a summary statistic, it allows straightforward comparison

among trees (although see below for a discussion of its dependence

on tree size).

The c statistic does have its limitations, primarily an appreciable

type II error rate. Specifically, it has low discriminating power

between exponential growth and the early phases of diversity

dependent diversification [27], or when the diversity dependent

diversification is driven by a low initial speciation rate relative to

the equilibrium extinction rate [26], or if clades are experiencing

species turnover at an equilibrium diversity [27]. Similarly, it has

low discriminating power when one is trying to distinguish

between subtly different models of diversification [14] (although

here we are not trying to distinguish between subtly different

models of diversification). Second, as a summary statistic, it may

not handle cases where the diversification dynamics change

appreciably through the history of a clade (for example, late bursts

of speciation can mask early bursts of diversification [28].

However, it has a negligible Type I error rate – an inference of

decreasing diversification rate appears to be a reliable inference.

Clades in decline
The rise and fall of simulated clades was modeled by

exponential growth followed by exponential decline. We chose

this way of simulating the waxing and waning of diversity because

preliminary data suggested that the resulting phylogenies would

give the appearance of diversity dependence, and so we wanted to

make sure that we did not confound the interpretation of our

results by having the initial diversification process be diversity

dependent. We chose a range of realistic speciation and extinction

rates [21], although the absolute values are not relevant if one is

interested in investigating the topologies of molecular phylogenies

under different diversification scenarios [26,27]. Figure 1A–C

show the rates used. Figure 1A (fast relative rate of decline)

illustrates a scenario where the loss of diversity is fast compared

with the rate of accumulating diversity. The scenarios shown in

Figure 1B (slow relative rate of decline) and 1C (slowest relative

rate of decline) represent scenarios where the rate of loss of

diversity is progressively slower than the initial rate of accumu-

lation of diversity. For ease of comparison, in all simulations the

decline phase was modeled with the same constant extinction and

speciation rates, and the extinction rate during the initial

diversification was also held constant. We also arbitrarily chose

to condition the decline phase to a time span of 10 million years

and a final diversity of 10 species, although the specific values

chosen do not affect our main conclusions (data not shown; see

also [26]). This conditioning meant that the average peak diversity

was the same among different scenarios, but that the average time

taken to reach that diversity varied among the three decline

scenarios (see histogram in upper left of panels A, B, and C in

Figure 1).

Analyzing the simulations – time traveling
To characterize the molecular signature of the declining

diversity as it unfolds, we calculated the c statistic at different

points in time, a procedure we term ‘‘time traveling’’ (see Figure 2

for an outline of the procedure; see also [27]). The molecular

signature of the diversification phase of our simulations is the well-

understood constant birth-death process [7–9,11], and was not

examined further here. Figure 2A shows an exemplar phylogeny,

with extant and now-extinct taxa. The pink box highlights the

decline phase. We ‘‘time traveled’’ back in time every 1 million

years (represented by the dashed lines) from the present to the time

when diversity peak was reached, 10 million years before the

present. At each point in time we calculated the number of species

extant and the c statistic for what would have been the molecular

Molecular Signature of Clades in Decline
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Figure 1. Cartoon of the different simulation scenarios employed in this paper. Panels A, B and C represent the clades in decline scenario,
where the number of species rise (grey portion) and decline (pink portion) exponentially. Panels D, E and F represent the ‘‘stasis’’ scenario, where the
number of species grows (grey portion) in a manner similar to the clades in decline scenario (A, B, and C) but then stays fixed thereafter (pink
portion). The only difference among the simulations within each scenario is the speciation rate in the rising phase. This meant that each scenario took
a different time to reach the peak diversity. The small histograms (top left of panels A, B and C) represent the time it took to reach the peak diversity
for each scenario. Each simulation was run so that the final diversity was 10 lineages and the decline phase was set to last 10 million years. Given our
simulation scheme, each group of simulations resulted in similar average peak diversities, with a mean of 76. l represents the speciation rate and m
represents the extinction rate.
doi:10.1371/journal.pone.0025780.g001
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phylogeny (only the extant species) at that point in time (see

Figures 2B and 2C). In some cases the c statistic changed so fast

that additional time points were analyzed to capture its behavior as

diversity was lost.

The reason time-traveling analysis is required is that in the

absence of a good fossil record it is virtually impossible to know,

even if you knew your clade was in decline, how long ago peak

diversity was reached, and what its peak diversity was [18,27].

Thus for a given phylogeny, we don’t typically know where it is in

its ‘‘ontogeny’’ – time traveling is needed if one wants to

investigate how well molecular phylogenies store a record of their

diversification history at different points in their history.

Results

The signature of declining diversity
Our simulations show that clades in the initial phases of their

decline typically result in molecular phylogenies with the most

negative c values (Figure 3A–C). The strength of the signal of the

decline depends, at least in part, on the magnitude of the ratio of

the rate of speciation in the diversification (waxing) phase to the

rate of speciation in the decline (waning) phase, lwax=lwanejj . The

higher the ratio (the lower the relative rate of decline), the more

negative the c statistic (Figure 3A–C). When the ratio is too low

(i.e., when the relative rate of decline is high), for example when

lwax=lwanejj is 2.5 (Figures 1A and 3A), the null hypothesis of a

constant diversification rate will not usually be rejected (the

resulting c values are only rarely ,21.645). In this case the

exponential decline would most likely be interpreted as exponen-

tial diversification, as appears to have happened in a molecular

phylogenetic analysis of the diversity dynamics of the living

cetaceans [18,29], although as we note above, the c statistic has

low statistical power – a c value.21.645 could also mean the

early phases of diversity dependent growth [27]; diversity

dependent growth with low a ratio between the initial speciation

rate and equilibrium extinction rate [26]; or, species turn-over at

equilibrium diversity [27]. Given that molecular phylogenies only

directly store information of cladogenic events it is perhaps not

surprising that if the change in speciation rate is not high enough

there will not be enough power to detect the change in the

diversification rate.

When lwax=lwanejj is high (the relative rate of decline is slow),

for example 20 (Figures 1B and 3B), in most cases the negative

diversification rate is reflected in significantly negative c values. In

addition, the higher the ratio, the more quickly in time the c values

become significantly negative, and the longer the c value stays

significantly negative (Figure 3). For example, in our simulations

when the ratio is low (Figure 3A) the most negative values of c are

only seen several million years after the onset of the decline, while

at higher ratios (Figure 3B, C) the most negative c values are seen

within a million years of the onset of the decline, and c stays

significantly negative until the clade is nearly extinguished.

Meaning of the negative c values
Negative c values are generally taken to mean that there was a

decreasing diversification rate, and more specifically a decrease in

the speciation rate [4,26]. Our simulations are consistent with this

observation – in each simulation there was a large and

instantaneous drop in the diversification rate as we switched

from the waxing phase to the waning phase, which we achieved

largely through a decrease in the speciation rate (see Figure 1A–

C). Thus, while negative c values have been traditionally used as

evidence of diversity dependent diversification [4,5,14,15], in our

simulations there is no diversity dependence. Thus, these

simulations show that there is more than one way (in an

evolutionary/ecological sense) to generate negative c values (see

discussion below).

Figure 2. An exemplar simulation of a clade in decline. Rates of
increase and decline used correspond to the slow relative rate of
decline from Figure 1B. A) Exemplar phylogeny. The pink portion
represents the decline in diversity phase. The dashed lines represent
points in time where the c value and diversity of each phylogeny was
assessed. B) The number of extant species at each point in time for
decline phase. C) The c statistic for what would have been the
molecular phylogeny at each point in time for the decline phase.
doi:10.1371/journal.pone.0025780.g002
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Why does declining diversity lead to negative c values?
Our basic finding is that the c values drop as soon as the

diversification rate becomes negative, and that the c values can be

surprisingly negative. However, as the diversity continues to drop,

the c value rises again, and can ultimately become positive again

mimicking exponential growth (among other scenarios – see

above), when in fact the clade is in exponential decline. We wished

to understand why the c values become negative in the first place,

and why c then becomes more positive as the clades continue to

decline in diversity, and so we ran additional simulations to

explore these questions.

Effects of under-sampling after exponential growth
Under-sampling species will generate a predictable bias in the

diversification signature of molecular phylogenies by artificially

increasing the relative importance of early splitting events [1,16],

which will lead to more negative c values. Following this

observation, we [18] suggested that extinction could be viewed

as evolutionary under-sampling (the failure to sample species due

to extinction, rather simply failing to collect them in the field),

which led us to posit that clades in decline might also have

negative c values.

To test this supposition, we ran a set of simulations with simple

exponential growth followed by different degrees of under-

sampling after a pre-assigned fixed diversity had been achieved.

For these simulations we used the same speciation and extinction

rates used in the initial diversification phase of our clades-in-

decline simulations (Figure 1). For the under-sampling simulations

the final diversity was set to 76 (the average peak diversity of the

clades-in-decline simulations) and 760 species to explore the effect

of the absolute number of species on the signal introduced by

under-sampling of the terminal branches. The simulated trees

were progressively under-sampled until only 10 species remained,

the final diversity in our clades-in-decline simulations. Terminals

were removed at random.

While under-sampling made the c statistic more negative than

the fully sampled tree, c only became significantly negative for the

760 species scenario (Figure 4) – under sampling via extinction is

not the primary driver of the negative c values found in our

simulations of clades in decline, having only a minor effect on the

c value.

Clades in stasis – the effects of aging
Given that the loss of terminals, per se, is not responsible for the

strongly negative c values seen in our simulations of clades in

decline, what could be responsible? Our second guess was based

on the realization that one way to achieve strongly negative c
values is to simply extend the lengths of the terminal branches,

without adding or subtracting branches. Thus, we ran a set of

‘‘pure-aging’’ simulations, initiated with exponential growth with

the same rates of initial diversification used in the clades-in-decline

simulations (Figure 1A–C). Then, instead of switching to

exponential decline, the branch lengths were simply extended

for 10 million years (see Figure 1D–F). Two peak diversities were

used: 10 and 76 species. These values were chosen because in our

simulations of clades in decline the average peak diversity was 76

species (see above) and because we conditioned on a final diversity

of 10.

Figure 3. The c statistic and number of species through time for all simulated trees for the decline phase (last 10 MY) for the clades
in decline simulations (Figure 1A–C). Note that while the diversity declines are effectively the same for all three simulations (bottom row), the
different diversification phases result in different c values (upper row). The green line represents the average c statistic or average number of species.
The red line represents the 5% cutoff point for rejecting the null hypothesis of constant diversification (c= 21.645).
doi:10.1371/journal.pone.0025780.g003
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As expected, the clades in stasis produce highly negative c
values (the green lines in Figure 5A–C). As time passes the c value

continues to decline, and after an infinite amount of time the c
value will reach the maximum possible negative value given the

number of species in the phylogeny (the ‘‘star phylogeny’’ scenario

described by McPeek [6]; Figure 5D). For the simulations with

relatively rapid diversification phases (Figure 1B,C) after 10 Myr

the c values of our simulated trees under the stasis scenario are

indeed very close to this most negative potential value

(Figure 5B,C).

However, Figure 5 shows that the simulated data for clades in

decline never produce c values as negative as seen in the pure

aging scenarios. There are two reasons for this. The first and most

important is that the maximum c value is a function of the number

of terminal branches ([6]; Figure 5D). In the clades in decline

simulations, while on average the simulations start with 76 species,

that number steadily drops as the extinction proceeds to a final

diversity of 10 lineages. Thus we expect the c value to become less

negative as the extinction proceeds. However, if this were the only

factor at play, then the simulations of clades in decline should have

c values that lie between the pure-aging scenarios for a diversity of

76 terminals and 10 terminals. However, the c values continue to

rise beyond the values expected for a star phylogeny of 10 species

(see Figure 5). The reason is that in our simulations while there is a

net loss in diversity, we employed a positive speciation rate, and so

new nodes are also being added, making the c values more

Figure 4. The effects of under-sampling on the c statistic. The phylogenies were generated using the same three exponential rates of increase
used in the clades-in-decline simulations (grey portion of Figures 1A–C). Two final diversities were used, 76 species (left column) and 760 species
(right column). The green line represents the average c statistic. The red line represents the 5% cutoff point for rejecting the null hypothesis of
constant diversification (c= 21.645). Under-sampling has a surprisingly small effect on the c value – the reason for the highly negative c values seen
in our simulations has little to do with extinction mimicking the effects of under-sampling.
doi:10.1371/journal.pone.0025780.g004
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positive. The validity of this reasoning was confirmed when we re-

ran the simulations for the ‘‘stasis-after-fast-diversification’’

scenario (Figure 1E), with no speciation during the decline phase

– the c values lie, as expected, between the pure-aging scenarios

with the diversities of 76 terminals and 10 terminals (see

Supplemental Figure S1).

Discussion

The molecular signature of declining diversity
Our results clearly show that molecular phylogenies of clades

experiencing a decline in diversity will present a molecular

signature of the decreasing diversification rate, the switch from the

waxing phase to the waning phase. Consistent with previous

studies that show that changes in speciation rate are more

important than changes in extinction rate on the appearance of

molecular phylogenies [4,18], we find that the ratio of the rate of

initial speciation to the rate of speciation during the decline plays a

major role in determining whether the molecular phylogeny will

exhibit the signature of the switch in diversification rate (Figure 3).

As noted above, given that molecular phylogenies only directly

store information of (some) cladogenic events, and not the

extinction events, it is perhaps not surprising that if there is

insufficient change in the speciation rate between the waxing and

waning phases that there will not be enough power to detect the

changes in the diversification rates. There are other factors, such

as the time spent in each phase (which is determined by the

diversification rates in each phase) and the ratio of the extinction

rates in the two phases that influence the exact signature of

decreasing diversification as well. However, unlike diversity

dependent diversification where a simple metric (the LiMe ratio

of Quental and Marshall [26], the ratio of the initial speciation

Figure 5. A–C) The evolution of the c statistic (green line) for all simulated trees in the pure aging scenario after initial exponential
growth. A) Stasis after a slow diversification. B) Stasis after a fast diversification. C) Stasis after an abrupt diversification. The asterisk at time = ‘
represents the most negative value possible for the c statistic for a given phylogeny with 10 or 76 species, which corresponds to a phylogeny after an
infinitely long aging phase (i.e., a star phylogeny). The blue line represents the average c statistic for the clades in decline simulations (data from Figure 3).
The red line represents the 5% cutoff point for rejecting the null hypothesis of constant diversification (c= 21.645). D) The expected most negative value
for the c statistic for given phylogeny as a function of the number of species (based on [6]); this represents a phylogeny with a star topology.
doi:10.1371/journal.pone.0025780.g005
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rate to equilibrium extinct rate) controls the molecular signature of

the diversification scenario, we have been unable to find a simple

metric that fully captures the behavior of the c statistic for clades in

decline.

Our initial hypothesis that the elevated extinction rate acts as

the evolutionary equivalent of under-sampling [18], while

technically true, is not the primary reason declining diversity

leads to strongly negative c values. The primary reason for the

strongly negative c values is the drop in the speciation rate that

results in the relative absence of new nodes, coupled with the

passage of time that extends all the branches that have so far

escaped extinction – once the diversification rate becomes negative

the aging of the surviving lineages results in the vast majority of

nodes becoming concentrated deeper and deeper in the tree. And

then, as the diversity continues to drop, the c values begin to rise,

largely due to the fact that c is a function of total diversity of the

phylogeny (Figure 5D), but also because the low levels of

speciation in the decline phase continue to add some young nodes

to the phylogeny. In some cases, the effect of decline-phase

speciation can cause the c values to become positive again,

especially when the decline has persisted for long enough that most

of the original speciation events have been lost to the molecular

phylogeny due to the ongoing extinctions.

The dependency of c on the number of taxa, also noted by

McPeek [6], can be alleviated by normalizing all gamma values

by the maximum possible value for the number of taxa present,

but we do not pursue this further here. However, we note that

when using the c statistic to test against the null hypothesis of a

constant birth-death process, the original intention of the c
statistic [1], the critical value for rejecting the null hypothesis is

not dependent on the number of species. The distribution of

gamma values will always be centered on zero and with a 5%

cutoff at 21.645 for a pure birth process regardless of the total

diversity (because exponential growth is self-similar), or shifted

towards more positive values when extinction is present, which

simply increases the type II error [1]. Thus, the dependency of c
on the number of taxa seen in our simulations does not

undermine its original use as a simple and effective way of

testing the null hypothesis of constant rates of diversification, but

it does indicate, as noted above, that it has lower power if used to

discriminate between a wide variety of diversification processes

(see also [18]).

The meaning of a decrease in diversification rate
Analyses of a large number of molecular phylogenies have

repeatedly suggested the prevalence of decreases in diversification

rates [4,5,14,15]. Apart from the potential artifacts – non-random

sampling [1,16] and under-parameterization of DNA models [17]

these results have been traditionally interpreted as evidence for

diversity dependent diversification [4,5,14,15]. Even though the

field has seen some promising methodological advances [14], we

suspect that this conclusion is premature given the limitation of the

methods used [18,27,30] and the fact that none of them

incorporate the possibility of declining diversity (but see [9]). In

this context, our results show that a clade in decline can produce a

molecular phylogeny with a signature of decrease in diversification

rate (when viewed through the c statistic), but that the decrease in

diversification rate results from the switch from exponential

growth to exponential decline, rather than due to diversity

saturation, the standard interpretation.

Given our results, and the frequency with which declining

diversity is found in the fossil record [19–21], we suspect that

the high frequency of molecular phylogenies that show

decreasing diversification rates [5,6] is due to some of these

clades being in decline, rather than because they are all

undergoing diversity dependent diversification, a conclusion

supported by a recent analysis of a snake molecular phylogeny

[31]. In fact, the eroding effect of extinction, and the

observation that diversity-dependent diversification with low

initial speciation rates may frequently escape detection [4,27],

led Quental and Marshall [18] to suggest that there is in fact too

much evidence of diversity dependent diversification, and thus

that there are probably other mechanism(s) responsible for the

large number of phylogenies that show decreasing diversifica-

tion rates. Our results here confirm that suspicion, and provide

an alternative diversification model that will lead to molecular

phylogenies that might be interpreted as supporting diversity-

dependent diversification. Indeed, while the observation that a

molecular phylogeny has a decreasing rate of diversification,

once made, appears robust, it also appears that many different

diversification processes can produce very similar molecular

phylogenies, making it almost impossible to determine the true

process of diversification without the help of independent

evidence, such as the fossil record (see also [18]). Given current

methodological limitations and the absence of sufficient fossils

for many clades to make inferences about past diversity

trajectories, one of our highest priorities must be the

development of methods for discriminating between all the

possible mechanisms that can lead to decreasing rates of

diversification in molecular phylogenies, including the likelihood

of declining diversity.

Supporting Information

Figure S1 The c statistic through time for a decline diversity

scenario without any speciation in the decline phase (last 10 MY).

Rates of speciation and extinction used here were chosen to

produce the same diversification rates in the rise (speciation = 2.0;

extinction = 0.1; r = 1.9) and decline (speciation = 0.0; extinc-

tion = 0.2; r = 20.2) phases as used in the scenario shown in

figure 1B. The blue line represents the average c statistic. The red

line represents the 5% cutoff point for rejecting the null

hypothesis of constant diversification (c= 21.645). The green

lines represent the average c statistic for simulated trees in the

pure aging scenario after initial exponential growth for a peak

diversity of 10 and 76 species (same as in figure 5B). The asterisk

at time = ‘ represents the most negative value possible for the c
statistic for a given phylogeny with 10 or 76 species, which

corresponds to a phylogeny after an infinitely long aging phase

(i.e., a star phylogeny). Note that the c statistic through time for

the decline diversity scenario without any speciation in the

decline phase falls in between the average values for the pure

aging scenarios.

(TIF)
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