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Abstract

Information about lake morphometry (e.g., depth, volume, size, etc.) aids understanding of the physical and ecological
dynamics of lakes, yet is often not readily available. The data needed to calculate measures of lake morphometry,
particularly lake depth, are usually collected on a lake-by-lake basis and are difficult to obtain across broad regions. To span
the gap between studies of individual lakes where detailed data exist and regional studies where access to useful data on
lake depth is unavailable, we developed a method to predict maximum lake depth from the slope of the topography
surrounding a lake. We use the National Elevation Dataset and the National Hydrography Dataset – Plus to estimate the
percent slope of surrounding lakes and use this information to predict maximum lake depth. We also use field measured
maximum lake depths from the US EPA’s National Lakes Assessment to empirically adjust and cross-validate our predictions.
We were able to predict maximum depth for ,28,000 lakes in the Northeastern United States with an average cross-
validated RMSE of 5.95 m and 5.09 m and average correlation of 0.82 and 0.69 for Hydrological Unit Code Regions 01 and
02, respectively. The depth predictions and the scripts are openly available as supplements to this manuscript.
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Introduction

The importance of lake morphometry (e.g. lake depth and lake

volume) in understanding the ecology of lake systems has long

been recognized [1]. Scientists and managers use this information

to describe a lake’s residence time, build predictive models of

nutrients, pollutants, and ecological populations, and to under-

stand lake productivity. For individual lakes that are the focus of

research and management, bathymetry surveys are some of the

first data collected. From these data, volume is usually calculated

using bathymetric contour maps and planimeters. Lake volume

can also be estimated with modern GIS methods if maximum

depth is known [2–4]. Calculating depth and volume of lakes is a

simple task provided bathymetry surveys exist; however, gaining

access to these data is often difficult as they are frequently only

available as unpublished tables or paper maps. This is especially

true in regional studies that include a large number of lakes.

As part of the US Environmental Protection Agency’s

Ecosystem Services Research Program (ESRP), we are evaluating

how changes in nutrient loads impact the delivery of ecosystem

services in lakes in the Northeastern Region of the United States

(Figure 1) [5]. Obtaining bathymetry data for even a small

percentage of the lakes within this region has been difficult and has

forced us to model lake depth and volume using existing, publically

available datasets. One key source of information that provides

insight into lake depth is the National Elevation Dataset (NED)

[6]. With this information it is possible to calculate changes in

elevation surrounding lakes, which is likely similar to the change in

depth within lakes as the same processes formed the surrounding

topography and the lake basin [1]. Thus, we assume that lake

basins surrounded by steep topography are likely to have a steeper

slope and greater changes in depth than do lake basins with lower

topographic relief.

There are two goals of our research. First we develop a method

to estimate maximum lake depth for all National Hydrography

Dataset Plus (NHDPlus) lake polygons in the Northeast U.S.

(USGS Major River Basin 1) with sufficient accuracy for regional

scale studies of nutrient cycling and ecosystem services. Lastly, we

make the predicted depth predictions, as well as the scripts used to

generate those predictions freely available.

Methods

Study Area and Data
The development of a method to predict lake depth was an

essential part of a larger project examining ecosystem services in

lakes and ponds of the Northeastern United States. This larger

project uses the USGS SPARROW model recently completed for

Major River Basin 1 [7,8]. Thus, our methods were developed

with elevation and lake data from Major River Basin 1 (MRB1)

which correspond to NHD HUC regions 01 and 02 (Figure 1). We

acquired the NED and NHDPlus datasets for these regions. The
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NED is a nationally consistent, seamless digital elevation model

derived from the best available sources (i.e. topographic maps,

remotely sensed, etc.). The NHDPlus is 1:100,000 scale national

hydrography data and includes streams lines, lakes, wetlands, and

other hydrologic features. Lakes were selected from the NHDPlus.

In some cases a single lake was represented by multiple polygons.

The lakes were merged and one of the original IDs was used as a

new unique ID and was named the WB_ID. The WB_ID provides

a unique identifier for each lake in our dataset. Depth predictions

were generated using lake shoreline data from the NHDPlus,

reach catchments from NHDPlus, and elevation from the NED.

For this study we acquired the 10 meter resolution NED (Data

available from U.S. Geological Survey at http://ned.usgs.gov) and

resampled that data to a 30 meter resolution. Additionally, we

used existing sources of field collected lake depth data to test some

key assumptions, and correct and assess the accuracy of the depth

predictions. Maximum lake depth measurements from the

USEPAs National Lake Assessment (NLA) were used to adjust

the initial depth predictions and validate the adjusted predictions

[4]. We also assessed the predictions of maximum depth by

comparison with maximum depth values for Northeastern lakes

collected from internet sources. All data used in this study use the

North American 1983 datum and are in an Albers Equal Area

Conic projection. The assessment data and predicted depth values

are available for download (Dataset S2).

Depth Prediction
The geophysical processes that shape a lake basin are the same

as the geophysical processes that shape the topography directly

surrounding that basin [1]. Thus, it is reasonable to expect that the

slope of the surrounding topography approximates the slope of the

lake bottom. We further assumed that the depth of any given point

within a lake is partly a function of the distance from shore since

points farthest from shore tend to be deeper than near shore areas

[2]. If these two assumptions hold true we can combine distance

from nearest shore (D) and the median percent slope of

Figure 1. Map of study area showing the Major River Basin 1 Boundary, Hydrologic Unit Code Boundaries, State Boundaries, and
Lakes included in this study.
doi:10.1371/journal.pone.0025764.g001
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surrounding topography (Smedian) to predict lake depth (ẐZ) for any

pixel within a lake with the following equation:

ẐZ~Smedian �D ð1Þ

Surrounding topography was defined as the land area surrounding

a lake that is both within the drainage basin of the lake and is

within a specified distance of the lake (Figure 2). The drainage

basin was defined to be all NHDPlus catchments that intersect a

lake. The specified distance for each lake is the maximum of the

in-lake distance to the shore.

To determine ẐZ max we used the maximum value calculated

with Formula 1. To do this we first calculated the in-lake

Euclidean distance from the shoreline for each pixel in the lake

and determined the maximum in-lake distance. Second we

calculated Smedian in the surrounding topography using the

National Elevation Dataset, re-sampled to 30 meter pixels. Finally,

both values were entered into Formula 1 and an initial ẐZ max was

recorded for each lake. All analyses were scripted in Python with

Figure 2. Example map of ‘‘surrounding topography’’ showing lake buffer, overlapping catchments, and the areas that are both
within the buffer and overlapping catchment.
doi:10.1371/journal.pone.0025764.g002
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the geospatial analyses conducted with ArcGIS 10.0, and other

statistical and basic database operations conducted with the R

programming language [9,10]. All work can be reproduced with

the Python scripts (Text S1) and example data (Dataset S1),

assuming the user has access to an ArcGIS 10.0 license and Spatial

Analyst. The example data represent a small subset of lakes and

may be used to demonstrate the use of the script. The entire

dataset is available upon request.

Adjusting for Bias in Depth Predictions
To determine if a bias existed in our initial ẐZ max predictions and,

if necessary, to estimate a correction factor, we compared our initial

maximum depth predictions from Formula 1 with measured

maximum depth for 133 lakes in MRB1 that were sampled as part

of the National Lakes Assessment (NLA) in 2007 (Dataset S2). To

reduce the impact of influential points in estimating the correction

factor, we removed lakes with a Cook’s distance greater than 1, a

commonly used rule of thumb for identifying influential points [11].

With the remaining 130 lakes, we used a cross-validation technique

where 80% of the 130 NLA lakes were randomly selected as a

training dataset to compare with our initial predictions and 20% of

the lakes were set aside for validation purposes. We used linear

regression through the origin on the training dataset to estimate the

relationship between our predictions and the NLA measurements.

We used the slope of this regression line as a correction factor to

empirically correct our initial predictions. The final correction

factor was the median of the slope of the regression through the

origin for the 10,000 iterations of selecting the 80% training dataset.

In each of the 10,000 iterations, we separated HUC regions 01 and

02 and estimated the correction factor independently to account for

latitudinal gradients in topography. These methods were used to

predict and adjust the maximum lake depth for 27,942 lakes in

MRB1.

Validation of Depth Predictions
To validate the final corrected predictions, we compared the

adjusted predicted values to the 20% validation dataset and

recorded the RMSE and correlation coefficient. This was done for

each of the 10,000 iterations and we report the mean correlation

coefficient and the mean RMSE. The validation dataset size of

20% allowed us to maximize the size of the training dataset, while

minimizing the variation in both validation metrics. Additionally,

we compare the final predictions to an independent source of

depth data taken from internet searches. We searched for the

names and locations of approximately 600 randomly selected lakes

in MRB1. We located maximum depths for 191 lakes (Dastaset

S2). We compared our predictions to the reported maximum

depths and calculated the RMSE and correlation coefficient.

Results and Discussion

Our initial predictions, when compared to the NLA measured

depths, were on average greater than measured values and thus

required an adjustment to correct for bias (Figure 3). To correct

Figure 3. Initial maximum depth predictions compared to National Lakes Assessment (NLA) field measured depths. Black line is one-
to-one line indicating perfect agreement. Green squares are values from HUC Region 01 and green line is linear fit with intercept of 0 and slope of
0.553 for HUC Region 01. Blue triangles are values from HUC Region 02 and blue line is linear fit with intercept of 0 and slope of 0.462 for HUC Region
02.
doi:10.1371/journal.pone.0025764.g003
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maximum depths in HUC Region 01 we multiplied initial depth

predictions by 0.553 and in HUC Region 02 we multiplied all

initial depth predictions by 0.462. These constants are the median

slope of the linear fit of the 10,000 cross-validation iterations of the

NLA depths and predicted depths with an intercept constrained to

0 (Figure 3). Prior to correcting the estimates, the RMSE for HUC

01 was 6.32 m, and for HUC 02 was 6.14 m. The uncorrected

correlation coefficient for HUC 01 was 0.82, and for HUC 02 was

0.64. After corrections, the mean RMSE from the 10,000

validation datasets for HUC 01 was 5.95 m and for HUC 02 it

was 5.09 m. The mean correlation for HUC 01 was 0.82 and for

HUC 02 it was 0.69. Comparing our predictions to the

independent depths from the online sources resulted in an RMSE

of 7.0 and a correlation of 0.72. Initial and corrected maximum

lake depth predictions for all 27,942 lakes are available for

download (Dataset S2). Additionally, the web reported depths and

NLA measured depths used for the cross validation are included

for the subset of lakes for which those data exist (Dataset S2).

Our primary goal for this research was to develop a method to

predict maximum lake depth using publically available data that

would be applicable at regional scales. We were successful in that

regard and can now estimate lake depth for all lakes with

surrounding elevation data, catchments, lake shoreline data

(available for the whole United States at the 1:100 000 scale or

better in many cases), and a dataset used to empirically adjust the

estimates (i.e. the NLA is available for ,1000 lakes across the US).

Furthermore, our assessment indicates that on average our

predictions are accurate, evidenced by the average RMSE and

strong average correlation between our predictions and the

validation datasets. The methods described here represent a good

first step in estimating maximum lake depth when detailed data

are not available. There is variation between our estimates and the

validation datasets (i.e., cross-validation and web reported depths)

that we were not able to explain. There are many possible sources

of error that might account for this. We have identified two that

we feel to be most important.

First, our uncorrected depth predictions were greater than the

measured depths. This suggests processes in addition to those that

formed the topography are controlling the depth of the lakes. The

most likely processes are erosion and sedimentation. Our method

corrects for the over-prediction, but it does not explicitly account

for the lake-to-lake variation in sediment loads or age of the lake.

Including these loads may account for the over-prediction and

should also improve the overall accuracy of the method. One

possible addition to this method would be to use existing sediment

load models (e.g. USDA’s Soil and Water Assessment Tool -

SWAT) to estimate sediment loads for each lake [12–14].

Second, while the median slope of the surrounding topography

does a good job of predicting the average trend in lake depths

across a region, the median is likely missing local variations in

slope that are important in describing lake bathymetry. Other

methods may provide additional information. For instance,

interpolation methods (e.g. splines, kriging, polynomial regression)

have a long history in generating digital elevation models [15–17].

Modifying these techniques so that they may be used to estimate

depth in lakes might improve upon a method that uses median

slopes.

Lastly, this method makes it possible to greatly expand and

enhance modeling studies to include a much larger spatial extent.

We can now include volume, via proven GIS methods, and

residence time in modeling efforts in a large number of lakes across

large regions [2]. In an unpublished study by Milstead and others,

they found that including volumes and residence times based on

the estimates of depth reported here have improved predictions of

nutrient concentrations.

In summary, we developed a method to predict maximum lake

depth and lake volume that, on average, had relatively low error

(i.e. RMSE ,5–6 m and strongly correlated with validation data).

Unpublished work by Milstead and others also shows that the

depth predictions from this method will improve regional

modeling studies of lakes and allow for better predictions of

nutrient concentration across all lakes in a region. Although our

predictions are reasonable, there is room for improvement.

Exploring other statistical methods and including estimates of

sediment load may provide better estimates. This method is not

meant to be a replacement for detailed bathymetric surveys when

greater detail is needed. It does allow us to include important

information over a much greater number of lakes than was

possible previously. Lastly, given wide variation in the age, origin

and sedimentary processes seen in lakes of the northeastern United

States, that this simple model can explain 50–60% of the variation

in maximum depth based solely on a 30 m Digital Elevation

Model (DEM) and available in situ data is promising and should

utlimately improve our ability to model various aspects of lakes

across broad regions.

Supporting Information

Text S1 Python script to predict maximum lake depths.

(PY)

Dataset S1 Example GIS data to be used as input into
python script to predict maximum lake depths saved as
a self-extracting zip file.

(EXE)

Dataset S2 Predicted maximum lake depths for all
lakes in Major River Basin 1. Also includes additional

assessment data collected in the field by the National Lakes

Assessment, maximum lake depth reported in online sources, and

URLs for those sources.

(CSV)
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