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Abstract

Taxonomy relies greatly on morphology to discriminate groups. Computerized geometric morphometric methods for
quantitative shape analysis measure, test and visualize differences in form in a highly effective, reproducible, accurate and
statistically powerful way. Plant leaves are commonly used in taxonomic analyses and are particularly suitable to landmark
based geometric morphometrics. However, botanists do not yet seem to have taken advantage of this set of methods in
their studies as much as zoologists have done. Using free software and an example dataset from two geographical
populations of sessile oak leaves, we describe in detailed but simple terms how to: a) compute size and shape variables
using Procrustes methods; b) test measurement error and the main levels of variation (population and trees) using a
hierachical design; c) estimate the accuracy of group discrimination; d) repeat this estimate after controlling for the effect of
size differences on shape (i.e., allometry). Measurement error was completely negligible; individual variation in leaf
morphology was large and differences between trees were generally bigger than within trees; differences between the two
geographic populations were small in both size and shape; despite a weak allometric trend, controlling for the effect of size
on shape slighly increased discrimination accuracy. Procrustes based methods for the analysis of landmarks were highly
efficient in measuring the hierarchical structure of differences in leaves and in revealing very small-scale variation. In
taxonomy and many other fields of botany and biology, the application of geometric morphometrics contributes to
increase scientific rigour in the description of important aspects of the phenotypic dimension of biodiversity. Easy to follow
but detailed step by step example studies can promote a more extensive use of these numerical methods, as they provide
an introduction to the discipline which, for many biologists, is less intimidating than the often inaccessible specialistic
literature.
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Introduction

Leaf morphology is central to plant taxonomy and systematics

[1] and it has mostly been studied using traditional morphometrics

[2,3]. In the last decade, however, there has been an increasing

interest in the use of modern geometric morphometrics (GMM) to

study the form of leaves. GMM analyzes the relative positions of

anatomical landmarks and sets of points used to approximate

curves (outlines) and surfaces to quantify size and shape [3]. The

geometric information of shape differences is preserved, statistical

power is increased [4], patterns can be visualized using image

rendering and a variety of other diagrams [5]. The increase in the

number of publications using GMM within [5,6] and from outside

[7,8] biology has been exponential and pays testament to the

success of this set of methods.

Taxonomists and botanists have recognized the potential of

GMM in their field: ‘‘If the systematist is really interested in

focusing on shape, separately from size, and/or on testing

hypotheses about shape differences, then traditional approaches

are not adequate; landmark methods are clearly superior,

especially when the landmarks represent well-defined, biologically

homologous points ‘‘… there is no information in the context of a

set of landmarks that cannot be extracted by application of the …

approach’’ ([3] p. 667–669). Leaf shape variability has been

investigated using analyses of landmarks and outlines to accurately

discriminate species and their hybrids. For instance, using GMM

on leaves, Jensen [9] and Jensen et al. [10] detected hybridization

in black and red American oaks and Peñaloza-Ramirez et al. [11]

demonstrated that oak hybrids and backcrosses have intermediate

morphology. Viscosi et al. [12,13] also applied GMM and found

evidence that in European white oaks leaf shape correlates strongly

with the taxonomy of species and hybrids inferred using molecular

data. In taxonomy and other fields, genetics and morphometrics

can fruitfully interact as complementary tools to understand the

origin of phenotypic differences [14].

This type of analyses, however, has mostly focused on insects

and mammals and has not yet been extensively performed in

botany. Only recently GMM studies on the effects of the

environment on the development of plants have begun to gain

precedence in the literature: Albarrán-Lara et al. [15] examined

fluctuating asymmetry in hybrids of two inter-fertile Mexican

white oaks; Viscosi et al. [13] demonstrated a correlation between
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the deepness of leaf lobes and temperature, rainfall and, less

frequently, altitude in European white oaks; Van der Niet et al.

[16] explored the covariation of shape with pollinators using

analyses of three-dimensional data from computerized reconstruc-

tions of Satyrium flowers based on micro-computed tomography

scanning. Van der Niet et al. [16] provides an especially good

example of the analytical power of GMM. Using a sophisticated

technology for accurate data collection and visualization in

combination with principal component analysis, a simple statistical

method to summarize shape variables, effectively illustrated that

floral shape is associated with pollinator classes. Their findings

mirror those of a previous series of GMM studies by Gómez et al.

[17–19] on the genetics and selective pressures behind the

observed variation in Erysimum flowers. Gómez and colleagues

not only suggested that pollinators strongly select corolla shape by

choosing flowers with high reward, but they were also able to add

details to this story showing that: ‘‘(1) Interactions with generalist

organisms may produce strong selection. (2) Spatial changes in

main pollinators result in divergent selection across populations. (3)

Geographic mosaics depend on a balance between mutualistic and

antagonistic selection. (4) Selection mosaics operate at fairly small

spatial scales’’ (p. 245, [18]).

This rapid overview with some examples of applications of

GMM in biology and particularly in botany suggests that the

method is more than promising and has already proved its

effectiveness in numerous studies. Despite this, botany has lagged

behind zoology in fully exploiting GMM. A quick but very crude

estimate of the difference in terms of publication output can be

obtained using Google Scholar to search either ‘‘geometric

morphometrics zoology’’ or ‘‘geometric morphometrics botany’’.

The first search returns about five times more results than the

second one. In both fields, most of the studies concern taxonomic

questions. As most identifications are still largely based on

morphology, this is somewhat unsurprising. Taxonomists should

indeed be especially keen on taking advantage of new quantitative

methods for the description of form. Technological and method-

ological advancements may soon provide more efficient ways of

detecting biodiversity and discriminating taxonomic groups using

shape data [20,21] including semi-automated computerized tools

[22].

This paper is aimed at scientists who have little or no experience

of GMM and would like to understand if and how it might be

applied to taxonomy and botany. We will utilise user-friendly

freeware software to provide a step-by-step example on how to:

I) measure population variation in size and shape of leaves

using Cartesian coordinates of anatomical landmarks and

Procrustes based GMM;

II) test group differences by partitioning variance into

components (population, tree, leaf and measurement error)

which are statistically compared in a hierarchical way (i.e., to

assess if population differences are larger than differences

among trees of the same populations, and whether these are

larger than those among leaves of the same tree etc.);

III) visualize leaf shape using diagrams (e.g., rendering of

outlines, wireframes and thin plate spline deformation grids).

This study will, we hope, stimulate beginners to explore the

potential of GMM in botany and facilitate its use in taxonomy.

Indeed, an accurate quantification and effective visualization of

the main levels of morphological variation in leaves, flowers and

other structures is key to gaining insight into the evolutionary and

ecological processes of phenotypic diversification and provides the

fundamental basis from which to develop more complex studies

for achieving ‘‘new perspectives on the interplay of phenotype,

genotype and environment ... [and a] better understanding of

ontogenetic and phylogenetic processes’’ in plant variation (p. 669,

[3]).

Materials and Methods

Ethics Statement
No specific permits were required for the described field studies:

a) no specific permissions were required for these locations/

activities; b) location are not privately-owned or protected; c) the

field studies did not involve endangered or protected species.

Plant material
The main level of the comparison is geographic samples, which,

for simplicity, we will loosely refer to as ‘populations’. We used a

perfectly balanced design with the same number of observations

within each group. This is desirable as it facilitates computations

and avoids giving greater weight to groups with larger samples.

For each of the two populations, situated approximately 1.5 km

apart, two leaves of sessile oak (Quercus petraea (Mattuschka) Liebl.,

1784) were sampled at random from 22 randomly selected trees.

Localities of provenance are near the municipality of Campobasso

and Busso (Table 1), which we will use henceforth as the names for

the populations. Species assignment was verified using microsat-

ellite genetic data on samples from three sympatric white oak

species including the study populations [23].

Landmark configuration
Leaves were pressed, dried and scanned with the abaxial surface

uppermost using an Epson GT-15000 scanner with a resolution of

300 dpi. The entire data collection procedure (i.e., image

acquisition and landmark digitization) on the sample of leaves

was repeated twice to estimate measurement error. The repetition

was performed two weeks after the first round of data collection.

Scanned images were used to record 11 landmarks on the right

half of each leaf (Figure 1 – see Viscosi et al. [12], for landmark

definitions). We focused on one side only to adopt the same

configuration as used in previous studies on the same species

[12,13]. This is a common expedient to reduce the time of data

collection in symmetric structures. However, if patterns of

asymmetry and/or data on both sides of the leaf are required,

such analyses can be performed in MorphoJ [24] using the

methods described in Klingenberg et al. [25].

Step by step geometric morphometric and statistical
analyses

1a) From landmark configurations to shape variables:

theoretical background. Landmark based GMM [4,5,26]

captures the form of a structure using Cartesian coordinates of a

configuration of points. These points must have a one to one

correspondence in the specimens to be compared. The type of

correspondence (topographical, anatomical, developmental etc.)

depends on the scientific questions being asked ([27]; see also

Table 1. Sample localities and size.

population geographic coordinates N(trees) N(leaves)

Campobasso 41.5513; 14.6171 22 44

Busso 41.5587; 14.5954 22 44

doi:10.1371/journal.pone.0025630.t001
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Discussion). There is no absolute landmark configuration on any

given structure and the choice of the configuration must be led by

a clear statement on the hypotheses being tested: ‘‘... in a study of

bat and bird wings if one is interested in function, landmarks at

wing tips and along the leading and trailing edges may be

functionally equivalent; they might embody the question in being

related to functionally relevant aspects of form. However, these

landmarks may lie on structures that are not equivalent in other

ways; for a study of growth or evolution, alternative landmarks

may be the most suited ones’’ [p. 89, 27]. The choice of landmarks

is therefore a crucial step in the analysis and the use of outline

methods, equally spaced points on contours and surfaces (called

semilandmarks) [5] or other techniques, which do not depend on

the explicit identification of anatomical landmarks, does not avoid

the fundamental assumption of correspondence of the

morphometric descriptors being used [28]. They, at least in their

current form, simply delegate to an algorithm the role of the

anatomist in selecting where to exactly locate the points [28].

Despite the apparent rigour, objectivity and ability to extract

information otherwise difficult to obtain, different mathematical

criteria and selection of parameters (e.g., the densitiy of

semilandmarks) may produce incongruent shape distances and

results [28,29]. More importantly they leave the question about

the biology underlying algorithmically defined anatomical features

open and the possibility that mathematically corresponding points

might actually map onto areas inconsistent among individuals and

in relation to the biological model set by the scientific questions

being addressed is real and should be acknowledged [27].

GMM is a disparate set of techniques [5] with a common

purpose: the statistical analysis of differences in form using a

quantitative description that preserves the geometry of shape

variation. Unless differently specified, we will henceforth use

GMM to refer only to landmark-based methods using Procrustes

analysis. This is currently the standard method for the analysis of

landmark data and the most common GMM technique together

with various forms of Fourier analysis for the study of outlines

[6,30]. Thus, we performed a generalized Procrustes analysis

(GPA, [31]) to separate size and shape components of form

variation. Shape coordinates were computed by standardizing

each configuration to unit centroid size and by minimizing

differences in translation and rotation of all specimens using a

least-square algorithm. Size was measured for each specimen as

the centroid size of the landmark configuration. The centroid size

(to which we will refer to simply as size throughout much of this

article) measures the dispersion of landmarks using a function of

their distances from the centroid, which is the ‘baricenter’ of a

configuration: scattered landmarks will have a large centroid size,

clumped landmarks a small one. This series of operations used to

compute size and shape variables from the raw Cartesian

coordinates of landmarks, commonly described as GPA, is also

called Procrustes superimposition / alignment / registration / fit

and it is one of several superimposition methods. Compared to

other methods, the GPA has desirable statistical properties as a

higher power in tests and increased accuracy in estimating sample

means [32–34].

Procrustes shape coordinates are redundant. This means that

there are more coordinates than the actual number of shape

variables after the superimposition. In two dimensional analyses

(i.e., landmarks on flat images, as in our case study), four degrees of

freedom are lost: one for size standardization, two for translating

configurations on the X and Y coordinate axes to superimpose

their centroids, another one for minimizing rotational differences.

In three-dimensions, when each landmark has an X, Y and Z

coordinate, the loss of degrees of freedom is computed in the same

way but the total amounts to seven due to an extra axis (Z) for

translation and two more planes for rotations. Multivariate

parametric statistical tests may, depending on the way they were

implemented by the software authors, incorrectly compute

variable degrees of freedom if performed on shape coordinates.

The redundancy is, however, readily identified and accounted for

by performing a principal component analysis (PCA) using the

variance-covariance matrix of the GPA shape coordinates. A PCA

is a way to summarize multivariate data by building linear

combinations of the original variables that are uncorrelated and

maximize the sample total amount of variance explained [2–35].

The spatial relationships between specimens are unaltered, the

whole set of PCs accounts for the entire variance in the original

variables and nothing is changed in the structure of the data, as

only the axes on which they are projected have been rigidly

rotated. The specimens can be thought of as a cloud of points in a

multivariate space where the observer has changed his/her

position to get a better view of the longest sides of the cloud. In

GMM a PCA on shape variables is occasionally referred to as a

relative warp analysis [36,37]. There is a subtle difference between

the two methods; however, in virtually all biological applications,

they effectively function in the same manner and produce identical

scores. For this reason that we favoured the well know term PCA.

1b) From landmark configurations to shape variables:

software applications and shape spaces. We used the

freeware program MorphoJ [24] for most of the analyses. The

program is concisely presented in Klingenberg [24], but also has

an extensive html user’s guide. We will spend some time in

detailing the specific operations performed in MorphoJ and some

of the other freeware software we used. These programs are

powerful comprehensive computer packages, which can perform a

variety of analyses and data manipulations. Several others, which

we are not using, can be found following the links at http://life.

bio.sunysb.edu/morph/ (Accessed 2011 June 8). For more

flexibility and a broader spectrum of analytical tools, shape data

can be imported in R (www.r-project.org/. Accessed 2011 June 8)

Figure 1. Landmark configuration. From Viscosi et al., 2009,
modified.
doi:10.1371/journal.pone.0025630.g001
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or directly generated in this statistical environment by using the

package ‘shapes’ [38]. Claude’s book [39] on GMM in R provides

guidelines and examples to assist with using this software language.

Files for data manipulation and digitization were created mostly

using software from the TPS Series, a suite of programs for two-

dimensional geometric morphometric analyses [37]:

First we created a TPS file in TPSUtil using the ‘‘build TPS file

from images’’ option. This is a simple ascii text file with the

extension .TPS, which lists the names of the image files and

specifies that no landmarks have yet been digitized. TPS files can

be manipulated in TPSUtil (e.g., to change the order of / remove

landmarks or specimens etc.) or manually in any text editor.

Then we opened the TPS file in TPSDig and digitized the 11

landmarks in the same order on each picture, after setting a scale

factor. The scale factor was set using the image tool menu of

TPSDig (options: measure, set scale) to measure a distance

specified by the user (10 mm, in our example) on a ruler placed

beside the leaf when it was scanned. The scale factor (mm/pixel) is

used to convert coordinates from pixels to millimeters (or another

unit of measure) and to have landmark configurations of all

specimens to the same scale. If the scale factor is the same for all

pictures, however, as in our case where all leaves were scanned

using the same magnification and resolution, it can be set during

the digitization of the first image only; this will be used for all other

individuals in the same file.

We converted TPS into NTS (TPSUtil, convert TPS/NTS file

option) checking the box for using the scale factor and also the one

for using image names as labels. The NTS format is another ascii

text file used for landmark coordinates (and other variables). The

information on landmark coordinates stored in this type of file is

the same as in the TPS format, but data are rearranged as a matrix

with rows corresponding to specimens and columns corresponding

to coordinates. In this example, the conversion to NTS is only used

as a shortcut to quickly create specimen identifiers based on the

original names of the image files.

Indeed, if descriptive names are chosen for the image files and

used as labels in NTS, they can be easily converted into grouping

variables in MorphoJ, after importing the NTS file (menu: ‘‘file’’;

option: ‘‘create new projet’’ using two-dimensional data in

‘‘NTSYSpc’’ format, without object symmetry as only one side

was digitized). For instance, in a file name as Busso_T01_L1_R1.jpg

or Campo_T04_L2_R2.jpg: the first five characters indicate the

locality; the 7th to 9th a tree from that locality; the 11th and 12th a leaf

from that tree with its first (R1) or second (R2) replica image on

which landmarks were digitized once on each image. Using the

option ‘‘extract new classifiers’’ in the menu ‘‘preliminaries’’ of

MorphoJ, one can tell the program to use characters 1–5 for the

geographic populations; 1–9 for the trees; 1–12 for the individual

leaves. Classifiers, as well as covariates made of continuous variables

(e.g., geographic coordinates, environmental covariates as temper-

ature, humidity etc.), can also be imported later from separate txt

files or specified manually in the edit classifiers menu of MorphoJ.

Finally, to aid visualizations, we drew lines, called links, between

pairs of landmarks (menu: ‘‘preliminaries; option: create or edit

wireframe’’) to create a wireframe which resembles a stylized leaf.

We also built and imported (menu: ‘‘file’’; option: ‘‘import outline

file’’) a leaf outline to make a more effective graphical

representation of the output of the analyses. Outlines are contours

that are drawn in TPSDig using a series of points. These points

will not be used in the analysis, as they are not landmarks, but can

be used to show shape variation by rendering the contour image in

the background. Outlines cannot be imported directly in the TPS

format and they have to be converted in a ascii txt file format, as

described in detail in MorphoJ user’s guide.

After having completed data collection and preliminary

operations, the numerical analysis begins:

Specimens are Procrustes superimposed (menu: preliminaries;

option: Procrustes fit). In MorphoJ, as in most other GMM

programs, this operation separates size and shape and also projects

shape coordinates into a Euclidean space tangent to the Procrustes

shape space.

The projection into the tangent space is performed because

standard statistical methods such as regression, analysis of variance

and many others generally require data to be in a flat Euclidean

space. In simple terms, this means that a distance between two

observations is a straight line computed using the theorem of

Pythagoras (or its multivariate extension). However, because the

Procrustes shape space is curved, it has to be approximated by a

tangent Euclidean space using a projection computed as a

cartographer would do to draw the curved surface of the Earth

onto a flat map. The point of tangency between the two spaces is

the sample mean shape. The approximation in the tangent space

for almost all biological datasets analysed until now is excellent [5].

The space occupied by real organisms, even when it is a

macroevolutionary study of differences between mammal orders

[40], is tiny compared to the space of all possible shapes. The

tangent space approximation is seen as a purely theoretical issue

by the majority of morphometricians working on biological data.

Nevertheless it should be checked. TPSSmall [37] regresses

through the origin the set of Euclidean distances in the Euclidean

space onto the set of Procrustes shape distances. If the

approximation is excellent, one will get a regression with both

slope and correlation virtually equal to 1.

The sample was inspected for outliers. This was done both on

the total sample and within each population sample. Sub-samples

are obtained in MorphoJ using the ‘‘preliminaries’’ option

‘‘subdivide dataset by’’ with an appropriate classifier. Outliers

for size are easier to find using univariate methods as, for instance,

box-plots [41] in PAST [42,43]. For shape, MorphoJ has an

option in the preliminaries menu that may help to detect

specimens unusually distant from the mean. This is based on a

model that assumes that the data are multivariate normally

distributed. A second exploratory method to spot potential outliers

consists in looking for individual points separated from the main

scatter of observations in PCA scatterplots. A PCA can be

performed in MorphoJ after computing the variance covariance

matrix of the Procrustes shape coordinates (menu: ‘‘preliminaries’’;

option: ‘‘generate covariance matrix’’) and projecting the data

onto the corresponding eigenvectors (menu: ‘‘variation’’; option:

‘‘principal component analysis’’). A third option to aid outlier

detection in combination with the previous two is to look for

isolated branches, generally near the root of the tree, in

phenograms. Phenograms can be computed by performing a

cluster analysis in PAST [42,43] using Euclidean distances

calculated on the matrix of Procrustes shape coordinates (menu:

multivar; option: cluster analysis). A phenogram is a summary of

the similarity relationships in a multivariate dataset using a tree

diagram. The distance among specimens in the tree is propor-

tional to their differences. The most similar shapes are on sister

branches, the most dissimilar ones are isolated next to the root.

Trees tend to distort shape distances [44]. The index of cophenetic

correlation available in PAST helps to quantify the magnitude of

the distortion [45]. The index is computed as the correlation

between the original shape distances and the distances recon-

struced using the topology of the tree and ranges between 1 (no

distortion) and 0 (maximum possible distortion). Different tree

building algorithms may be used and the magnitude of their

Simplified Geometric Morphometrics for Taxonomists
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cophenetic indexes compared to select the one which minimizes

ovarall distortions.

2a) Testing variation in populations, trees and leaves using a

modified Procrustes ANOVA: theoretical background. For

clarity, when populations, trees, leaves and replicas (i.e., error) refer to effects

being statistically tested, we will be now using italics. Differences in leaf

size and shape can occur at several levels. Our main purpose is to

measure and test variation in geographic populations. We also need to

know, however, how much leaves differ within and among trees and

whether this is more than explained by measurement error. For this

aim, we used a hierarchical analysis of variance (ANOVA) with

populations as the main effect, trees and leaves as random effects (i.e.,

factors whose number of levels is not set by any objective a priori

criterion and just reflect sampling), and leaves nested in trees. In the

‘‘variation’’ menu of MorphoJ, this analysis is called ‘‘Procrustes

ANOVA’’ after Klingenberg et al. [25]. Variance is partitioned by

using a ‘‘hierarchical sum of squares’’ (p. 620, [41]) in a way such that

each effect is adjusted for all other effects that appear earlier in the

hierarchy. This is taking into account the nested structure of the data

(an issue that is crucial if the design is unbalanced, i.e., with unequal

sample sizes), thus allowing one to quantify differences in populations, trees

regardless of population and leaves regardless of both population and

tree. The variance unexplained by any of these effects is measurement

error and it is estimated using the differences between repetitions,

which include both digitizing error and the error during image

acquisition. Thus, in summary, we decomposed total variance in size or

shape into main (populations), random (trees, leaves) and error (replicas)

components and computed ratios between these components

(populations/trees, trees/leaves, leaves/error) corrected by the appropriate

number of degrees of freedom to generate the test statistics.

2b) Testing variation in populations, trees and leaves

using a modified Procrustes ANOVA: software appli-

cations. The Procrustes ANOVA in the variation menu of

MorphoJ was designed for studies of asymmetry in bilateral

symmetric structures [25]. The analysis is automatically performed

for both size (univariate) and shape (multivariate). It is crucial that

the factors are accurately specified when the analysis is requested,

because it is a hierarchical model and therefore the order of the

effects (first populations, then trees, followed by individual leaves) is

important. The current version of MorphoJ does not allow one to

specify random effects other than individuals (i.e., leaves in our

study). Thus, we had to take a few additional steps to obtain the

correct result:

We selected populations followed by trees as main effects (right

panel in the analysis window) and leaves as the only random effect

(first scroll down in the menu in the left side of the analysis

window). This is a misspecification of factors and determines that

both populations and trees are incorrectly considered at the same

level with each of them being compared to (i.e., divided by) the

individual leaves mean sum of squares.

We manually computed the F ratio for the main effect of

populations using trees as a random effect to correct for the

misspecified model. The computation consists in dividing the

populations mean sum of squares by the trees mean sum of squares

and it is straightforward because the mean sum of squares and the

corresponding degrees of freedom are the same as in the standard

output of MorphoJ. Thus, one simply needs to take the numbers

from the result window of MorphoJ and manually do the

‘populations to trees’ F ratio.

Finally, it is possible to obtain the significance P level of the

observed F statistics using an F distribution calculator (e.g., http://

davidmlane.com/hyperstat/F_table.html. Accessed 2011 June 8)

or a table of critical values (http://www.itl.nist.gov/div898/

handbook/eda/section3/eda3673.htm. Accessed 2011 June 8)

with the degrees of freedom corresponding to populations

(numerator) and trees (denominator).

To complete the analysis, we also calculated the percentage of

sum of squares explained by each effect. The sum of squares

measures the deviation of the observations from the mean (or

means, when groups are present) and is more accurately referred

to as ‘sum of squared deviations’. As it is an estimate of the

variability in the sample which is readily available in the ANOVA

output, it can be used to assess how well different factors fit the

data. This is easily obtained by dividing the sum of squares of an

effect by the total sum of squares and multiplying this ratio by 100.

However, this is not the same as estimating variance components

in the ANOVA, a more advanced statistical procedure that we

briefly explain in a note in the Appendix 1.

3) Testing population differences using permutation tests

and discriminant analyses: theoretical background and

software applications. Results of the Procrustes ANOVA

provide a basis on which to plan the next steps of the analysis. The

lowest level, leaves, must be statistically significant, as differences

among leaves regardless of populations and trees must be larger than

measurement error. Measurement error should, therefore, explain

a negligible percentage of variance. The next level, trees, indicates

whether there is more variation in leaves of different trees than

within the same tree. If that is the case, there is a stronger

justification to pool leaves within trees and use their averages as an

estimate of the trend in leaf form in each tree. Having removed

pseudo-replicates (i.e., non-independent observations as multiple

leaves from a tree) from samples, a variety of standard tests for

group differences can be applied [12,13,46] to examine the highest

and most interesting level, at least from a taxonomic perspective,

of group variation: population differences. Thus:

First we averaged leaves within trees in MorphoJ using the

option ‘‘average observation by’’ from the menu ‘‘preliminaries’’.

Then, we used the averaged data for testing populations using a

series of tests for sample mean differences including an estimate of

the accuracy of leaf shape in predicting groups.

For size, we performed a parametric t-test for independent

samples. We also repeated the test using permutations, which do

not assume normally distributed data and can be performed even

if samples are small. All these tests are simultaneously performed in

PAST using the menu ‘‘Statistics’’ with the option ‘‘F and T test

for two samples’’. Permutation tests for group differences can also

be done in MorphoJ using a regression approach. A dummy

covariate is created (menu: preliminaries; option: edit covariates),

where one population is coded as -1 and the other as 1 (or vice

versa). Then, size is regressed onto this dummy covariate using

permutations to test significance. This test provides a P value

together with the percentage of variance explained by populations.

In this and other cases when we express the fit of the model in

terms of variance instead of sum of squares, we do so because

variance is a concept most readers may feel more familiar with. As

there is a single set of predictors and no partitioning among

factors, as in the Procrustes ANOVA, the percentage of sum of

squares explained is identical to the percentage of variance

(Zelditch et al., 2004).

Multivariate shape differences can be tested pairwise in PAST

using a parametric approach (menu: Multivar; option: Hotelling)

or permutations (menu: Multivar; option: Two-group permuta-

tion). For those unfamilar with methods using randomizations, the

rationale for permutation tests and their multivariate extension are

well explained in the chapter on ‘‘Computer-based statistical

methods’’ in Zelditch et al. [26] and also in the introductory book

on resampling statistics by Manly [47]. An important caveat to

bear in mind using these tests is that, although permutations can
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be performed with sample sizes too small for parametric tests,

small samples will inevitably reduce statistical power and increase

inaccuracies in estimating group means and variances. As for size,

differences can also be tested in MorphoJ using the regression

approach and permutations. Tests of mean sample differences are

obtained in MorphoJ also as part of the output of a discriminant

analysis (DA). Results will be equivalent to those using the

regression approach but with the latter one also computes the

variance explained and with the former one also produces a

classification table, as explained in the next paragraph.

We tested group differences also using a DA. In MorphoJ this is

obtained from the menu ‘‘comparison’’, option ‘‘discriminant

analysis’’. The DA is probably the most widely used statistical

method for investigating taxonomic differences and is generally

used as a synonym for canonical variate analysis (CVA). The term

DA is preferentially used when only two groups are compared;

CVA when there are three or more groups. Often in a DA on

taxonomic data the main focus is on group prediction, whereas

that in a CVA is more on ordinations. Neff and Marcus [35] and

Albrecht [48] provide excellent and concise introductions to DA/

CVAs; Klingenberg and Monteiro [49] discuss its use in GMM. In

simple terms, a DA/CVA is another method to combine a set of

variables, as the PCA. However, the linear combinations of the

original variables are now derived to maximize group separation

for: 1) testing groups (statistical inference), 2) plotting their

differences (ordination) and 3) predicting group affiliation

(classification). All three types of output are produced by MorphoJ

when the analysis is specified as DA for two groups (as in our case).

However, with three or more groups, the CVA option in MorphoJ

will only test group differences pairwise and produce ordinations.

The classification table and the test for overall (i.e., all groups

together) differences can be obtained using PAST (menu: ‘‘Multi-

var’’; option: ‘‘MANOVA/CVA, confusion matrix’’). Thus,

Procrustes shape coordinates can be exported from MorphoJ as

a text file (menu: ‘‘file’’; option: ‘‘export dataset’’) and directly

opened in PAST after changing the name of the first column from

ID to LABELS (or anything else than ID). Alternatively, raw

coordinates in TPS format could be directly imported in PAST,

GPA superimposed, subjected to a PCA and then used for a CVA.

In PAST, groups are specified by selecting and colouring rows

(menu: ‘‘Edit’’; option: ‘‘Row colour/symbol’’) and multivariate

tests should be performed using PCs with non-zero eigenvalues to

be sure that degrees of freedom are correctly computed from

Procrustes shape data. Finally, both in MorphoJ and PAST, only

jack-knife cross-validated classification tables provide reliable

information on groups [50]. In the jack-knife or leave-one-out

cross-validation, one by one each individual is left out from the

analysis and predicted using data from all other specimens. This

way the jacknifed predictions avoid the ‘circular reasoning’ and

consequently inflated accuracy of a non-cross-validated DA/CVA,

where a specimen is classified using functions that were calculated

on samples that included that same specimen. Both non-cross-

validated and cross-validated results are produced in MorphoJ,

whereas cross-validated results must be requested in PAST by

checking the appropriate box in the confusion matrix window.

4) ‘Size-correction’ after testing the effect of size on shape

(i.e., allometry) using a multivariate analysis of covariance

(MANCOVA) design: theoretical background and software

applications. Size and shape have, up to this point, been tested

separately. It might be interesting to consider also the way they

may interact and covary. For instance, if size variation is large, one

may want to repeat shape comparisons after controlling for the

effect of size on shape [51]. This effect is called allometry and in

general terms refer to a change in shape associated with size

differences [52]. Allometry can account for a large and statistically

significant proportion of morphological variation. This is tested

using a multivariate regression of shape onto size (in MorphoJ,

menu: Covariation; option: Regression). Centroid size may be first

transformed to its natural logarithm to increase the fit of the

model, which is estimated by the percentage of shape variance

explained by size. Significance is tested using a parametric test

(PAST) or permutations (MorphoJ).

If groups are present, one cannot fit a single regression line

through all groups to test allometry. This is because lines could

have group-specific slopes or intercepts. The standard parametric

test for differences in slopes and intercepts of allometric trajectories

also provides a method to ‘correct’ for the effect of size on shape.

This is a MANCOVA with populations as groups and centroid size

as a covariate [26]. A MANCOVA is similar to a MANOVA, in

that one has a priori groups to compare, but also to a regression, as

one can include one or more continuous variables as predictors.

The aim is to test groups (populations) after removing the variance in

the response variables (shape) accounted for by the covariate (size).

By doing this, one may be able to say if differences in shape are

actually the result of size variation only. Controlling for one factor,

while testing for another one, makes simpler explanatory models

and increases statistical power.

The MANCOVA was applied to averaged tree leaves we have

already tested for populations differences in step (3). It was also used

to compute ‘size-corrected’ shapes, which were then examined

using the same series of tests as on the full shapes (3):

Before proceeding with the MANCOVA, the significance of

allometry within groups could first be tested. This requires splitting

populations into separate samples (MorphoJ menu: ‘‘Preliminar-

ies’’; option: ‘‘Subdivide dataset by’’) and performing multivariate

regressions of shape onto size one group at a time (menu:

‘‘Covariation’’; option: ‘‘Regression’’). If at least one of the groups

is statistically significant, controlling for allometry using the

MANCOVA, as described in the next paragraphs, might be

interesting.

A full MANCOVA with populations as groups, size as covariate

and the populations by size interaction term included is performed.

The main aim is to compare regression slopes between groups.

These are tested by the interaction between populations and size. In

this context, here and throughout the rest of the paper, we

informally use ‘interaction’ as a concise way to indicate the test for

slopes using the same convention as in most statistical programs,

although this does not rigorously correspond to the meaning of

‘interaction’ in a MANOVA. The test for slopes compares the

amount of variance explained by two models: one is simulta-

neously fitting group-specific multivariate linear regressions with

each population having its own slope; the second one is also fitting

group-specific lines but it does so by forcing them to be parallel.

The fit of the first model (i.e., the percentage of variance

explained) will always be better than that of the second one, as to

keep parallel lines regression slopes become a compromise

between group-specific slopes. However, if separate lines fit the

data only slightly better than parallel ones and this is not enough to

be statistical significant, differences between the two models are

negligible and allometric trajectories can be considered parallel. In

terms of shape variation, this means that the allometric pattern is

the same across groups: as the leaf becomes bigger, the relative

changes in proportions of its regions are similar in the different

populations. For instance, population A could have an obovate leaf

whereas population B might be ovate but in both A and B bigger

leaves will tend to be slender compared to smaller ones. The shape

of the leaf is not the same, but the trend of covariation with size is

the similar.
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When slopes are different, allometric trajectories are pointing to

different directions and one cannot easily control for the effect of

size on shape in tests of group differences [26]. However, if (and

generally only if) slopes do not differ significantly (i.e., the size by

population interaction term of the MANCOVA is not statistically

significant), one can proceed to the next step: controlling for the

effect of allometry while testing groups and computing ‘size-

corrected’ shapes. The MANCOVA is repeated after removing

the (non-significant!) interaction term. The grouping variable,

populations, is now testing differences in regression intercepts by

comparing the percentages of variance explained by different

models. However, the best-fit model in this instance is the one with

separate but parallel lines, we have already seen, and the lower fit

model is a single regression line through all data regardless of

groups. If the difference is not statistically significant, intercepts of

the two (or more) parallel lines with the Y axis are statistically

indistinguishable. That means that allometric trajectories overlap

among groups and therefore patterns are not only similar (i.e.,

parallel or laterally transposed) but actually the same. Group

differences in this specific case are fully explained by allometry: if a

population is bigger and shape covaries with size, its shape will be

different simply because it has gone a little bit further along the

same allometric trajectory.

To reconstruct ‘size-corrected’ shapes, slopes must not be

statistically significant. The ‘size-correction’ according to the

MANCOVA model can be performed in MorphoJ. However,

MorphoJ does not test slopes and assumes that this has already

been done in another software. For instance, one can use

TPSRegr [37] to perform a MANCOVA of two dimensional

shapes following a regression approach. A detailed description of

the analytical steps involved in this test is available in the help file

of TPSRegr. Having demonstrated the non-significance of slopes,

one can proceed with the ‘size-correction’ in MorphoJ. This is

specified in the regression window (menu ‘‘Covariation’’) using

shape as the dependent dataset, centroid size as the independent

one and the option ‘‘pooled regression within subgroups’’ with

populations as subgroups. MorphoJ then performs a series of

operations:

a) fits parallel regressions lines;

b) takes a straight line perpendicular to the size X axis;

c) finds the points of intersection between this (b) line and the

regression lines of each population (nota bene: the intersec-

tion is a point in the multivariate shape space, which has as

many dimensions as the number of shape coordinates, i.e.

twice the number of landmarks in two-dimensional data);

d) computes the regression residuals, that is the differences

between each observed shape and its prediction according to

the population-specific parallel allometric trajectory;

e) adds population by population (c) to (d) to reconstruct shapes

in which the within-group allometric variation has been

removed.

The result is a sample of ‘size-corrected’ shapes according to

group-specific parallel allometric trajectories. They can be used for

further analyses (e.g., DA and permutation tests as in step (3)) by

selecting the output of the regression in the project tree window of

MorphoJ. Although MorphoJ refers to the ‘size-corrected’ shapes

simply as ‘‘residuals’’, they actually are residuals added to shapes

computed as in (b–c). Because the (b–c) shapes are predicted at the

same common size within each group and the residuals (d) are by

definition independent on size, adding them back to (b–c) creates

new samples whose means (b–c) are ‘size-corrected’ (d–e) and

where allometric variation has been ‘squeezed’ around the (b–c)

means. Thus, by using a common size to predict shapes we made

the effect of size on shape comparable among groups. However,

we have not said what this common size (b) might be. It turns out

that one can use the grand sample mean size (i.e., the mean size of

all groups) or any other size and in terms of statistical testing and

relative differences among groups it will not make any difference.

This is because regression lines are parallel and therefore their

relative distances (i.e., the shape differences) are the same across

the whole range of size variation. If this assumption is violated,

because slopes appreciably different, results of the ‘size-correction’

could be different depending on the choice of the common (b) size

[26].

5) Interpretation and visualization of shape variation:

theoretical background and software applications. This

last section explains how shape variation is interpreted and

visualized after statistical analyses. In traditional multivariate

morphometrics the interpretation of results largely relies on the

determination of the relative importance of the different

measurements. For instance, in a PCA, it might be interesting to

know which variable contributes most to the main axis of

variation. In a regression context, the association between

predictor(s) and predicted variables might be stronger or weaker

depending on the variable. This type of interpretation is mostly

done by looking at the coefficients (PC loadings, regression

coefficients etc.) used to weight the variables. In GMM this cannot

be based on coefficients and must done using diagrams to visualize

shape differences between two groups, variation along a vector

(PC1, PC2 ... or a regression vector etc.).

Several types of diagrams are available in MorphoJ, PAST and

other programs:

Thin plate spline (TPS) deformation grids [26,53] are one of the

most effective and commonly used shape diagrams. They take

their inspiration from D’Arcy Thompson transformation grids

[54]. Thompson’s idea was to describe shape changes by

superimposing a rectilinear grid onto a starting form, for instance

a fish, and then use simple mathematical transformations to warp

this grid in order to match a target, a fish with a different shape.

Similarly a ‘‘...way to think about … [the] TPS ... is as if one form

were printed on a transparent stiff plastic sheet [together with a set

of square grids] and then manipulated by bending so that its

‘shadow’ takes on the prescribed landmark positions of the second

form’’ [55]. In practice, what the TPS does is using an

interpolating function to produce smooth deformations. The

smoothing is done by minimizing the curvature of the sheet where

the landmarks in the starting form are placed and manipulated

until they overlap with those in the target configuration. This

operation produces vectors of coefficients which can be used to

predict how grid lines may change because of the warping.

Rendering the contours (often called outlines) of a study

structure like a leaf or even a picture or a three-dimensional

surface on which landmarks were digitized is another option to

visualize shape variation. This is generally achieved by applying

the same coefficients obtained by using the TPS to predict shape

changes in the outline or any other type of visual information

‘drawn’ in the space of the landmark configuration. Although

there is not quantitative information in these diagrammatic

representations except where the landmarks are, they help to

interpret shape differences and make them more tangible than the

abstract visualization of landmarks alone.

The relative differences between two specimens can be

visualized using displacement vectors. Displacement vectors (called

‘‘lollipop graph’’ in MorphoJ) are arrows drawn between a

landmark in a starting shape and the same landmark in a target

shape. They can be useful and effective, as long as one carefully
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integrates the information provided by each of these arrows over

the whole landmark configuration. Otherwise, they may give the

misleading impression of a landmark moving independently from

one location to another. Landmarks do not move. It is the space

which they define that changes (expands, contracts, bends etc.).

Differences between two shapes, for instance, an equilateral and

an isosceles triangle, is the same regardless of how we

superimposed them to extract size and shape variables. However,

when shown one superimposed on top of the other, the relative

position of landmarks becomes a function of the type of

superimposition and Procrustes is the standard choice only for

its statistical properties. In the Discussion we will consider one of

several other types of superimposition and show it is likely to be

equivalent in terms of numerical outputs in multivariate analyses,

but may suggest very different shape differences, if these are

described using superimposed shapes and displacement vectors.

Finally, a fourth and most common type of visualization is the

one using wireframes, which we have already described in the first

section of the methods.

All these types of visualization are readily available for two

dimensional data in MorphoJ, which also does three dimensional

wireframes and displacement vectors. By right clicking in the

graphics shape changes window and selecting ‘‘change type of

graph’’ one can choose the diagram. In PAST some of the analyses

(e.g., a PCA of shape coordinates) allows one to make

visualizations using wireframes and TPS grids. PAST also

implements a system of colour coding called Jacobian expansion

factors to help detecting using different colours regions where the

grids are shrinking from those where they are expanding.

A final consideration concerns the magnification of differences.

It is customary to magnify small variation to aid its interpretation.

This is because small but significant differences can be difficult to

see unless they are ‘exaggerated’. The magnification consists of a

simple scalar multiplication of shape differences between a starting

shape and its target. For instance, if an observation has a score on

PC1 of 0.05, a two-fold magnification of the shape differences

between this observation and the mean shape is the shape that one

would get by doubling the lengths of the displacement vectors and

it is the shape whose score on PC1 would be 0.1. As this is not a

real shape, one needs to be explicit about the magnification factor,

whenever possible consistently use the same magnification in all

diagrams, and be careful to avoid the overinterpretation of tiny

amounts of variation.

Results

1) From landmark configurations to shape variables
The tangent space approximation was tested in TPSSmall [37].

The slope of the regression of Euclidean distances in the tangent

space onto Procrustes shape distances in the curved Procrustes

shape space was 0.997 with a correlation of 1.000. The mean and

maximum Procrustes shape distances to the sample mean shape

were 0.110 and 0.252 units of Procrustes shape distance. The

approximation was therefore excellent.

Raw coordinates were imported in MorphoJ, Procrustes

superimposed and subjected to a PCA. A preliminary screening

for outliers (results not shown) showed a good correspondence

between the observed data and shape distances expected under a

multivariate normal distribution model, no long tails in the

distribution and no evident outliers. Also, scatterplots of several of

the first PCs of shape (Figure 2 shows pairwise plots of PC1 vs PC2

and PC3 vs PC4) and a phenogram built using the unweighted

pair group method with arithmetic mean on the matrix of

Procrustes shape distances (not shown) suggested that there were

no specimens with unusual shapes. Box-plots and histograms of

size (not shown) also did not suggest the presence of strong outliers,

although the distribution of Campobasso leaves was skewed.

2) Testing variation in populations, trees and leaves using
a modified Procrustes ANOVA

A modified Procrustes ANOVA was performed on all specimens

(including replicas and multiple leaves from each tree). The

analysis had to be specified in MorphoJ using both populations and

trees as main effects and leaves as the individual random effect. As

anticipated, this is not the correct design, but the current version of

the program does not permit a second random effect in the model.

Trees was made into a random effect by manually computing the

appropriate F ratio using mean sum of squares and degrees of

freedom from the original output of MorphoJ, as described in the

Materials and Methods. Thus, we corrected the F ratio for the

populations term so that this effect (numerator) could be compared

to the variation among trees (denominator) instead of that between

leaves, as in the original output.

Results for size and shape are reported respectively in Tables 2–

3. For size, the main effect of populations was statistically

significant and explained about 6% of total sum of squares.

Differences in leaf size among trees were only slightly but non-

significantly larger than differences between leaves of the same tree

(respectively ca. 55% and 39% of total sum of squares). The

individual effect (i.e., leaves) was highly statistically significant and

measurement error accounted for less than 0.1% of total sum of

squares. This meant that, for size, variation in leaves had a fit to

the data which was two orders of magnitude larger than the error

in image acquisition and landmark digitization.

Results for shape largely mirrored those for size with a single

main exception: the random effect of trees was highly statistically

significant and explained almost twice the sum of squares

explained by individual leaf variation. Thus, for shape, population

differences are small but statistically significant, tree differences are

appreciably larger than variation in leaf shape within trees and

measurement error is completely negligible. Figure 2 shows an

almost perfect overlap between the two replicas of each specimen

on scatterplots of the first four PCs. The same result holds up to

the 6–7th PC, which cumulatively account for about 95% of

variance (results not shown). Differences between replicas are so

small that in the example specimen of Figure 2 they can be hardly

detected after a 10 folds magnification.

3) Testing population differences using permutation
tests and discriminant analyses

Leaves from the same tree were generally more similar than

leaves of different trees (see previous section). They were averaged

within trees and the averaged data used to further examine

population differences. They were subjected to a second series of

parametric and permutation tests for group mean differences and

the group predictive accuracy of shape was tested in a DA.

Results of significance tests are shown in Table 4. Different

methods produced congruent results. Size was statistically

significant (P,0.05), as in the Procrustes ANOVA, and population

differences explained 10.2% of variance. The box-plot in Figure 3

shows that Campobasso leaves tend to be slightly larger than

Busso, but there is a lot of overlap between the two populations.

Shape in contrast was not statistically significant and populations

only explained 4.3% of total variance. The pattern of variation is

summarized in Figures 4 and 5 with scatterplots for the first four

PCs of shape. The two populations mostly overlap. Shape

diagrams (leaf outlines, wireframes and TPS grids) for the positive
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extremes of the PCs suggest a large amount of variation in the

samples. Positive extremes of PC1, PC3 and PC4 are character-

ized by either an enlargement or an elongation of the distal half of

the leaf relative to the proximal half. PC2, in contrast, indicates

narrowing of the leaf along its entire length. On PC1, PC3 and

PC4 differences mostly concerned very localized shape changes. In

Figure 2. Shape variation including all observations and replicas. Scatterplots of PC1 vs PC2 (a), and PC3 vs PC4 (b), which overall explain
88.3% of variance. As an example, the first and second replicas of the specimen ‘Campobasso 14a’ are visualized using outline drawings magnified 10
times (c); full shapes are shown in the visualization and square and diamond symbols are used to indicate the position of the replicas of this specimen
in the shape sub-spaces of the first PCs.
doi:10.1371/journal.pone.0025630.g002

Table 2. Centroid size variation.

effect
explained
SS SS MS df F P

populations 6.2% 55.578 55.578 1 4.862 0.033

error for locality 491.517 11.431 43

trees 54.7% 491.517 11.431 43 1.400 0.137

error for tree 350.970 8.162 43

leaves (individual) 39.1% 350.970 8.162 43 41971.891 ,0.0001

error for individual1 ,0.1% 0.017 0.000 88

total 100.0% 898.083

Hierarchical sum of squares ANOVA: main effect: populations; random factors:
trees, leaves. Here and in the following tables, SS, MS and df refer respectively to
sum of squares, mean sum of squares (i.e., SS divided by df) and degrees of
freedom.
1Measurement error.
doi:10.1371/journal.pone.0025630.t002

Table 3. Shape variation.

effect
explained
SS SS MS df F P

populations 2.8% 0.066 0.003686 18 1.916 0.012

error for locality 1.489 0.001924 774

trees 63.0% 1.489 0.001924 774 1.846 ,0.0001

error for tree 0.807 0.001042 774

leaves (individual) 34.1% 0.807 0.001042 774 1340.927 ,0.0001

error for
individual1

0.1% 0.001 0.000001 1584

total 100.0% 2.364

Hierarchical sum of squares Procrustes ANOVA: main effect, populations;
random factors: trees, leaves.
1Measurement error.
doi:10.1371/journal.pone.0025630.t003
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some more details, PC1 is related to changes in the elongation of

the leaf blade from sub-elliptical (negative extreme) to obovate

(positive extreme) and in the leaf base from cordate (negative

extreme) to acute (positive extreme). Also, the largest width of the

leaf blade seems to be pushed distally towards to the apex of the

leaf by the elongation of the base and vertical compression of the

blade (postive extreme of PC1). The shape variation accounted for

by PC2 is principally related to the constriction of the apical region

and to the narrowing of the width of the leaf. The positive extreme

of PC3 shows a leaf with a shorter petiole, a constricted basal

region, an enlarged leaf blade and a more acute apical region; this

trend is reversed towards the negative extreme. Finally, PC4

indicates differences in the deepness of the lobes, which is

remarkably pronounced at the positive extreme.

As in the PCA, the results of the DA demonstrate that the range

of leaf shapes largely overlapped between the two populations

(Figure 6). As there are only two groups, there is a single axis of

shape differences and scores are shown with histogram bars

proportional to their frequency. The mean leaf of Campobasso is

somewhat slender compared to the wider one of Busso. However,

these differences had to be magnified 10 times to make them

visible. Since they do not reach significance, they should be

interpreted with the greatest caution and will have to be confirmed

on larger samples. The cross-validated classification table (Table 5)

shows that the accuracy of leaf shape in predicting populations is

hardly better than a 50% random chance.

4) ‘Size-correction’ after testing the effect of size on
shape (i.e., allometry) using a MANCOVA design

Centroid size was not log-transformed, as the transformation

did not appreciably improve the fit of the model and made no

difference in the results (not shown). Regressions of shape onto size

one population at a time (not shown) were marginally statistically

significant (P = 0.06, 11.4% of variance explained) only for

Campobasso. This is indicative of a modest and probably

negligible allometry. ‘Size-corrected’ data are therefore unlikely

to produce results different from the analysis of full shape. One

may still want to perform the analysis to be confident that this is

indeed the case. In this study we run the MANCOVA mainly to

provide an example of this model. Results are shown in Table 6.

The fit of the different MANCOVA models measured by the

percentage of variance explained varied from 8% (separate lines

for populations) to 4% (single line regardless of population). The

interaction term (test for slopes) was not statistically significant.

Therefore, it was removed and the MANCOVA was repeated.

Also populations (test for intercepts) were not statistically significant.

This test as well as the large overlap between populations in the

scatterplot of regression scores onto size (Figure 7) suggests that the

effect of size on shape, although weak, is very similar in the two

populations: bigger leaves tend to be slender (‘Campobasso shape’)

and smaller ones tend to be wider (‘Busso shape’) (Figure 6,

Figure 8). The allometric trajectory is largely aligned with the

vector of mean shape differences, as it was somewhat expected

since Campobasso has larger leaves. A non-significant test for

intercepts also means that there is no support for population

differences using the available samples when the effect of size on

shape variation is held constant. This is congruent with the result

of the permutation test on ‘size-corrected’ shapes (Tables 4–5),

which was also non-significant. However, ‘size-corrected’ data

slightly increased classification accuracy in the cross-validated DA.

Discussion

What have we learnt from this example study? We start briefly

summarizing the main results and their interpretation. After this

introductory section, we move to the main topic, the application of

GMM in taxonomic botany and the pros and cons of the

simplified protocol we have presented.

a) Phenotypic variation in Q. petraea: do populations and
trees differ in leaf size and shape?

These samples were collected to be used as an example of

taxonomic comparison using GMM in botany. This is a very

narrow aim. Nevertheless, we can draw some preliminary

conclusions on the amount and significance of shape and size

variation in sessile oak leaves from the Campobasso-Busso area of

Molise:

Figure 3. Size variation after averaging leaves within trees. Box
plots (drawn in PAST): median, 25–75% quartiles, minimum and
maximum.
doi:10.1371/journal.pone.0025630.g003

Table 4. Differences between means of populations after averaging leaves within trees.

SIZE t-test df P P(perm.)

2.179 1, 42 0.035 0.0350

SHAPE T-square df P Mahalanobis d. P(perm.) Procrustes d. P(perm.)

total 44.942 18, 25 0.177 2.021 0.1780 0.0388 0.1336

‘size-corr.’ 51.211 18, 25 0.110 2.158 0.1076 0.0315 0.2474

Permutation tests with 10000 random permutations.
doi:10.1371/journal.pone.0025630.t004
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First of all, a very small measurement error showed that the

landmarks of sessile oak leaves can be located with precision and

images are acquired with accuracy using a simple flatbed scanner.

The flatness of leaves in oaks and many other plants and the use of

well defined landmarks at the meeting points of veins and other

clearly defined structures make them a study material particularly

suitable for two-dimensional GMM analyses. However, even

apparently easily recognizable landmarks, as the intersection of

leaf veins, do not always correspond to biologically homologous

regions and must be selected with the uttermost care using the best

available knowledge on the study taxon. Indeed, although truly

homologous landmarks are often difficult to identify in plants

(Jensen, 2003), working on groups of closely related species and

taking advantage of specific features with a clear correspondence,

as it is often the case with lobes in lobate leaves, can help to

discriminate specific vein patterns with accurate homological

relationships.

The individual variation in leaf morphology was large. This is

likely related to plasticity. Small differences in nutrients and water

availability, sun exposure, humidity and other environmental

factors which may vary between and within trees can have an

effect on leaf blades, vein patterns and leaf contours [56–58].

Differences between trees were slightly larger than those within

trees. This observation is reasonable in terms of both genetics and

environment, as leaves from the same tree share not only identical

genes but also to some extent a more homogeneous environment

compared to leaves from different trees.

Differences between the two geographic populations were small.

This also matches our expectations, as we are comparing samples

from neighbouring localities within the same species. The

Procrustes ANOVA suggested a modest but nevertheless appre-

ciable variation in size and shape. Size differences were statistically

significant even after averaging leaves within trees. This did not

happen with shape, but this may be as a result of inadequate

statistical power from small samples. The two study populations

are characterized by similar environmental conditions but are

located in two different valleys of the same mountain (Monte

Vairano). The molecular data collected to date indicate a genetic

flow between populations in this area and no statistically

significant genetic differences [59], which seems to suggest

plasticity as the main source of variation between populations.

Common garden experiments might be needed to provide a

definitive answer to whether differences reflect genetic divergence

or plastic responses.

The preliminary and largely exploratory results we have

obtained indicate that GMM is truly effective in revealing very

small-scale variation. To better understand phenotypic variation in

sessile oaks the study will have to be expanded by sampling more

Figure 4. Shape variation after averaging leaves within trees. Scatterplots of PC1 vs PC2, which together explain 74.2% of variance. Shapes
are visualized for the positive extremes of these axes using outline drawings; there is no magnification and square/diamond symbols are used show
the positions of visualized shapes in the PCA scatterplot.
doi:10.1371/journal.pone.0025630.g004
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localities and a larger range of environmental conditions.

Modelling geographic variation in the Italian and European

populations of sessile oaks might help to quantify patterns

including clines, the occurrence of isolation by distance and the

covariation with environmental and genetic factors. An accurate

knowledge of heritable phenotypic diversity makes an essential

contribution to an effective management of forests and an accurate

forecasting of future trends in a rapidly changing environment.

a) Superimposition methods, shape diagrams and
biological interpretations

If the correspondence of landmarks in terms of their biology is a

fundamental assumption in taxonomic studies, the method one

selects to extract size and shape information from those points and

the consequences of that choice on the interpretation of results

should be carefully considered. We have described only one of the

possible methods to obtain shape variables from landmark

coordinates. The GPA has become almost a standard choice in

GMM studies and it is the default option in most programs.

However this method has no underlying biological model and it is

an effective but arbitrary choice to superimpose specimens and

separate size and shape. This ‘arbitrariness’ makes variables

generated by landmark based GMM methods ‘special’: the relative

positions of landmarks after a Procrustes superimposition capture

overall shape differences, but cannot be used to say that these

differences mostly concern one or the other landmark. A classical

example of this problem is the so called ‘Pinocchio effect’ [26]: if

Pinocchio’s face was compared using Procrustes landmark

coordinates before and after a lie made his nose longer, all

landmarks would suggest differences and not only those measuring

the nose, as the GPA would have spread the variation in nose

length across the whole face.

Shapes are the same regardless of whether and how they have

been superimposed. The superimposition is only an expedient to

generate shape variables for quantitative analyses. Shapes are not

a function of the superimposition, but landmark coordinates are.

Different superimpositions generally produce very similar shape

distances for the type of small variation which is found in most

biological datasets (e.g., [38], p. 283–287). However, if superim-

posed configurations are examined, variation around specific

landmarks could look remarkably different depending on whether

one has used a GPA or another method. For instance, using a

baseline superimposition [28] on a sample of random triangles,

variation in specimen size and position is removed by simply

translating, rotating and rescaling all specimens until two

landmarks, selected as a baseline, coincide (Figure 9a1). This

leaves only one landmark, the one not used as a baseline, to

account for all shape differences. If the same sample is Procrustes

superimposed, shapes are unmodified but variation is spread

across all landmarks (Figure 9b1). Performing a PCA on shape

coordinates will produce in both cases only two PCs with non-zero

Figure 5. Shape variation after averaging leaves within trees. Scatterplots of PC3vs PC4, which together with the first two PCs (Fig. 3) explain
90.3% of variance. Shape are visualized using the same conventions as in Figure 4.
doi:10.1371/journal.pone.0025630.g005
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variance. Generally, the scatterplot and therefore also the shape

distances among specimens will be very similar (Figure 9a2, 9b2).

However, diagrams with superimposed configurations, displace-

ment vectors and PC loadings will be different and suggest rather

dissimilar interpretations: using Bookstein baseline, it appears as if

there is only one landmark that ‘moves’ to different positions

(Figure 9a3) and accounts for all shape differences; with Procrustes,

all landmarks ‘move’ (Figure 9b3) and contribute to a smaller or

larger extent to total shape variation. An obvious question then is

what method is producing the most accurate outcome to describe

shape variation. The answer is both, as long as results are

integrated over the space of the whole landmark configuration;

and none, if changes are interpreted as occurring at specific

landmark locations. The TPS grids follow the first approach and

correctly demonstrate that shape variation is the same regardless

of the superimposition (Figure 9a4, 9b4). Displacement vectors, PC

loadings, the variance around one or the other landmark, in

contrast, all use information dependent on the choice of the

superimposition and are therefore potentially misleading. Neither

landmark 3 only varies in the precise direction shown in Figure 9a3

nor all of them vary by about the same amount but in different

directions, as in Figure 9b3. The direction of variation is the

shearing and contraction/expansion of the whole space of the

landmark configuration (Figure 9a4, 9b4) and the magnitude of the

change is the shape distance between the reference and the target,

which respectively correspond, in Figure 9a2, 9b2, to the origin of

Figure 6. Discriminant analysis of geographic populations using leaf shape after averaging within trees. Frequencies of discriminant
scores predicted by a jacknife (leave-one-out) cross-validation are shown using histogram bars; population mean shapes are visualized using outline
drawings magnified 10 times.
doi:10.1371/journal.pone.0025630.g006

Table 5. Differences between populations after averaging leaves within trees.

all shape Campobasso Busso ‘size-corr.’ Campobasso Busso

Campobasso 50.0% 50.0% Campobasso 59.1% 40.9%

Busso 40.9% 59.1% Busso 36.4% 63.6%

Jacknife cross-validated classification table using all shape or only ‘size-corrected’ shape in DAs.
doi:10.1371/journal.pone.0025630.t005
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the axes (the sample mean) and the positive extreme of PC1 and it

is about the same regardless of the superimposition.

The ‘arbitrariness’ of the choice of the superimposition has

another important implication. One cannot associate the digitizing

error to specific landmarks, once specimens have been superim-

posed. Even if there was only one landmark with very low

precision, as in the case of the ‘Pinocchio effect’, the Procrustes

superimposition would spread the error across the whole

configuration. Using a baseline superimposition this apparent

paradox is even more evident as, if the low precision landmark was

one of the two two defining the baseline, it would show no error at

all. Thus, only by repeating the digitization on the same image of a

single specimen without superimposing the replicas, one might get

some clues about whether one or the other landmark has a larger

error in that specimen.

b) ’TPS shape variables’
TPS deformation grids without displacement vectors (Figure 8;

Figure 9a4, 9b4) help to describe shape variation in a way that is

independent of the superimposition method [26]. The grids are

computed using only information on differences in compression/

dilation, shear and localized shape changes. These are components

of shape variation that are unaffected by scaling, rotation and

translation. Because it is variation in scaling, rotation and

translation that is standardized in different ways using different

superimpositions, the TPS produces, in a sense, a superimposition-

free visualization.

The TPS, however, is not a biological model of shape change. It

is an interpolating that is expressing changes in the relative

positions of the landmarks as a smooth deformation of the entire

space and has been originally developed in the context of the
physics of thin metal sheets. It is therefore unreasonable to expect
the tissue in between landmarks to be modified exactly as
described by TPS deformation. This procedure, whose rigorous
description is found in Dryden and Mardia [38], Bookstein [53]
and in more accessible terms in Zelditch et al. [26], just generates
a ‘picture’. Briefly and informally, the intuition behind the TPS is
that by minimizing the energy required for bending shapes one
into the other, one can derive a set of orthogonal vectors of
coefficients called principal warps. Using the principal warps,
whose computation relies only on the landmarks, one can predict
changes in any region of the sheet, a little bit as one could use
regression coefficients to predict the dependent variable for values
of the independent one where no observations were available. If
on the sheet there is a rectangular grid or an outline, as the one
with the veins and contours of the oak leaf used in our study, then
the TPS will predict the way the lines are deformed when a
reference shape is warped to match a target configuration. Grids

and outlines might help to describe shape differences and suggest

Figure 7. Regression of shape onto size pooling within populations. Scatterplot of regression scores (i.e., the projection of shapes in the
direction of the vector of regression coefficients, Drake and Klingenberg, 2008) vs centroid size; shapes at the opposite extremes of the range of
allometric variation are shown using leaf outlines with no magnification.
doi:10.1371/journal.pone.0025630.g007

Table 6. Allometric shape variation after averaging leaves
within trees.

effect explained
Pillai’s
trace F df P

slopes (populations 6
size)

15.5% 0.269 0.471 18, 23 0.946

intercepts
(populations)

9.3% 0.523 1.461 18, 24 0.191

size only 6.8% 0.624 2.305 18, 25 0.027

Tests for differences between populations in slopes and intercepts (MANCOVAs
respectively with or without interaction) of allometric trajectories and
regression of shape onto centroid size regardless of groups.
doi:10.1371/journal.pone.0025630.t006
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where interesting changes are happening, but they have to be

cautiously interpreted as they may not be accurate.

As in a PCA, variables are combined by projecting the

observations on the eigenvectors, principal warps can be used

also as a new set of axes on which to project shape coordinates.

The result is a linear combination of the original variables called

partial warps (for the localized shape changes) and uniform

components (for changes which occur the same way everywhere

and therefore leave the grid lines parallel – e.g., a uniform

compression of the grid). Partial warps and uniform components

provide all together the same information as the original shape

coordinates or their PCs. This is easily tested by comparing shape

distances based on the shape coordinates, their PCs or the partial

warps plus the uniform components. The shape data are the same

and it is only the ‘point of view’ by which we are looking at them

that has changed: in a PCA we want to see the main directions of

variation in the whole sample; with the partial warps and uniform

components we rotate the axes to find the directions which require

the smallest amount of energy for bending the grids. In terms of

practical use, however, there is an important distinction to be

made. The ‘directions’ (i.e., the eigenvectors) in a PCA are based

on the way landmarks vary and covary in all specimens of a

sample. For instance, in our study, PC1 showed that the main axis

of variation has something to do with the relative elongation of the

leaf blade and narrowing of the leaf base, which is informative. In

contrast, the ‘directions’ of the TPS (i.e., the principal warps) are

based only on the relative positions of landmarks in a specific

reference configuration (generally the sample mean) and are

derived to minimize a quantity, the energy required to bend a thin

metal sheet, which is meaningless in a biological context. This is

why, unlike PCs that can be used for scatterplots and sometimes as

a subset of them to reduce dimensionality, partial warps and

uniform components only make sense if used as a whole [60]. For

the same reason, even if some of programs developed in the early

days of GMM may still include univariate or bivariate tests,

scatterplots and visualizations of partial warps and uniform

components, these are highly unlikely to be of any use and only

the multivariate use of all partial warps and uniform components

results should be taken into consideration.

In conclusion, PCs are generally a better choice as shape

variables for statistical analyses. However, users do not have to

forget that PCs are derived only to maximize total sample variance

regardless of groups or any other factor (environmental correlates,

phylogeny etc.). Shape is inherently multivariate and this generally

means that all shape variables (or an adequate number of the first

PCs selected using a valid and explicit criterion) must be used for

modeling shape variation. It is most unlikely that they can be

analysed one at a time to test group differences, in univariate

regressions, to measure the fit of each of them to a phylogenetic

tree and so on. Their use as phylogenetic characters is also

questionable [61] and even the newest solutions proposed might

be in need of substantial improvements, as suggested by

Felsenstein’s cautionary statement (‘‘we can do better’’) in a recent

online discussion forum (https://stat.ethz.ch/pipermail/r-sig-

phylo/2010-November/000825.html) and the ephemeral fate of

all those put forward in the past two decades [5-59–60].

Figure 8. Discriminant analysis of geographic populations using leaf shape after averaging within trees. Same differences as in Figure 6
(printed black and white version) visualized in PAST using TPS deformation grids and colour coded Jacobian expansion factors which measure the
degree of local expansion or contraction of the grid: yellow to orange red for factors .1, indicating expansions; light to dark blue for factors between
0 and 1, indicating contractions).
doi:10.1371/journal.pone.0025630.g008

Simplified Geometric Morphometrics for Taxonomists

PLoS ONE | www.plosone.org 15 October 2011 | Volume 6 | Issue 10 | e25630



c) A hierarchy of differences: assumptions and
interpretation of the Procrustes ANOVA

In taxonomy statistical testing mostly concerns group differenc-

es. Groups generally are populations within a species or different

species. A single individual, however, is itself variable, as it may

have many leaves or many flowers, for instance. One may first

want to test whether differences between individuals (e.g., trees) in

a group are larger than the natural variation within an individual

and, even more crucially, one needs to demonstrate that

measurement error is negligible. For this purpose, we adapted a

protocol originally developed for studies of bilateral asymmetry in

Procrustes shape data [25] and later implemented in MorphoJ

[24]. To keep the analysis simple and easy to replicate for

taxonomists who might not have a strong background in statistics,

we used the isotropic model described by Klingenberg et al. [25].

This enables any user to easily correct manually the F ratio for

populations using trees as a random effect. The isotropic, however,

model assumes a similar amount of variation around each

landmark in any direction. As there is no directional variation,

one is only considering the magnitude of the effect being tested by

summing up its univariate sum of squares. Computations are

easier but the assumption used is rather restrictive and not unlikely

to be violated [25]. If this happens, P values may become

unreliable.

Klingenberg et al. [25] advised to use permutation tests in small

samples, when deviations from normality are suspected, and a

MANOVA approach, if one wants to avoid the isotropic

assumption. None of these methods has yet been implemented,

unfortunately, in a user-friendly format applicable to designs other

than that of the original Procrustes ANOVA and the study of

symmetric structures. Performing the computations manually

using the simple isotropic parametric model is the only simple

option we could find, although it is a rather suboptimal one and

results must be interpreted with the greatest caution. For instance,

in our study measurement error was tiny (, 0.1%) and this made

us confident that we were on the safe side. The effect of populations

was also statistically significant, but F was not particularly large

and the percentage of explained sum of squares was small (< 3–

6%). After averaging leaves within trees, populations were no longer

statistically significant for shape and specimens were inaccurately

classified in the DA. Overall, therefore, our conclusion was that

there might be small differences between populations, but the

Figure 9. Example of the effect of different superimpositions on the interpretation of results. A set of 10 random triangles (raw data) was
superimposed either using Bookstein baseline superimposition (a1) or Procrustes (b1). Shape coordinates were subjected to PCAs whose results were
illustrated using biplots (a2, b2) showing both the scatterplot of the specimens (filled circles) and the loadings (dotted lines) used to weight the matrix
(X1, Y1, etc.) of shape coordinates. Shape variation at the positive extreme of PC1 was visualized magnified four times using either displacement
vectors (a3, b3) or TPS grids (a4, b4).
doi:10.1371/journal.pone.0025630.g009
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evidence for them is weak and larger samples will be needed to

obtain robust results.

Using a hierarchical design for testing group differences

provides answers on the degree of variation at different levels

and it does so by taking into consideration the structure of the

data. Leaves of the same tree are more likely to be similar, as they

share the same genes and grew up in the same environment. This

means that they are not independent observations and represent to

a certain degree pseudoreplicates. If we had not taken that into

account (which we did using the hierarchical design), we might

have violated a basic assumption of most statistical tests: the

independence of data. Consequences of this violation can be

serious, as degrees of freedom as well as the error term of

regression models might be incorrectly computed [62]. Tests using

resampling statistics may become unreliable too, because both

permutations and bootstraps assume that each observation within

a factor is like every other one, which is clearly not true if there are

pseudoreplicates. Autocorrelation, the similarity between observa-

tions as a function of the time, space or other factors, can occur

also because of spatial distribution and (phylo-) genetics: for

instance, trees living in close proximity are more likely to be

similar than trees which are further apart, and sister species are

more likely to have characters in common between them than with

any other species. Models addressing various aspects of these issues

can be found in the literature on spatial data analysis (e.g., [62,63])

and comparative methods (e.g., [64–66]). As methods are

developed and more software becomes available, taking into

account different sources of non-independence in the data will

hopefully become easier in univariate and especially multivariate

analyses.

d) Testing taxonomic groups: why results of DAs should
be interpreted with caution and classification tables must
always be cross-validated

When there is a single grouping variable, DA is probably the

most common method for testing differences and predicting

groups. It was developed by Fisher [67], Mahalanobis and other

statisticians in the ’30s and has been widely used in biology ever

since. It is a well known technique and does not require detailed

explanations. In the Material and Methods we have given

introductory references about DA in general and more specifically

in GMM. In this section we emphasize two related aspects of the

method, which often mislead inexperienced users.

The first one is that DA tests differences, predict group

affiliation and provide scatterplots in a data space which is no

longer the same as the one of the original variables. In our specific

case, this means that we are no longer in the shape space

generated by the Procrustes superimposition (or in its projection

into a Euclidean space). Within samples, variance is squeezed in all

directions around group means to make it circular. Between

samples, the direction of largest mean differences is found to

project the data on axes which best discriminate groups. In this

transformed space distances between observations are called

Mahalanobis distances and are scaled in a way such that a unit

distance corresponds to one standard deviation. Using distances

between individual observations and sample means, the relative

probability of a specimen to belong to one or the other group can

be computed. Using a multivariate normal distribution, one can

also estimate the absolute probability (called typicality) of a

specimen to belong to the group whose mean is the closest. This

allows to say not only which group the specimen is classified into,

using that set of predictors, but also if it is within or outside the

range of variation typical for that group [35,48]. If it is outside,

there is the possibility that it actually does not belong to any of the

available a priori groups, a common finding especially when fossils

are included [48]. One can produce scatterplots of specimens in

the transformed space of the DA and also use the statistical

properties of this space to test the significance of group differences.

The test and its assumptions (independence of observations,

multivariate normality, homoscedasticity) are the same as in a one

way MANOVA. As in other parametric methods, assumptions

should be carefully considered because, despite a relative

robustness to, for instance, moderate violations of normality,

results may be inaccurate. Heterogeneous sample sizes, small

samples and highly multivariate data may be particularly

problematic. It is a situation which is not uncommon in taxonomic

studies [2] and something that makes statistical inference

potentially unreliable and the tests of assumptions difficult. A

DA can still be done but it might be more for descriptive and

classificatory purposes than for testing [35]. In our example study,

there was no evidence for violations of homoscedasticity (tested

using Box’s M, results not shown), but multivariate normality was

not tested because of the relatively small samples and large

number of variables. Permutation tests, which do not assume

normality, were congruent with parametric ones and this increased

our confidence in the accuracy of results.

A second important and often neglected issue is that DA tends

to overfit the data [68,69]. To put it simply, by using a data space

derived in order to improve classification accuracy, a DA tend to

force differences to appear even when they are negligible or

absent. This is easily appreciated by creating a set of variables

made of random numbers divided into a few arbitrary groups on

which one performs a DA. The larger the number of predictors

relative to sample size, the higher the classification accuracy and

the better the discrimination of groups in scatterplots despite the

absence of real differences [50]. Because GMM tends to generate

large number of variables (little less than twice or three times the

number of landmarks in respectively two- and three-dimensional

analyses) and that is likely to become larger as the use of

semilandmarks on curves and surfaces becomes more widespread

[5], overfitting is a serious problem. Dimensionality reduction

(e.g., [70]) may help but comes at the cost of a loss of information

and does not fully address the issue. There is, fortunately, a fairly

straightforward way to assess the consequences of the problem on

a specific dataset. One has to cross-validate group predictions, as

we showed in our example study. For instance, in the hypothetical

case we made using random numbers and arbitrary groups, the

percentages of correctly classified specimens drop to about random

chance (i.e., 50% in a balanced sample with two groups) after

cross-validation. This is why cross-validation should be customary

and only cross-validated classification tables should be discussed.

When differences are statistically significant and cross-validated

classification accuracy is high, the data support the occurrence of

taxonomic differences. However, taxonomists know that this is

only a small piece of evidence to establish taxonomic groups and it

has to be complemented with other sources of information,

including ecology and genetics, to make meaningful statements

about subspecific, specific or supraspecific status.

e) Shape differences controlling for allometry
Size is often considered more evolutionary labile than shape

[20,21,71–75]. A taxonomist may want to assess whether

differences in shape actually simply mirror size differences because

of allometry. If that happens, one has only one independent piece

of evidence for group differences: size with its allometric effect on

shape. Indeed, GMM using the Procrustes superimposition

efficiently separates size and shape, but does not remove the

covariation between these two components. A classical MAN-
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COVA model is a simple way to test the effect of size on shape

when comparing groups. Zelditch et al. [26] provide a clear

description of this method and offer a non-parametric alternative

for testing slopes and intercepts. Mitteroecker et al. [76] discuss a

different framework to compare allometries, but did not provide

the software needed to perform the analysis. MorphoJ has

implemented an extension of the MANCOVA model to compute

‘size-corrected’ data that can be used as a new set of shapes for

analyses of ‘non-allometric’ variation. The ‘size-correction’

strongly depends on the assumption of parallel allometries. An

extensive example of a taxonomic analysis on ‘size-corrected’ data

is found in Elton et al. [51], who also suggested a modified version

of the MANCOVA model to remove the effect of evolutionary

allometry, as an alternative to the standard protocol to control

within group allometric variation. The usefulness of this

alternative, and its relationship with Gould’s [77] criticisms to

the traditional MANCOVA model in an evolutionary context, will

have to be explored in future studies.

Finally, users should be aware that in large samples small but

inconsequential differences in slopes could be significant because

of the high statistical power. This was likely the case in a study by

Cardini and Elton [73] on a sample of more than 1300 individuals.

Despite significance, separate and parallel allometric trajectories fit

their data about equally well, as indicated by the percentage of

variance explained which was very similar (respectively 43.5% and

41.6%) and more than 4 times larger than the amount (9.8%)

explained by a single regression line regardless of groups. In cases

such as this, the taxonomist might have a reason to argue that data

can be ‘size-corrected’ in spite of significant slopes, as results are

unlikely to be appreciably affected by the small violation of this

assumption.

Conclusions
The series of analyses we have described and discussed in this

paper represents a simplified framework for taxonomic studies on

group differences in botany and other disciplines. It takes its

inspiration from and expands the example by Rohlf et al. [78],

discussed in Rohlf’s [60] seminal paper on the biological

interpretation of shape variables. It is a classical application to

shape data of methods commonly used in traditional multivariate

morphometrics [2,35]. Its main aim is to provide taxonomists with

little or no experience in GMM with a clear, simple and easy to

follow step-by-step protocol that may help them to familiarize with

the method avoiding some of the most common pitfalls. Beginners

might then be less intimidated by the often difficult GMM

literature and may become interested in exploring the usefulness

and potential of GMM in their work. Reading the excellent

introductory book by Zelditch et al. [26] and perusing the main

morphometric website http://life.bio.sunysb.edu/morph/index.

html could be the next step to learn more about theory,

applications and the variety of software available besides those

few programs and methods described in our study. A list of

recommendations on the main methodological issues outlined in

the Discussion is available in the Appendix S1; in addition,

Appendix S2 provides information on the datafiles available as

supplentary information: a worked out MorphoJ project (MorphoJ

Project S1), the leaf outline (MorphoJ Outline S1), the raw data

(MorphoJ Raw Data S1), the averaged tree shape data (TPSRegr

Averaged Tree Data S1) and the dummy variables for tests in

TPSRegr (TPSRegr Dummy Data S1).

Supporting Information

Appendix S1 Recommendations on methodology.

(DOC)

Appendix S2 Information on data files.

(DOC)

MorphoJ Project S1 A worked out MorphoJ project.

(MORPHOJ)

MorphoJ Outline S1 Leaf outline.

(TXT)

MorphoJ Raw Data S1 Rawdata in .nts format.

(NTS)

TPSRegr Averaged Tree Data S1 The averaged tree shape

data for tests in TPSRegr.

(NTS)

TPSRegr Dummy Data S1 The dummy variables for tests in

TPSRegr.

(NTS)
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