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Abstract

Complement factor H shows very strong association with Age-related Macular Degeneration (AMD), and recent data suggest
that multiple causal variants are associated with disease. To refine the location of the disease associated variants, we
characterized in detail the structural variation at CFH and its paralogs, including two copy number polymorphisms (CNP), CNP147
and CNP148, and several rare deletions and duplications. Examination of 34 AMD-enriched extended families (N = 293) and AMD
cases (White N = 4210 Indian = 134; Malay = 140) and controls (White N = 3229; Indian = 117; Malay = 2390) demonstrated that
deletion CNP148 was protective against AMD, independent of SNPs at CFH. Regression analysis of seven common haplotypes
showed three haplotypes, H1, H6 and H7, as conferring risk for AMD development. Being the most common haplotype H1
confers the greatest risk by increasing the odds of AMD by 2.75-fold (95% CI = [2.51, 3.01]; p = 8.316102109); Caucasian (H6) and
Indian-specific (H7) recombinant haplotypes increase the odds of AMD by 1.85-fold (p = 3.5261029) and by 15.57-fold (P = 0.007),
respectively. We identified a 32-kb region downstream of Y402H (rs1061170), shared by all three risk haplotypes, suggesting that
this region may be critical for AMD development. Further analysis showed that two SNPs within the 32 kb block, rs1329428 and
rs203687, optimally explain disease association. rs1329428 resides in 20 kb unique sequence block, but rs203687 resides in a
12 kb block that is 89% similar to a noncoding region contained in DCNP148. We conclude that causal variation in this region
potentially encompasses both regulatory effects at single markers and copy number.
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Introduction

Age-related macular degeneration (AMD) is the leading cause of

visual dysfunction and blindness in developed countries, and a

rising cause in underdeveloped countries. In the United States

(US), its prevalence in the population over age 65 years is 9% and

increases to 28% in those over 75 years [1]. AMD is characterized

by progressive degeneration of the macula, causing central field

vision loss. A characteristic feature of AMD is the formation of

deposits in the macula, called drusen, which may progress to either

geographic atrophy or subretinal neovascularization, manifesta-

tions of late AMD. Several genetic and environmental risk factors

influence disease susceptibility [2,3]. Genes involved in the

complement pathway have especially been implicated in disease

pathogenesis [4,5,6,7,8,9,10,11,12,13].

A major locus for AMD pathogenesis, CFH, was identified

through linkage and Genome-wide association studies (GWAS)

[4,8,9]. A nonsynonymous single nucleotide polymorphism (SNP)

in CFH, rs1061170 (also known as Y402H), was proposed as the

major risk variant with odds ratios ranging from 1.4 to 7.4

(reviewed in Patel et al. [14]). In the contiguous region, a common

deletion involving CFHR3 and CFHR1 was also shown to confer

protection against AMD [15]. However, deeper analysis of the

data led to CFH intronic SNPs being more significantly associated

with AMD than rs1061170 [16,17], suggesting that other

unidentified variants play an important role in disease pathogen-

esis. We therefore systematically examined SNPs and structural

variation in the CFH region and propose a unifying hypothesis for

AMD risk.

Results

Structural Variation at the RCA Gene Cluster
Our initial examination of the genomic sequence between CFH

and CFHR5 revealed duplicated segments, including several novel,

highly similar, homologous regions (Figure S1, Text S1 and Table

S1). In general, the high sequence identity among duplicated

regions increases the probability of structural rearrangements due

to non-allelic homologous recombination. None of the previous

studies thoroughly screened the RCA gene cluster for structural

variation, or considered copy number information and SNPs

together to identify causal variants at CFH. Therefore, we

conducted a detailed survey of the structural variation in 1582

reference samples. This revealed existence of two CNPs, CNP147

and CNP148, in addition to several rare copy number variations

(CNVs) in the RCA gene cluster (Figure 1a–d and Table S2). Both

CNPs most often carry deletions rather than duplications, and the

frequencies of these deletions vary among different reference

populations (Table S3). We validated these CNPs in the reference

samples using fosmid pair-end sequencing, array comparative

genomic hybridization (CGH), depth of coverage analysis of

genomic sequence, and a PCR based deletion screening strategy

(Figure 2a, Figures S2 and S3). Finally, we sequenced the two

deletion variants, after subcloning them in fosmid clones [18]

(Figure 2b, 2c), which provided single basepair resolution for each

deletion. The deletion at CNP147 (DCNP147) was about 86.3 kb

(chr1: 194,988,828–195,075,129, National Center for Biotechnology

Information (NCBI) build 36), although it was earlier reported to be

about 84.6 kb [15], and included CFHR3 and CFHR1. The distal

deletion at CNP148 (DCNP148) spanned 122.0 kb, encompassing

CFHR1 and CFHR4 (chr1:195,049,336–195,171,294, NCBI build

36).

We further determined the ancestral origin of these CNPs using

phylogenetic and linkage disequilibrium (LD) analysis, which

demonstrated that these common deletions were recurrent in

origin in Africans, although the results showed a single ancestral

origin of DCNP147 in Caucasians and Asians (Figure 3a and

Figure S4). Since DCNP147 in Caucasians resides on an ancestral

haplotype, we were able to find perfect correlation (r2 = 1) between

DCNP147 and SNPs in the surrounding region, i.e., rs6677604,

rs12144939, rs7542235, rs16840639 and rs2996127. Though

perfect LD between rs6677604 and DCNP147 has been reported

before [15,19,20], we found the exact extended haplotypic

background on which the deletion occurred. We did not observe

LD between DCNP148 and any nearby SNPs.

A 32 kb Region in CFH is Important for AMD Risk
We sought to determine the causal variant(s) in clinical samples

including 34 extended families and a non-familial dataset

consisting of 4484 cases and 5736 controls from three different

populations. We first determined the copy number at CNP147

and CNP148 using microarray intensity data. Direct assessment of

copy numbers at CNP147 was not possible in the clinical samples,

except in the Familial Age-related Maculopathy Study (FARMS)

cohort, due to low probe coverage in many of the commercial

arrays in this region. We, therefore, used tag SNPs to predict the

deletions at CNP147. Predicted homozygous deletions were

validated with PCR-based deletion screening (Figures S5 and

S6). We constructed the haplotypes using SNP and CNP147

genotype data. We did not include CNP148 in the haplotype

analysis because it is rare and occurred on multiple haplotypic

backgrounds.

Haplotype analyses revealed six different common haplotypes

(defined as present at a frequency of .1% in the samples) in the

Caucasian datasets (Figure 3b). Using the H2 haplotype as

baseline because it carried neither DCNP147 nor the C risk allele

at codon 402 of CFH, we assessed the effect of all other haplotypes

(Table 1, 2 and Table S4). The results showed that the most

common H1 haplotype conferred the greatest risk relative to H2

by increasing the odds of AMD by 2.75-fold (95% CI = [2.51,

3.01], p = 8.316102109) in the Caucasian non-family cohorts.

Haplotypes H3 and H4 with DCNP147 were found to confer

protection against AMD over and above the base H2 haplotype

(OR = 0.74 p = 1.8361025; and OR = 0.70, p = 2.8161024),

demonstrating that the deletions are indeed protective. H3 and

H4 are virtually identical to H2 with the exception of the presence

of DCNP147; phylogenetic analysis suggests that DCNP147 may

have originated on the H2 background (Figure S4).

We also identified a recombinant haplotype (H6), with a

frequency of ,4%, which conferred risk for AMD (OR = 1.85;

p = 3.5261029). Since this recombinant haplotype excludes most

of the LD block 1 that carries codon 402, it was crucial in reducing

the AMD-associated interval to a 32-kb block, not including

rs1061170. We also found another haplotype, H5, without the C

allele at rs1061170, that confers risk for AMD (OR 1.54;

A 32 kb Critical Region in CFH Mediates AMD Risk
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p = 1.73610213) over the H2 haplotype; however, the frequency

of H5 haplotype is more in controls than cases. Analysis of each

haplotype independent of H2 as baseline showed H5 a neutral

haplotype, with OR not significantly different from 1 (data not

shown). Unlike H1 or H6, which carried the same core 32-kb

haplotype between markers rs9970784 and rs70620, H5 showed

some differences but also carried many of the same risk alleles in

the 32-kb core. Thus, it is not clear whether H5 is causal or neutral

in the general population; additional studies are needed to confirm

its role in the disease pathogenesis. The final support for the 32-kb

critical region came from the Indian cohort, where another

uncommon, possible recombinant, haplotype (H7) conferred risk

for AMD (OR = 15.57; p = 0.007). In this case, a recombination

event occurred between rs1061170 and rs10801555, but the rest of

the haplotype was identical to the 32 kb core risk haplotype

present in H1 and H6.

rs1329428 and rs203687 are the best SNPs of AMD-
association at CFH

Traditional single SNP-disease association analyses showed

consistently strong signals, which created an unusually wide

footprint, from CFH to ZBTB41 (Figure 4 and Table S5). This

observation is potentially due to suppression of recombination as a

result of structural variation between the RCA gene cluster

haplotypes. In agreement with our haplotype results, the majority

of SNPs in the 32 kb critical region showed very strong association

with AMD (10245,p,102133). Li et al. [16] and Maller et al. [17]

first showed that several SNPs in this region were more strongly

associated with AMD than rs1061170; among the best ranked

variants in these earlier reports were rs2274700 and rs1410996,

respectively.

To select a minimal set of SNPs that explain the effect of CFH on

AMD, we used forward selection while restricting our analysis to the

32 kb region for which all risk haplotypes have support. We

identified rs1329428 and rs203687 as the markers showing best

evidence for association with AMD. These SNPs entered the models

with p-values = 2.66102105, and 8.7610214, respectively. After this,

the model was saturated and no other SNPs entered the model. Both

these variants are located in non-coding intronic regions (intron 15

and 9, with r2 = 0.553, respectively) and are in moderate LD with

rs1061170 (r2 = 0.315 and 0.574, respectively). These variants have

been shown to bind to transcriptional regulatory proteins (Figure S7).

Bioinformatic analyses predict that the variant allele ‘‘T’’ at

rs203687 abolishes binding sites for RE-BP1 and CBP100 and

creates two new sites, for NF-1 and Oct-1. However, analysis of

HapMap gene expression data showed no significant changes in

Figure 1. Detection of CNPs in the reference samples. (1a) Schematic diagram showing the location of the genes and segmental duplications
in the RCA gene cluster. Distal areas that are highly similar to one another are represented using the same color. (1b) Heat map showing normalized
probe intensities in 90 HapMap Yoruban (YRI) samples. Yellow indicates the high probe intensity and red indicates low intensity; clustering of low
intensity (red) occurs in regions with CNP 147 and CNP 148. Black vertical lines denote the boundaries of the region that incorporates CNP147 and
CNP148. (1c) and (1d) Genotypes of CNP147 and CNP178, respectively, across different reference groups. y axis is probe intensity and x axis is
reference groups (see Table S3 for CNP genotype frequencies); AA: Coriell African American, CAU: Coriell Caucasian, CHI: Coriell Chinese, MEX: Coriell
Mexicans, ASN: HapMap Asian, CEU: HapMap Caucasian, YRI: HapMap Yorubans.
doi:10.1371/journal.pone.0025598.g001

A 32 kb Critical Region in CFH Mediates AMD Risk
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expression of CFH (p.0.05) with change in the variant alleles at

rs1329428 and rs203687. Evaluation of these SNPs in the retinal

cells is needed to gauge the importance of these sites in the regulation

of the CFH gene expression. It is also possible that these variants are

in LD with the actual causal variant. Exploring this 32 kb region

using next-generation resequencing and expression tools would be

helpful in understanding the causal variants at this locus.

DCNP148 is Independently Associated with AMD
We sought to determine whether the common deletions at

CNP147 and CNP148 confer protection independent of SNPs at

CFH, and conducted logistic regression with and without

rs1329428 and rs203687 as covariates. Without inclusion of the

most signficiant SNPs, an increase in the copy number at CNP147

shows a trend towards the risk. After inclusion of these markers,

the p-value at DCNP147 did not reach significance (p.0.05)

(Tables 3, 4 and S6). These results suggest that the effect at

DCNP147 is not independent of the markers at CFH. In

supporting this, Raychaudhuri et al. [21] and Fritsche et al. [22]

showed marginal significance of AMD with DCNP147 after

adjusting for key SNPs such as rs1061170 and rs10737680 or

rs2274700 (p = 0.02 and 0.044, respectively). One possible

explanation for this trend may be due to occurrence of DCNP147

on the H2 background, and the modest LD between CNP147 and

rs1329428 and rs203687 (r2 = 0.462 and 0.261, respectively).

Additional studies of DCNP147 occurring on other haplotypes are

needed to confirm these results.

Interestingly, the presence of additional copies of CNP148

conferred risk for AMD after even adjusting for the effect of the

two best SNPs at CFH (OR 2.24; p = 0.0023 and ß = 1.11; and

p = 0.03, respectively in the custom Illumina panel and the

FARMS samples), suggesting that DCNP148 confers protection

against AMD independent of SNPs at CFH.

Discussion

We systematically examined the CFH region to categorize

variants responsible for AMD pathogenesis using multiple datasets

Figure 2. Validation of CNPs in the HapMap samples. (2a) UCSC browser view (http://humanparalogy.gs.washington.edu/) showing
organization and structural variation in the RCA gene cluster. Red bars indicate the sites of structural variation in eight individuals underwent fosmid
pair-end sequencing. Deletions at CNP147 and CNP148 were using high-resolution tiling-path custom array-based CGH. Probes with log2 ratios
below or above a threshold of 1.5 s.d. from the normalized mean log2 ratio are colored red (deletions) or green (duplication), respectively. (2b) and
(2c) Alignment of sequenced fosmid inserts against the human genome assembly (build36) confirms the extent of two deletions in the CFHR cluster
on chromosome 1. Clone AC213924, derived from sample NA18507, corresponds to deletion CNP147 (2b). This variant removes 86.3 kbp of sequence
(chr1:194,988,828–195,075,129, build36), resulting in loss of CFHR3 and CFHR1 genes. Clone AC210432, derived from sample NA18956, corresponds to
deletion CNP148 (2c). This variant removes 122.0 kbp of sequence (chr1:195,049,336–195,171,294), resulting in loss of CFHR1 and CFHR4 genes. Red
boxes: RefSeq transcripts, with orientation indicated by arrows. Grey boxes: regions of segmental duplication as predicted by SegDup Masker.
Common repeats were identified using Repeat Masker. Purple: SINEs, Green: LINEs, Pink: DNA elements, Light Grey: Low Complexity sequence, Black:
Simple Repeats.
doi:10.1371/journal.pone.0025598.g002
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Figure 3. Haplotypes and linkage disequilibrium (LD) in the region surrounding CNP147. (a) Distribution of r2 and D9 values for SNPs with
CNP147 in three HapMap populations. The squares represent the D9 values while the triangles indicate the r2 values. Different shades of squares and
triangles indicate weak (light shade) to strong LD (dark shade). DCNP147 shows perfect LD with nearby SNPs in non-Africans. The arrows indicate the
SNPs used as a proxy to predict DCNP147 in our AMD custom Illumina panel. (b) Haplotypes in the CFH region observed in clinical cohorts.
Haplotypes were constructed from genotypes of 70 SNPs located in the CFH region using PHASE2.1.1. Location and alleles of key selected SNPs are
given here for expediency. The risk-associated allele at each locus is shown in red and the protective alleles at the corresponding locus are in blue.
The bottom panel shows the location of CNP147 and CNP148. DCNP147 is indicated by a thin black line in haplotypes H3 and H4. Except H3 and H4,
all haplotypes carry normal constitution at CNP147. The critical region, wherein the putative AMD susceptibility variant lies, is enclosed in black box
for clarity and the two best SNPs rs203687 and rs1329428 are highlighted in pink. H1 and H6 are risk bearing, and H2–H4 are protective in nature. The
role of H5, which carries risk alleles at several loci in block2 in causing disease is not clear. The Indian cohort has a rare risk recombinant haplotype H7,
with non-risk allele T at rs1061170 present in 4% of the chromosomes. The most common risk haplotype among the Indians was equivalent to H1 as
seen in Caucasians.
doi:10.1371/journal.pone.0025598.g003
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from around the world. We first characterized structural variations

and SNPs in the RCA gene cluster, and then assessed their effect

on AMD pathogenesis. We identified two common deletions:

DCNP147, which removes all of CFHR3 and CFHR1, and

DCNP148, which removes CFHR1 and CFHR4 in addition to a

large segment of flanking non-coding sequence. Our results show

that DCNP148, a rarer deletion that occurs on variety of

haplotype backgrounds, appears to confer protection against

AMD in addition to SNPs at the CFH locus. The protection

conferred by this deletion may be due to reduction or absence of

the CFH-related protein products (CFHR1 or CFHR4), or

alternatively, regulatory sequence in the deleted region may have

a significant impact on disease pathogenesis. The C-terminal

regions of CFHR3, CFHR1 and CFHR4 exhibit considerable

homology with CFH SCRs 18–20, enabling them to compete with

CFH for binding to C3b [23], In addition, CFHR1 also competes

with CFH for cell surface attachment in the process of inhibition of

C5 convertase and terminal complex formation [24]. This leads to

a reduction in inhibition of C3 convertase and anti-inflammatory

activity, which results in host cell damage [24,25]. In the absence

of CFHR1 (CFHR4), local CFH binding and activity is increased

resulting in enhanced iC3b deposition and likely phagocytosis of

opsonized particles, which may be advantageous for the clearance

of cellular debris in the retina [21].

The area between CFHR1-CFHR4 seems particularly vulnerable

to recurrent rearrangements when evolutionary history is examined

in conjunction with human-specific comparisons. Comparative

primate genome analysis shows that chimpanzees have more

extensive duplication architecture at the RCA locus than humans.

Targeted array CGH of the region confirms increase of CFHR

copies in the chimpanzee and the bonobo when compared to

human, but the orangutan has reduced copy-number (Figure S8).

Interestingly, a portion of CFHR4 seems to have hyper-expanded in

the great apes (bonobo and orangutan). Drusen formation, a

precursor to sight-threatening late AMD, is polymorphic in the Old

World monkey, the rhesus macaque [26]. Macaques diverged from

the common ancestor to humans approximately 25 million years

ago, and the shared phenotypic features of retinal drusen formation

in humans and macaques suggest that the mechanism is old and

evolutionarily preserved. As described in the results, the core

sequence containing AMD disease susceptibility variants shows

significant homology with CFHR1-CFHR4. These duplicated tracks

will need to be examined in greater molecular detail to characterize

the exact causal mechanism.

Within human samples, we observed over 25 rare structural

variant events in the RCA gene cluster in a sample size of 1875

individuals (1582 reference and 293 clinical) using high resolution

SNP arrays (Tables S2 and S7). The majority of these events are

smaller than 25 kb in size. About half of them are losses, affecting

intergenic regions of CFH-related genes. Four of the rare events

found in FARMS are larger than 25 kb. Two are deletions observed

in a single individual. Since these events were de novo in nature, we

were unable to predict whether they occurred on the same

chromosome or on opposite homologs based on the information

from the arrays alone (Table S7). The smaller of these two deletions

results in the loss of the region encompassing exons 10–16 of CFH.

Although we cannot be certain, this effect is likely to increase

susceptibility to AMD because the core variant(s) causing disease lies

within the boundaries of this deletion. The larger deletion of 209 kb

removes one of the copies of CFHR1, CFHR4, CFHR2 and part of

CFHR5. The effect of the latter deletion is likely to be protective, but

its impact is currently unknown because the deletion extends far

beyond DCNP148. The participant carrying both deletions is only

45 years old, when incipient disease is not yet apparent. This

individual has an average score of 2 on the Wisconsin age-related

maculopathy grading system (WARMGS) score, which is approx-

imately equal to having retinal hard distinct drusen ,63 mm in

diameter [27]. Supporting the hypothesis of recurrent rearrange-

ments, a rare, large deletion, involving CFH-CFHR1, causing

atypical hemolytic uremic syndrome has also been reported before

[25]. This deletion, with breakpoints within the last three exons of

CFH and CFHR1, results in a hybrid CFH-CFHR1 protein, which

leads to atypical hemolytic uremic syndrome as a result of defective

recognition function.

Our analysis of the reference HapMap samples and several

large clinical datasets suggests that the critical AMD region of risk

spans 32 kb that is not dependent on the presence of rs1061170.

Based on haplotypes derived from five SNPs, Li et al. [16] showed

that ,6% of risk haplotypes lack the ‘‘C’’ allele at codon 402. We

conducted haplotype analysis using 78 informative SNPs and

found the H6 haplotype, which bore a recombinant that separated

codon 402 from the core risk haplotype. The plausibility of

rs1061170 as the AMD causal variant was originally put forward

by Edwards et al. [4] and Haines et al. [8] when high resolution

arrays with copy number information were not commercially

available. This variant remained a strong contender because of its

efficacy as a tag, and the weight of the biological evidence, e.g.,

due to its interaction with C-reactive protein, an important specific

marker of inflammation [28]. Recently, Hakobyan et al. [29]

developed monoclonal antibodies for allele-specific factor H levels

assayed in plasma. Their data show that factor H levels increase

with age, but that there is lack of correlation between plasma levels

by genotype and AMD status; the authors attribute these

discrepancies to other factors e.g. smoking. We also observed no

evolutionary conservation either at tyrosine or histidine when

comparing the orthologous sequence (Figure S9). In considering

the sum of evidence, we put forward that rs1061170 may only be

causal in the context of the 32 kb critical region, which harbors the

two best signals at rs1329428 and rs203687.

An interesting feature of the 32 kb sequence is that it can be

partitioned into a 12 kb segmentally duplicated block and a 20 kb

unique region. rs203687 maps to the segmentally duplicated block,

while rs1329428 maps to the unique sequence. The segmental

duplication shows 89% homology with the noncoding region

between CFHR1 and CFHR4 which contains DCNP 148,

suggesting that the protection offered by this deletion variant

may be directly mediated through this similarity. The LD between

rs1329428 and rs203687 is modest (r2 = 0.57). rs2274700, earlier

reported by Li et al. [16], localizes to the segmental duplication

block, while rs1410996, reported by Maller et al. [17], maps to the

unique fragment at intron 14. In the HapMap CEU data, the LD

between rs1329428 and rs1410996 is perfect (r2 = 1). The results

Table 1. Association of CFH haplotypes in the FARMS cohort.

Haplotype Association

Haplotype Frequency Effect LRT p-value

H1 0.5189 0.657 9.46610205

H2 0.1065 Base -

H3 0.067 20.279 0.272

H4 0.0206 20.293 0.485

H5 0.1615 20.008 0.714

H6 0.0653 0.467 0.082

doi:10.1371/journal.pone.0025598.t001
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Table 2. Association of CFH haplotypes with AMD in different clinical cohorts.

Haplotype Frequency Haplotype Association@

Cohort Haplotype Cases Controls Total OR 95% CI p-value

Custom Illumina Panel* H1 0.5152 0.3263 0.4210$ 2.25 1.96, 2.58 1.35610230

H2 0.1061 0.1916 0.1488$ Base - -

H3 0.0611 0.1205 0.0908$ 0.70 0.56, 0.87 1.15610203

H4 0.0285 0.0624 0.0454$ 0.61 0.46, 0.82 8.49610204

H5 0.1459 0.1416 0.1438$ 1.46 1.21, 1.75 6.93610205

H6 0.0379 0.0322 0.0351$ 1.83 1.33, 2.54 2.42610204

MPM Panel# H1 0.5802 0.3317 0.4878 3.35 2.91, 3.86 1.73610262

H2 0.0888 0.2000 0.131 Base - -

H3 0.0593 0.1230 0.0832 0.89 0.73, 1.10 0.275

H4 0.0209 0.0548 0.0336 0.80 0.59, 1.08 0.143

H5 0.1435 0.1570 0.1477 1.73 1.45, 2.06 6.24610210

H6 0.0359 0.0322 0.0353 2.19 1.61, 2.99 2.42610207

AREDS H1 0.5855 0.3193 0.499 2.45 1.76, 3.41 9.70610208

H2 0.0768 0.1566 0.1027 Base - -

H3 0.0536 0.1687 0.091 0.43 0.26, 0.71 0.001

H4 0.0130 0.0392 0.0215 0.48 0.19, 1.22 0.120

H5 0.1174 0.1386 0.1243 1.06 0.65, 1.719 0.830

H6 0.0333 0.0211 0.0294 2.27 0.89, 5.79 0.087

Indian H1 0.4291 0.2391 0.3414 2.05 1.27, 3.30 0.003

H2 0.0597 0.1696 0.1104 Base - -

H3 0.0746 0.1391 0.1044 0.63 0.31, 1.26 0.190

H4 0.0858 0.1870 0.1325 0.54 0.28, 1.07 0.078

H5 0.0858 0.1217 0.1024 0.59 0.29, 1.22 0.150

H7 0.0672 0.0043 0.0382 15.57 2.12, 114.30 0.007

SiMES H1 0.0786 0.0768 0.0767 0.99 0.62, 1.57 0.950

H2 0.4286 0.4161 0.4176 Base - -

H3 0.0143 0.0100 0.0102 1.69 0.58, 4.90 0.340

H4 0.0357 0.0393 0.0389 0.92 0.47, 1.80 0.800

H5 0.3893 0.4013 0.4003 0.99 0.76, 1.29 0.950

Meta CC1 H1 2.75 2.51, 3.01 8.316102109

H2 Base - -

H3 0.74 0.65, 0.85 1.83610205

H4 0.70 0.58, 0.85 2.81610204

H5 1.54 1.37, 1.73 1.73610213

H6 1.85 1.51, 2.27 3.52610209

Meta All2 H1 2.00610290

H2 Base

H3 8.07610205

H4 0.003

H5 1.44610210

H6 4.52610209

*Odds ratio and p-values obtained from meta-analysis is given here and the results from the individual cohorts are seen in the Table S4.
$Frequency from the pooled data (all cohorts).
#Results from the pooled data.
@Association using H2 haplotype as baseline, adjusted for covariates described in Table S8.
1Meta analysis of all Caucasians non-familial cohorts.
2Meta analysis of all Caucasian cohorts (non-family cohorts and family cohort in Table 2) and p-value indicates the Fisher p-value.
doi:10.1371/journal.pone.0025598.t002
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Figure 4. The strength of the association signal, as indicated by 2log(p value) on the Y-axis, is plotted against SNP location on
chromosome 1 on the X-axis. The (A) panel shows the p-values from individual clinical cohorts which are labeled in different colors and shapes
(see Labels). The SNPs located within the 32 kb critical region show the best association signal in the 6 clinical datasets. Panel (B) shows the
distribution of pair-wise linkage disequilibrium (D9) values between CFH and ZBTB41. The LD blocks are marked with black triangles; red indicates D9
values of 1 (complete LD) while white indicates D9 values of 0 (no LD whatsoever).
doi:10.1371/journal.pone.0025598.g004

Table 3. Association of DCNP147 with AMD, with and without inclusion of rs1329428 and rs203687, as covariates.

DCNP147 Frequency DCNP147 association with AMD$ DCNP147 association with AMD@

Cohorts Cases Controls OR 95% CI p-value OR 95% CI p-value

Custom Illumina1 – Meta-analysis 0.1052# 0.2119# 2.21 1.90, 2.58 4.50610224 1.12 0.92, 1.37 0.24

MPM Panel2 0.0948 0.2074 2.47 2.11, 2.88 2.77610230 1.04 0.85, 1.27 0.72

AREDS3 0.0855 0.2314 3.23 2.22, 4.72 1.8961029 1.41 0.87, 2.29 0.16

Meta-analysis* — — 2.34 2.10, 2.61 1.33610252 1.10 0.96, 1.26 0.15

Indian4 0.2129 0.3675 2.06 1.35, 3.14 7.7461024 NA NA NA

SiMES2 0.0504 0.0649 1.47 0.53, 4.08 0.46 NA NA NA

#Frequencies obtained from the pooled data.
$After adjusting for significant covariates as described in Table S8.
@After adjusting for rs1329428 and rs203687, in addition to significant covariates as described in Table S8.
*Meta-analysis of the Custom illumina panel, MPM panel and AREDS cohort.
1DCNP147 predicted by A-G-C haplotype at rs6677604, rs7542235 and rs16840639.
2DCNP147 predicted by ‘‘A’’ allele at rs6677604.
3Since none of the DCNP147-specific SNPs are genotyped in AREDS,the ‘‘A’’ allele at rs2019727 that is highly correlated (r2 = 0.9) with this deletion in the Caucasians was
used as proxy.

4DCNP147 predicted by the ‘‘G’’ allele at rs7542235.
NA - not adjusted for rs1329428 and rs203687 as their genotypes are not available.
doi:10.1371/journal.pone.0025598.t003
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show an equally strong signal at rs1410996, and is not feasible to

statistically determine which variant is causal. The region with the

best signal contains complement control protein modules 12–14, a

putative C3b/C3c binding site [30]. The important finding is that

the core sequence containing the AMD susceptibility variant(s) has a

complex structure affecting both copy number and gene regulation.

In summary, we have expanded the knowledge base of the

spectrum of genetic variation at the CFH locus and its paralogs;

CFH was the first gene with a common variant to be identified

through GWAS. As with loci that function in immunity cascades,

these genes show signs of positive selection and recurrent

rearrangements, an attribute of CNVs. We also circumscribed a

critical region within CFH that carry AMD risk-causing variants.

The AMD field has begun to apply the original gene-mediated risk

profiles towards personalized medicine. Maller et al. [17] proposed

assessing lifetime risk of AMD by evaluating five common SNPs at

CFH, ARMS2, C2 and CFB, and ranking risk by counting the

number of susceptibility variants at each locus. Seddon et al. [31]

have shown that the predictive power for AMD progression at six

SNPs in these genes along with demographic profiles is over 82%.

However, our results show that common and rare deletions,

duplications, and rearrangements are complex phenomena that

may lead to unanticipated results, particularly when the net

consequence of the diplotype across both homologs is taken into

consideration. CFH has similarly been the focus of examination for

atypical hemolytic uremic syndrome and Membranoproliferative

Glomerulonephritis type II (MPGN II). Expansion of the

repertoire of variation at the expanded RCA locus will have an

impact on the predictive ability for both diseases, AMD and

MPGN/atypical hemolytic uremic syndrome, with more compre-

hensive models being required for forecasting future disease status.

We suggest that a systematic survey of larger clinical datasets is

needed to understand the role of these common and rare events in

mediating susceptibility and protection.

Materials and Methods

Ethics Statement
This study was approved by the Institutional Review Boards of

the Case Western Reserve University, Cleveland; University of

Wisconsin, Madison; University of Michigan, Ann Arbor; Cleve-

land VA Medical Center, Cleveland; Cleveland Clinic Foundation;

Cleveland; Mayo Clinic, Rochester; University of Pennsylvania,

Philadelphia; Oregon Health & Sciences University, Portland;

Singapore Eye Research Institute, Singapore; and ethics sub-

committee of the Vision Research Foundation, Chennai, India.

Subjects
Reference Sets. The reference sets include 270 phase I+II

HapMap samples (30 Utah residents of Northern and Western

European ancestry (CEU) trios, 30 Yoruba in Ibadan (YRI) trios,

45 Han Chinese in Beijing (CHB) and 45 Japanese in Tokyo (JPT))

and 912 HapMap phase III samples, belonging to 11 different

populations (CEU, CHB, JPT, YRI, Chinese in Denver, Gujarati

Indians in Houston, Luhya in Webuye, Kenya, Mexicans in Los

Angeles, Maasai in Kinyawa, Kenya, Tuscans in Italy and

Africans in Southwest USA. We also examined 400 samples,

comprising 100 each of African Americans, Caucasians, Chinese

and Mexicans, belonging to the Human Variation Panel from the

Coriell Institute for Medical Research (Coriell, NJ, USA). The raw

intensity files (Affymetrix genome-wide Human SNP6.0 array) of

all these samples were obtained directly from Affymetrix (Santa

Clara, CA), http://www.hapmap.org and the Coriell Institute for

Medical Research (Camden, NJ), respectively.

Clinical Sets. Our clinical datasets include 293 individuals

from 34 families participating in Familial Age-related Maculopathy

Study (FARMS), 600 cases and controls (400 cases and 200 controls)

participating in the Age-related Eye disease study (AREDS), a

Michigan-Penn-Mayo (MPM) Panel containing of 2157 cases and

1150 controls, a South Indian cohort with 251 individuals (134 cases

and 117 controls) and the Singapore Malay Eye Study (SiMES)

cohort containing 3072 samples on whom GWAS data was

available (Figure S10 and Table S8 for details of cohort pheno-

typing and genotyping). In addition to the GWAS data, a panel of

1941 severe cases and 1991 controls from five different cohorts

(referred to as the custom Illumina panel) were also examined using

custom genotyping. The description of the clinical sets is presented

in Text S2 and Table S8. This study was conducted according to the

principles expressed in the Declaration of Helsinki. All samples were

collected according to institutionally approved protocols for study of

human subjects at the respective Institute and written informed

consent was obtained from all subjects.

Sequence Similarity Search
To detect similar segments in the RCA gene cluster, we

obtained genomic sequence of this region (NCBI build 36; http://

www.ensembl.org) and used Megablast search option in the Basic

Local Alignment Search Tool (BLAST) at NCBI. In primates, the

segmental duplications were detected using the whole-genome

shotgun sequence detection approach [32]. The strategy entails

the alignment of orangutan and chimpanzee whole genome

shotgun reads using the Megablast program and identifying

regions with a statistically significant excess read depth (see

Marques-Bonet et al. [33] for details).

Genotyping and Quality Control
The DNA samples used in this study were genotyped with a

variety of platforms. The genotyping methods as well as quality

control criteria are described in Table S8.

Table 4. CNP association in the FARMS cohort.

Association of CNPs with AMD$ Association of CNPs with AMD@

CNP Effect SE LRT p-value Effect SE LRT p-value

CNP147* 0.689 0.182 0.0002 0.42 0.23 0.07

CNP148* 1.260 0.520 0.016 1.110 0.310 0.03

*Increase in every copy at of the CNP with increase in the AMD score.
$Association of CNPs after adjusting for age and age2.
@Association of CNPs after adjusting for age, age2, rs1329428, and rs203687.
doi:10.1371/journal.pone.0025598.t004
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CFH rs1061170 genotyping. This variant of CFH was not

placed in the whole genome arrays or in the GoldenGate custom

Illumina genotyping array. Thus, this variant was genotyped in the

FARMS, AREDS, the custom Illumina panel and Indian cohort

using a custom assay (Applied Biosystems, Foster City, CA) or

direct sequencing. Results for the FARMS rs1061170 data are

published elsewhere [10,34].

Copy Number Variation (CNV) Detection
Copy number variant detection was performed by different

methods depending on the available genotyping platform (Table

S8). The common and rare copy number variations were detected

using the Birdsuite software version 1.5 [35,36] (Broad Institute,

Boston, MA) in both the reference and the FARMS clinical sets.

The raw intensity data from the AREDS as well as the Indian

cohort were analyzed using Partek Genomic Suite Version 6.4

(Partek Inc., MO, USA). The PennCNV algorithm [37] was used

to detect CNVs on the Illumina Bead Array data, e. g., the MPM

panel, the SiMES cohort and the custom Illumina panel.

Fosmid clones corresponding to CNP147 and CNP148 were

identified from the fosmid Human Genome Structural Variation

Project [38] based on the mapping of end-sequence pairs to the

regions (http://hgsv.washington.edu). Sites of structural variation

were confirmed by array comparative genomic hybridization using

corresponding test HapMap samples and the reference genome of

sample NA15510 [36]. Clones were recovered and inserts were

completely sequenced using Sanger-based capillary sequencing

[39]. The region between CFH and ASPM was screened using

polymerase chain reaction (PCR) to molecularly validate the

homozygous deletions detected by the Birdsuite program, and to

find additional large homozygous deletions, if any (Figure S11).

Primers were designed either manually or using Primer3 software

(http://frodo.wi.mit.edu/primer3/). We amplified a total of 30

fragments between CFH and ASPM either as single fragments or

multiple fragments using standard PCR with DNA from 10

HapMap CEU samples. We also screened 98 samples (49

Caucasians and 49 African Americans) from the Human Variation

panel, the entire FARMS cohort, and 443 of 511 AREDS samples

that were genotyped with both the Affymetrix 100 K and the

Illumina 100 K arrays.

Statistical Analysis
Haplotype Construction. We downloaded phase II HapMap

data for 305 SNPs located between CFH and CFHR5. A single JPT

sample (NA19012) with a large number of missing genotypes in this

region was not considered for haplotyping due to poor data

structure. Haplotypes, inferred using PHASE 2.2.1 [40,41] with a

population frequency of .0.5% were considered further. Identical

haplotypes were assigned the same number and all the haplotypes

were categorized in the order of similarity with an unweighted

group pairs method that uses arithmetic averages (UGPMA) using

the Molecular Evolutionary Genetics Analysis software version 4.0

(MEGA4) [42].

For the FARMS cohort, the haplotypes were constructed

manually according to the segregation pattern and missing alleles

were imputed by a parsimony method. After this, Mendelian

errors were identified at the haplotype level using MARKER-

INFO (S.A.G.E. version 5.3) and haplotypes with a frequency of

.1% were considered for further analysis. For the case-control

cohorts, two most likely PHASE 2.1.1 inferred haplotypes were

selected from each individual and haplotypes with a frequency of

.1% were examined further.

Linkage Disequilibrium (LD) Analysis in HapMap

Samples. We examined the LD structure between these CNPs

and the SNPs located at the RCA gene cluster using Haploview

version 4.0 [43]. For this, we picked the two most likely haplotypes

inferred by PHASE from each of 209 unrelated HapMap samples.

Imputation. To maximize the number of available markers,

we imputed the untyped genotypes using the MACH program

version 1.0 [44] with HapMap CEU haplotypes as the reference to

obtain much denser data.

Association Analysis. The SNPs located between CFH and

ZBTB41 that passed quality control metrics were tested for

association, with the minor allele as reference. For the deletion

variants and the haplotypes, the total number of copies present

(N = 0, 1 or 2) was tested against the affection status. When

rs1329428 and rs203687 were included in association models as

SNP covariates, they were coded in a similar manner. For the

FARMS cohort, the original 15-level phenotype measurement of

Wisconsin age-related maculopathy grading system (WARMGS)

score was adjusted to age 80 using a Box-Cox transformation

method as previously described [2]. To account for the linear and

non-linear effects of age, we adjusted for both age and age2 (age

squared). Family-based association analysis on the FARMS data

was conducted using the age-adjusted scores as the disease trait

using the ASSOC program (S.A.G.E. version 5.3), with each SNP

was tested for association under the additive mode of inheritance

in the presence of a random sibship effect. Single SNP association

analysis for the MPM panel is described elsewhere [45]. For other

case-control cohorts, logistic regression, as implemented in PLINK

[46], was used to test the association of SNPs (covariates used are

described in Table S8). For haplotype association analysis, the

number of copies of every haplotype except H2 were included

simultaneously using H2 as baseline and this results in estimates of

the effect of each haplotype relative to the base haplotype H2.

Since cases and controls included in the custom Illumina panel

were identified at different sites over differing time frames, we were

concerned about heterogeneity. Therefore, each cohort was

analyzed separately and the results combined using meta-analysis.

This approach is more conservative than a pooled analysis

grouping all cases and controls. To combine findings from

different cohorts, a joint effect estimate was calculated by taking

a weighted average of the individual cohort estimates, with the

inverse of the variance as the weighting factor. This combined

estimate was used to determine an overall odds ratio for each SNP

and its standard error, from which the p-value was calculated

assuming normality of the distribution.

Finding an Optimal SNP Set. In order to rank the best

SNPs in the 32 kb region and to conduct a minimal SNP set

explaining the effect of the region on AMD, we ran forward

selection. SNP genotypes (imputed) in the pooled set containing

the three Caucasian case-control datasets (the custom Illumina

panel, the MPM panel and the AREDS cohort) were coded as the

number of minor alleles, and were added one at a time as

predictors in a logistic regression model, including age and sex as

covariates. At each step, the SNP giving the smallest p value was

retained in the model, until no additional SNP remained

significantly associated (p,0.05).

Functional Analysis
We used two programs, AliBaba version 2.1 (http://www.gene-

regulation.com/pub/ programs.html) and Eldorado (Genomatix

software Inc. MI, USA) to examine the two important intronic

SNPs in the 32 kb core region. These programs enable us to

predict if changes in the nucleotide at this position, alters the

binding properties of the transcription factors. The amino acid

sequence around codon 402 of human CFH protein was compared

to that of other species using protein blast at the NCBI website.
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Gene Expression Analysis
We downloaded gene expression data for Epstein-Barr Virus

transformed B cell lines (GENEVAR project, http://www.sanger.

ac.uk/humgen/genevar/) of 210 unrelated HapMap individuals,

which consisted of 60 parents of CEU, 45 CHB, 45 JPT, and 60

parents of YRI. We examined the effect of AMD-associated SNPs

on expression of CFH and CFH-related genes, CFHR1-CFHR5. To

avoid population stratification due to differences in allele frequen-

cies among different ethnic groups, we tested association separately

in each population using linear regression. Effects (regression

coefficients) and p- values from regression results were combined by

meta-analysis using the METAL program (http://www.sph.umich.

edu/ csg/abecasis/Metal/index.html), which calculates an overall

Z-statistic and p-value from the weighted average of the individual

statistics by accounting for sample size in each sample.

Supporting Information

Figure S1 Segmental duplications in the RCA gene cluster. (A)

Predicted/known segmental duplications as shown in UCSC

human genome browser (NCBI Build 36, as of December 2008) as

well as in the literature. Homologous regions are indicated by

horizontal shaded bars of the same color. (B) Predicted segmental

duplications based on sequence similarity as shown by megablast

(NCBI). Highly similar regions are indicated with colored bars (see

Table S1 for more detail). The homologous regions encompass-

ing sequences identical to Y402H of CFH and the surrounding

region are shown in red bars. A major proportion of SNPs (2043/

2771) located at RCA gene clusters fall within these segmental

duplications.

(TIF)

Figure S2 Depth of coverage analysis of whole genome shotgun

sequence aligned to the reference genome predicts Venter may

have partial deletion of CFHR1 when compared to Watson, but

Watson has a predicted duplication of CFHR4 (regions in red

depict areas of excess depth of coverage).

(TIF)

Figure S3 Confirmation of homozygous deletions at CNP147

using the PCR-based deletion screening protocol (see Figure S11
for primers location). Gel picture of fragment Unique 01 showing

no band in HapMap CEU samples (a) and in samples from Coriell

human diversity panel (b) predicted to have both copies of

CNP147 deleted.

(TIF)

Figure S4 Arrangement of haplotypes derived from three

different HapMap groups in the order of similarity. Haplotypes

highlighted with yellow are the ones carrying deletion either at

CNP147 or CNP148. All the haplotypes are categorized according

to haplogroups observed in our clinical datasets (see figure 2 in the

main paper for more information). DCNP147 occurs on multiple

clades in the Yorubans, suggesting recurrent origin. Although this

deletion occurs on two different clades in CEU, they appeared to

be separated by recombination event within the CNP148 region.

DCNP148 occurs on multiple haplotype background both in

Asians and Yorubans.

(DOC)

Figure S5 PCR amplification of fragments (a) Unique 01, (b)

Frag_00.7.4 & Frag_B1_2.2, and (c) Frag_R3.05 & Frag_R1.13

confirming homozygous deletions in FARMS samples.

(TIF)

Figure S6 Gel pictures of fragments. DCNP147 carrying

haplotypes were predicted using allele ‘‘A’’ of rs2019727 because

none of the deletion-specific SNPs were genotyped in AREDS.

rs2019727 is in very strong LD with DCNP147 (r2 = 0.9) in the

Caucasian reference sets. Predicted homozygous deletions at

CNP147 in AREDS samples were confirmed using PCR-based

deletion screening protocol. Amplification of fragments (a) Unique

01 and (b) Frag_R3.05 & Frag_R1.13 confirmed the homozygous

deletions in AREDS samples (as indicated by arrows).

(TIF)

Figure S7 Locations of the Cis-elements, as predicted by

chromatin immunoprecipitation assay, at CFH locus. This data

was obtained from UCSC Human genome browser. Arrow

indicates the transcriptional binding sites detected at rs203687 and

rs1329428.

(TIF)

Figure S8 Comparative primate genome analysis (depth of

coverage and interspecific arrayCGH) suggests that chimps have

more extensive duplication architecture than humans, and that

duplications likely arose in a common ancestor of chimp and

human but after divergence from orangutan (6–12 million years

ago). Targeted arrayCGH of the region confirms increase of

CFHR copies in chimpanzee (PTR) and bonobo (PPA) when

compared to human but that orangutan (PPY) has reduced copy-

number. Interestingly, a portion of CFHR4 seems to have

hyperexpanded in great apes (bonobo and orangutan).

(TIF)

Figure S9 Evolutionary conservation of codon 402 of CFH.

Neither Tyrosine nor Histidine at codon 402 is conversed in other

species. Arrow shows the codon 402 of CFH.

(TIF)

Figure S10 Study design. This study consisted of several stages.

In the first stage, structural variation at RCA gene cluster were

detected in the reference sets. The variations found in .1% of the

population, called copy number polymorphisms (CNP), were

characterized. In the second stage the significance of these CNPs

on AMD was examined in the clinical sets. In the third stage,

haplotypes were constructed using CNP and SNP genotypes and

the haplotypes over 1% frequency were tested for association with

AMD. Information from these haplotypes was used to fine map

the critical region. In the fifth stage, best SNP was selected from

this critical region by conditional analysis. In addition, we also

tested effect of these CNPs and AMD-associated SNPs on the

expression of genes involved in complement regulation. Finally,

functional studies were conducted for one of the AMD-associated

SNP affecting the CFH gene expression.

(TIF)

Figure S11 Schematic representation of PCR-based deletion

screening plan. The region of interest was divided into three

subregions, 1–3. Subregion 1 spanned CNP147; subregion 2

spanned the region between the 59 end of the CFH gene and 59

end of CNP147; and subregion 3 was defined as the region from

the 39 end of CNP147 to the middle of ASPM. (a) Enlargement of

region around unique region 01. Megablast search at CNP147

revealed a unique region that did not show homology to any other

regions in the genome. It is located at 195,066,977–195,010,019.

(b) Arrangement of genes in the RCA gene cluster, with the arrow

indicating the 59-39 direction. The vertical arrows indicate the

locations screened; three subregions are indicated with different

colors of arrows: blue arrows represent the subregion 01, which

includes CNP147. Subregions 2 and 3 are indicated with black

and red arrows, respectively.

(TIF)
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Table S1 Location of highly similar segments in the RCA gene

cluster, as identified through Megablast search.

(XLS)

Table S2 Rare structural variations detected among reference

sets.

(XLS)

Table S3 Frequency distribution of variations at CNP147 and

CNP148 in different reference populations.

(XLS)

Table S4 Association of six different haplotypes of CFH region

with AMD in the custom illumina panel.

(XLS)

Table S5 Meta-analysis SNPs located in the 32 kb critical

region.

(XLS)

Table S6 Variations at CNPs 147 and 148 detected with

PennCNV in the custom illumina panel.

(XLS)

Table S7 Rare structural variations in the RCA gene cluster in

FARMS cohort.

(XLS)

Table S8 Summary of SNP genotyping, genotype calling and

quality control measures used in this study.

(XLS)

Text S1 BLAST alignment of sequences surrounding some of

the AMD-associated SNPs in the RCA gene cluster with their

paralog sequences.

(DOC)

Text S2 Supplementary methods.

(DOC)
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