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Abstract

Background: Much research has been devoted to the development of new breast cancer diagnostic measures, including
those involving high-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopic techniques.
Previous HR-MAS MR results have been obtained from post-surgery samples, which limits their direct clinical applicability.

Methodology/Principal Findings: In the present study, we performed HR-MAS MR spectroscopic studies on 31 breast tissue
samples (13 cancer and 18 non-cancer) obtained by percutaneous core needle biopsy. We showed that cancer and non-
cancer samples can be discriminated very well with Orthogonal Projections to Latent Structure-Discriminant Analysis (OPLS-
DA) multivariate model on the MR spectra. A subsequent blind test showed 69% sensitivity and 94% specificity in the
prediction of the cancer status. A spectral analysis showed that in cancer cells, taurine- and choline-containing compounds
are elevated. Our approach, additionally, could predict the progesterone receptor statuses of the cancer patients.

Conclusions/Significance: HR-MAS MR metabolomics on intact breast tissues obtained by core needle biopsy may have a
potential to be used as a complement to the current diagnostic and prognostic measures for breast cancers.
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Introduction

Magnetic resonance (MR) spectroscopic techniques has been a

primary method employed in investigations of metabolite changes

in biofluids such as urine, blood, and bile [1,2,3]. Recent

technological advances have enabled detection of metabolites also

in intact tissues, using magic angle spinning (MAS) methods [4].

MAS narrows the line widths of metabolite signals by eliminating

dipolar relaxation in the semi-solid tissues through rapid sample

spinning (typically. = 2000 Hz) at a magic angle (54.7 degrees)

against the magnetic field. The resulting spectra show features

with high resolution (HR) that are typically seen in solution MR

data [4]. Such HR-MAS MR spectroscopy has been applied in

metabolomics studies on breast, prostate, liver, colon, and lung

tissues [5,6,7,8,9,10]. In the case of breast cancer tissues, several

studies employing HR-MAS MR have addressed issues including

metabolite identification, diagnostic usefulness, and prognostic

marker correlation [11,12,13,14]. However, these studies were

conducted retrospectively with surgically obtained tissues; their

results, therefore could not be directly applicable to surgical

decision making or to cancer patients that do not need axillary

dissection. Samples alternatively obtained by minimally invasive

fine needle aspiration biopsy (FNAB) or core needle biopsy before

surgery would, in fact, be applicable. A standard high-resolution

MR (non-HR-MAS) spectroscopic study with FNAB has been

conducted, but it, too, used intraoperative samples [15].

Moreover, this method would be ineffective with breast tissue

samples obtained by core needle biopsy, due to the high lipid

contents of those tissues.

The data obtained via MR spectroscopic techniques are

inherently complex, and contain information on many metabo-

lites; such data, accordingly, have been analyzed by multivariate

analysis. Variables are reduced in number, and marker signals are

identified by the weights of the original variables in the reduced

variables that contribute to the differentiation of the classes of

interest. Principal component analysis (PCA), partial least square-

discriminate analysis (PLS-DA), and neural networks are among

the frequently-used methods for breast cancer metabolomics

studies [12,16]. Recently, Orthogonal Projections to Latent

Structure-Discriminant Analysis (OPLS-DA) was proposed as an
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effective tool for metabolomic analysis [17,18]. The main merit of

OPLS-DA is its separation of the class-orthogonal variations that

can obscure class differentiation. It is similar to the combination of

orthogonal signal correction and PLS-DA, but, advantageously,

can be completed in a single analysis. Its utility in fact has been

shown in many metabolomics studies in which intra-group

variation is very large [1,19,20].

We prospectively conducted HR-MAS MR spectroscopic

studies on breast tissue samples obtained by percutaneous core

needle biopsy. We employed CPMG pulse sequence which can

selectively suppress signals with short relaxation times, most

notably, lipid signals abundant in core needle biopsy samples. An

OPLS-DA analysis yielded information on elevated metabolites in

the cancer samples as well as quantitative measures on the

performance of our approach in classification and blind sample

prediction. On the basis of the results, we believe that minimally

invasive core needle biopsy combined with the HR-MAS MR

metabolomics approach may complement the currently existing

breast cancer diagnostic and assessment measures.

Results

HR-MAS MR spectra of core needle biopsy samples
The 31 breast tissue samples (13 cancer, 9 benign and 9 normal)

obtained by core needle biopsy were examined, and the

representative MR spectra of cancer and non-cancer samples

are shown in Fig. 1. As has been the case with spectra previously

reported for samples obtained through surgery, our MR spectra

featured large peaks at 0.91 and 1.31 ppm due to the aliphatic

fatty acid sidechains of lipids. These peaks were by far the most

intense, even with the CPMG T2 filter and regardless of the

cancer status, indicating that it is not easy to avoid inclusion of

adipose tissues in core biopsy samples. The intensity variations of

those signals were so large as to dwarf those of any others.

Therefore, we excluded them from the subsequent analysis. Still,

there were readily observable and reasonably resolved signals in

the 2.2,4.2 ppm region. In addition, the S/N ratios were

adequate for identification of a number of metabolites that have

been reported in surgically obtained samples (Fig. 1).

Figure 1. HR-MAS MR spectra of breast tissue samples obtained by 14-gauge core needle biopsy. Representative 500 MHz HR-MAS MR
spectra of breast samples from a cancer patient (upper) and a non-cancer patient (lower). The spectra were taken for an average of 12.2 mg of core
needle biopsy samples in D2O and 0.01% TSP with CPMG pulse sequence and 2 KHz spinning. Individual choline species were identified according to
previous reports [13,36] and comparison with an authentic choline sample.
doi:10.1371/journal.pone.0025563.g001
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Multivariate analysis of MR spectral data
As it was difficult to isolate differences between the patient

groups by simple visual inspection due to the large intra-group

variation, we performed a multivariate statistical analysis for a

more holistic view of the data. We used the 0.99,5.59 ppm

region, but excluded water and aliphatic fatty acid sidechains

signals, as stated above. Initially, we wanted to see if the approach

could discriminate among the three groups (cancer, benign tumor,

and normal), but found that it was not possible to distinguish

differences within the non-cancerous samples (benign tumor vs.

normal; data not shown). Therefore, we tried to build a model that

can address the difference between cancer and non-cancer groups

using the OPLS-DA approach, by which structured noise can be

dealt with efficiently [1,18,21]. The resultant OPLS-DA model,

for all of the 31 samples, separated the two major groups, cancer

(n = 13) and non-cancer (n = 18), without overlap using one

predictive and two orthogonal components (Fig. 2). Overall,

though each sample within a group showed considerable variation,

our model could discriminate them very effectively.

Although a perfect separation was achieved (see the Fig. 2: score

plot), it was yet possible that the distinction was due to model over-

fitting. Therefore, we performed a predictive test by leaving out

one patient sample at a time and constructing the OPLS-DA

prediction model with the rest of the data. The cancer or non-

cancer status of the left-out sample was then predicted based on

the new model. This step amounts, then, to a blind test for an

unknown sample, and as such can serve as a cross-validation for

the distinction model. The prediction approach was taken with the

same number of predictive and orthogonal components as in the

original OPLS-DA model. The class membership of the left-out

sample was predicted using an a priori cut-off value of 0.5. The

prediction results showed that the model correctly predicted 26

samples out of the total 31 (Fig. 3). Among the incorrectly

predicted samples were four cancer samples predicted as non-

cancer samples, and one non-cancer sample predicted as a cancer

sample. Thus, the sensitivity, specificity, and accuracy were 69%

(9/13), 94% (17/18), and 84% (26/31), respectively, in the

prediction of the cancer status.

Analysis of group-relevant signals
After the establishment of the model, we tried to identify the

variables responsible for the differentiation of the cancer and non-

cancer groups. We built an S-plot that shows the modeled

correlation (p(corr)p) and covariation (pp) in a single figure, enabling

easy selection of significant markers among noisy signals. The

p(corr)p values of the signals suggest that multiple signals account for

group differentiation (Fig. 4) [1,2]. Still, we could pick up 3.43 and

2.77 ppm signals as the most reliable contributors for the cancer

and non-cancer groups, respectively, as they had large values for

both correlation and covariation. Based on the above signal

assignments, the signals were identified as coming from taurine

(3.43 and 3.26 ppm) and aspartate (2.77 ppm). The assignment of

aspartate was tentative, though, as its signal was broad and possibly

overlapped with those from other metabolites. The signals from

choline-containing compounds (3.22,3.24 ppm), particularly

phosphocholine centered at 3.230 ppm, were also correlated with

the cancer group. To test the statistical validity of the signals found

by this multivariate analysis, we carried out a Mann-Whitney U-test

(Fig. 5) [22]. In addition, we obtained the average spectra of each

group after normalization and alignment (Fig. 5). Both of these

analyses showed that taurine and aspartate had a biased distribution

in the cancer and non-cancer groups, respectively.

Correlation with prognostic markers
Based on the cancer/non-cancer correlation with the MR

spectral data, we tested if PR status, an important prognostic

marker, can also be correlated. We divided the cancer patient

group into two according to the PR status (positive or negative),

and obtained an OPLS-DA separation model of the MR data of

each group (Fig. 6A). Although we observed cross-over of some

samples along the pp line of the model, we could see general

clustering of the samples into their respective regions. We also

tested the predictability of the model on blind samples using the

same method used for cancer/non-cancer status. Out of the total

of 13 cancer samples, 10 were predicted correctly and 3 were mis-

predicted, with 1 PR-positive and 2 PR-negative samples among

the latter. Other important prognostic markers, ER status and

HER-2/neu, could not be evaluated, due to the small number of

patients with ER negative (n = 2) and HER-2/neu negative (n = 1)

in our cancer patient group (See Table 1).

We also evaluated the correlation of MR spectral data with the

axillary lymph node metastasis status. Inclusion of all of the cancer

patients (metastasis = 4, non-metastasis = 9) did not yield a reliable

discrimination model. Exclusion of two possible outliers (both from

the non-metastasis group) based on a PCA and subsequent OPLS-

DA modeling resulted in a reasonable distinction between the two

groups (Fig. 6B). Three of the four samples in the axillary lymph

node metastatic group could be separated from seven samples in

the non-metastatic group.

Discussion

We evaluated the relevance of HR-MAS MR metabolomics to

core needle biopsy samples in breast cancer diagnostics. Although

there have been studies using similar spectroscopic techniques on

surgically obtained breast cancer samples, there have been none,

to our knowledge, that have utilized intact breast tissue obtained

by 14-gauge core needle biopsy. As percutaneous image-guided

biopsy using an 8–14 gauge needle is a standard procedure for

inspecting suspicious breast lesions in most hospitals, the results

can be directly translated into real clinical situation. Another

important advantage of our approach is that HR-MAS MR

spectroscopy is non-destructive, enabling re-use of samples for

Figure 2. Multivariate discrimination model for cancer and
non-cancer samples. Orthogonal Projections to Latent Structure-
Discriminant Analysis (OPLS-DA) score plot for cancer and non-cancer
samples. The model was obtained using one predictive and two
orthogonal components. Filled box and solid line: cancer samples; open
triangle and dotted line: non-caner samples.
doi:10.1371/journal.pone.0025563.g002
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later histopathological examinations [14,16]. We did not find any

degradation of the tissue samples after HR-MAS MR spectroscopy

and successfully performed H&E staining and immunohistochem-

istry analysis. One possible caveat regarding the core biopsy

approach is the small amount of the obtained sample and

uncertainties associated with the actual sampling positions for

small tumors. Still, it seems that the metabolomics approach might

be more suited to analyzing core-biopsy samples than other-omics

approaches. This is due to the fact that the small molecules

analyzed by MR-based metabolomics are more diffusible than

proteins or DNA molecules, and, therefore, can reflect the status of

neighboring tissues better than much larger macromolecules.

Again, the non-destructive nature of the technique is in contrast

with proteomics and genomics, which entail sample destruction.

The current study used normal and benign tissue samples for

comparison with cancer samples, unlike previous studies, which

used non-involved tissues from cancer patients [11,15,16,23]. In

addition, these earlier studies included relatively advanced-cancer

patients undergoing surgery, which fact might have facilitated the

tissue distinction. Therefore, our patient group might be more

variable even though the sample size is much smaller than some of

the previous ones.

Mountford et al. reported the diagnostic utility of ex vivo HR-

MR spectroscopy combined with linear-discriminant analysis

Figure 3. Prediction result for cancer status based on OPLS-DA model. One patient sample was left out at a time, and a new OPLS-DA
prediction model was constructed with the rest of the data. The class membership of the left-out samples was predicted using an a priori cutoff value of 0.5
(dashed line). Filled box: cancer samples, filled triangle: non-cancer samples. The Y values of the filled symbols are from the analysis using the entire dataset.
In the case of mis-classified samples, the predicted Y values are also shown as open boxes (cancer samples) and open triangles (non-cancer samples).
doi:10.1371/journal.pone.0025563.g003

Figure 4. Signals contributing to differentiation. Signals contrib-
uting to the differentiation of cancer and non-cancer samples are plotted
based on their p(corr)p and pp values. These values represent modeled
correlation and modeled covariation, respectively. The most relevant
chemical shift values are shown next to the symbols representing the
signals.
doi:10.1371/journal.pone.0025563.g004

HR-MAS NMR of Core Biopsy Samples
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(LDA) for FNAB samples from breast cancer patients [15]. They

tried the same approach for core needle biopsy samples, but were

unsuccessful due to the high fat content masking diagnostic signals

[15]. The successful discrimination of cancer status with core

needle biopsy samples in our present study was owed to several

methodological differences. First, we used HR-MAS, which can

significantly narrow the line width of signals from semi-solid tissue

samples. This line-narrowing is directly translated into increased

signal intensities. Second, we also employed CPMG pulse

sequence, which can selectively suppress signals with short

relaxation times, most notably, lipid signals. This increases the

relative contributions of other regions that carry diagnostic

information. Third, despite the use of the above spectroscopic

techniques, saturated fatty acid signals were the most intense

peaks. Therefore, we removed those regions from the spectra and

normalized the data with the total integral of the remaining

regions. This step proved to be particularly important, as a variety

of other normalizations failed to produce acceptable results. In

addition to the above measures to obtain or process the spectral

data, the use of OPLS-DA multivariate analysis [17,18] also

contributed to our results. OPLS-DA is different from PLS-DA in

that it rotates the score matrix so that the class-orthogonal

variation can be separated from the class-predictive one.

Therefore, it can provide easier interpretation of the factors

contributing to class difference in the presence of large intra-group

variation, such as that seen in the current case. HR-MAS MR

spectroscopy with CPMG pulse sequence has been applied to

tissue samples obtained during surgical procedures [11,12,14,23].

Figure 5. Average spectra and Mann-Whitney U test for marker signals. The levels of the makers identified by the multivariate analysis were
assessed by average spectral plot and Mann-Whitney U-test. A and B: Normalized and averaged intensities of the indicated marker signals from the
cancer and non-cancer samples. C and D: Box plots of the Mann-Whitney U test results with the resulting p values. In all of the plots, red represents
the non-cancer samples and blue the cancer samples.
doi:10.1371/journal.pone.0025563.g005
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However, adipose tissues could be physically avoided in those

cases [14], whereas, in core needle biopsy, their contents cannot be

controlled, and the resulting samples may be difficult to analyze

with more conventional approaches. OPLS-DA has been also used

successfully to analyze other demanding metabolomic cases

[1,20,24], including the one concerning data obtained from

genetically homogenous animals [25].

In addition to the above stated merits, OPLS-DA provided

easily interpretable data (S-plot, see Fig. 4) concerning metabolites

relevant to discrimination of cancer and non-cancer groups. Our

data showed that taurine and choline-containing compounds,

especially phosphocholine, were elevated in the cancer samples

compared with the non-cancer ones. Choline-containing com-

pounds have been found to be elevated in breast cancer

[26,27,28], as well as in other malignancies [29]. In addition,

phosphocholine level was higher in breast cancers or cancer cell

lines than normal counterparts [30,31,32]. Taurine levels have

also been known to be higher in prostate [33] and breast cancers

[34]. This consistency supports the relevance of our approach

using minimally invasive HR-MAS MR spectroscopy with core

needle biopsy in metabolite analysis of cancer tissues. There have

been several studies on the diagnostic performance of MR

spectroscopic techniques with biopsy-obtained breast cancer

samples. In one such report, HR-MR spectroscopic data on

intraoperative FNAB samples analyzed by multivariate analysis

showed 94% sensitivity and 98% specificity in discriminating

cancer and non-cancer tissues [15]. Another study using HR-MAS

MR spectroscopy on surgically obtained tissue samples reported

82% sensitivity and 100% specificity based on the intensities of

choline-containing compounds [13]. It should be noted that the

values of the former study were obtained with only a training set,

and those of the latter were from an intensity comparison of

choline that is not applicable to multivariate blind tests. If we apply

the same criterion, that is, diagnostic performance on a training set

without a blind test, to the OPLS-DA classification model, we

obtain 100% for both sensitivity and specificity based on the

predictive component. However, these approaches tend to yield

over-optimistic values, and more relevant estimation should be

obtained with blind tests using samples that were not used to build

the classification model [12]. It is notable that blind sample

prediction was done to evaluate the performance of prognostic

markers from surgical samples in later studies [12,16]. A blind test

on our data set, excluding one sample at a time until all of them

had been left out showed 69% sensitivity, 94% specificity and 84%

accuracy. Another intriguing feature of our results is the correct

blind-test prediction of ductal carcinoma in situ, a very early stage

Figure 6. Discrimination based on prognostic markers: PR and lymph node metastases. OPLS-DA score plots based on the statuses of
progesterone receptor (A) and lymph node metastasis (B). All of the models were obtained using one predictive and two orthogonal components.
Two samples were excluded based on the PCA analysis for (B). Filled box: positive samples, Open circle: negative samples.
doi:10.1371/journal.pone.0025563.g006

Table 1. Tumor characteristics of the 13 patients with breast
cancer.

Characteristics Summary (n)

Tumor size

Mean (sd) 1.461.6 cm

Range 0.5–3.5 cm

Histologic type

Ductal carcinoma in situ 2

Invasive cancer 11

Low grade 2

Intermediate Grade 6

High Grade 3

Lymph node metastases

No 9

Yes 4

Receptor and HER-2/neu status

ER+ PR+ HER-2/neu+ 6

ER+ PR2 HER-2/neu+ 4

ER+ PR2 HER-2/neu2 1

ER2 PR2 HER-2/neu+ 2

doi:10.1371/journal.pone.0025563.t001

HR-MAS NMR of Core Biopsy Samples
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cancer. Although the number of cases was small (n = 2), this could

be an interesting point to focus on in a larger study.

Our approach did not yield a reliable discrimination model for

ER status (data not shown), whereas it did provide a reasonable

distinction for PR status. Recently, Giskeødegård et al. presented a

good prediction for the two prognostic markers based on HR-

MAS studies with surgically obtained tissue samples [12]. In their

case, most patients had a similar ER/PR status whereas the two

factors were hardly correlated in our patient groups. Therefore, it

is not surprising that there are differences between the results for

their and our patient groups. Another important prognostic

marker is axillary lymph node status. We could obtain a

reasonable classification only after the exclusion of two non-

metastatic samples based on a PCA analysis. At this point, it is not

clear what properties of these two samples made them closer to the

metastatic ones, which issue might be elucidated with a larger-

sample-size study. Still, the difficulty in lymph node status

prediction is not surprising in that a recent study also reported

an unsatisfactory result [12]. As noted in that study, earlier high-

accuracy results [15] could not be directly compared, due to the

lack of a blind test.

In conclusion, the HR-MAS MR metabolomics approach was

shown to be feasible with intact breast tissues obtained by core

needle biopsy. Specifically, our results show that this approach has

the potential to discriminate cancer and non-cancer and to classify

breast cancers according to their metabolite profiles. If validated in

a larger study, the approach may be used as a complement to the

current diagnostic and prognostic measures for the management of

women with breast cancers.

Materials and Methods

Ethics Statement
Institutional review board approval was obtained for this

prospective study from the Seoul National University Hospital

Institutional Review Board (H-1003-037-312), and all patients

provided written informed consent.

Patients
Between May 2010 and November 2010, 22 consecutive

women (mean age, 49 years; age range, 20–68 years) who had

been scheduled to undergo an ultrasound-guided percutaneous 14

gauge- core needle biopsy were examined. We had obtained the

31 breast tissue samples (13 cancer, 9 benign and 9 normal) from a

total of 22 women (13 patients with breast cancer and 9 patients

with benign tumors) (Table 2). The normal breast tissue samples

were obtained from sites adjacent to the periphery of the benign

tumors from patients with benign breast tumors by simply

changing the direction of the needle. Among the cancer patients,

eleven of them had infiltrating ductal carcinoma and the rest of

two had ductal carcinoma in situ. Four of the patients with

infiltrating ductal carcinoma also had metastasis on the lymph

nodes (Table 1). We did not apply any exclusion criteria and

analyzed all the samples of the patients enrolled in the study to

maximize the patient diversity.

For HR-MAS MR spectroscopy, tissue samples were placed in

cryogenic vials and were immersed in liquid nitrogen immediately

after dissection.

MR spectroscopy data acquisition
All one-dimensional HR-MAS MR spectra of the tissue samples

were measured with an NMR spectrometer (Agilent, VNMRS

500) operating at a proton NMR frequency of 500.13 MHz (11.7

T). Temperature was set to 19uC after calibration with methanol.

Each experiment took 1 hour and 5 minutes.

Frozen samples were thawed in NMR laboratory, weighed, and

placed into an HR-MAS nano-probeH (Agilent, Walnut Creek,

CA). The total volume of the sample cell is 40 ml, and an average

of 12.2 mg core-biopsy samples were put in the cell with the

remaining volume filled with D2O (0.01% TSP). The probe was

an inverse-detection type and equipped with single Z-gradient coil.

The spectra were taken with CPMG pulse sequence to impose a

T2 filter. The total T2 delay was set to 290 msec and the sample

was spun at 2 KHz. The spectra were acquired with total complex

points of 16 K, sweep width of 7961 Hz, and 1024 transients. The

90 degree pulse was calibrated with each sample on water

resonance. Water signal was saturated using weak power

continuous wave during the recycle delay.

Data processing
The time-domain spectra were apodized with exponential

function (1 Hz), and then Fourier-transformed, phased and

baseline-corrected manually. Spectra were referenced to the TSP

signal at 0.00 ppm which was also checked by alanine signals at

1.48 ppm in case the TSP signal is split due to protein binding. To

reduce the complexity of the NMR data for the subsequent

multivariate analysis, the spectra were binned by 0.005 ppm

interval and normalized by integration values over the region of

0.99,5.59 ppm. As the aliphatic lipid signals were vastly different

from sample to sample, only the regions that are not affected by

those signals were used (1.44,1.91 ppm and 2.15,5.59 ppm).

Within those regions, the water region (4.61,5.03) was excluded

in the normalization due to its irregular behavior. These binning

and normalization were done using an in-house built Perl

program. To compensate for possible peak shift mismatch due

to the relatively high resolution binning, the spectra were aligned

using correlation-optimized warping algorithm [35].

Multivariate and spectral analysis
Matlab (MathWorks, Natick, MA), SIMCA-P 11.0 (Umetrics,

Sweden), and Excel (Microsoft, Seattle, WA) programs were used

to process the numeric data for statistical analysis. Chenomx

(Spectral database; Edmonton, Alberta, Canada) was used for

Table 2. Clinical and histological data on 31 samples from 22
patients included in the main study.

Characteristics Summary (n)

Age (years)

Median 50

Mean (range) 49 (20–68)

Histologic Diagnosis

Cancer

Infiltrating Duct Carcinoma (IDC) 11

Duct Carcinoma In Situ (DCIS) 2

Benign

Fibroadenoma 6

Fibrocystic change 2

Adenosis 1

Normal* 9

*Normal samples (n = 9) were obtained from the patient with benign tumors.
doi:10.1371/journal.pone.0025563.t002

HR-MAS NMR of Core Biopsy Samples
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spectral analysis. Principal component analysis, partial least

square-discriminant analysis, and OPLS-DA were performed to

identify latent patterns and distinguish patient groups. Class

discrimination models were built until the cross-validated

predictability value does not meaningfully increase to avoid

over-fitting of the statistical model. The statistical model was

validated by prediction of the unknown samples using leave-one-

out analysis. An a priori cut-off value of 0.5 was used to evaluate

the prediction results [2]. Signals contributing to the class

differentiation were identified by S-plot and the corresponding

metabolites were identified using Chenomx (Spectral database;

Edmonton, Alberta, Canada) software and an in-house built

database.

Immunohistochemistry
After HR MAS analysis, each core needle biopsy specimen was

fixed in ice-cold acetone for histopathology. One 5 mm section

was cut from each frozen tissue, and stained with haematoxylin-

eosin (H&E) for microscopic examination by a pathologist.

Another section was stained immunohistochemically for estrogen

receptor (ER), progesterone receptor(PR), and HER-2/neu using

monoclonal mouse-anti-human ER (ab7825, abcam, USA), PR

(sc52358, santa cruz, USA) and HER-2/neu (sc71667, santa cruz,

USA) and Dako REAL EnVision Peroxidase/DAB+ in a Dako

Autostainer Plus.
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